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Entanglement concepts & tools for studying many-body 
systems 

Some motivation (and warm-up): entanglement spectra 
of Heisenberg ladder

“Holographic mapping”: Boundary Hamiltonians from 
PEPS wavefunctions

Application to 2d AKLT wavefunctions: connection 
between bulk and boundary

Application to 2d topological states: dimer and SU(2)-
RVB wavefunctions
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Exotic states of matter

Beyond the “order parameter paradigm”: 
correlations “missed” by two-point 
correlation functions can be detected by 
entanglement measures 

* no broken symmetry
* no local  order 
* GS degeneracy depends on topology of space

X. G. WenTopological order

Exemple: (topological) spin liquid



Edge states in (topological) FQH systems

A

B
Li & Haldane

PRL 2008
Lauchli et al., 2009

L

L

Also topological insulators, etc...

crutial role of edges !
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P. Dirac (1930)
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Entanglement Entropy 

Sentanglement = −Tr{ρA ln ρA}

Reduced density matrix ρA = TrB |Ψ
〉〈

Ψ|

(Von Neumann) 

A quantitative measure: 
Levin & Wen, 2006

Kitaev & Preskill, 2006

More complex if critical or d=1 ...

“area” law 
d=2:          (perimeter)∝ L

Sentanglement ∝ ξLd−1



ρA = exp (−ξ̂)

Entanglement spectrum : {ξi}

rewrite the weights as: λi = exp (−ξi/2)

Rewrite         as thermal density matrixρA

β = 1/T inverse temperature
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“Haldane” Conjecture:

Precise correspondence between 
the entanglement spectrum of a 
FQH system partitioned into 
two sub-systems linked by some 
“edge” and the true sub-system 
spectrum 

A

B
Li & Haldane, 2008

Questions: 
 - More generally, can the ES always be connected to the 
true edge spetrum ?
- Is there any edge property that reflect bulk properties ?

Regnault, Bernevig & Haldane, 2009



c=1 CFT

Entanglement spectrumA simple example:
the 2-leg antiferromagnetic 

spin “ladder”

D.P., PRL 105, 077202 (2010)

A sub-sytem



2-leg ladder

A precise characterization 
of the “boundary hamiltonien” 

is in fact possible !
Exponential decay !

ρA = exp (−Hb)



“bulk”
edge

A B

- Extend to long cylinders with Nh legs ?
Nh →∞ ?

- Get a simple physical description of the 
  degrees of freedom of  Hb

BL BR

RL



Tensor Network approaches

Matrix Product States (1D) :

|Ψ
〉

=
∑

I

cI |i1, i2, ..., iNh

〉

....1 2 3 Nh

i

M i
α1,α2 D×D matrix

Equivalent to DMRG !!
D ~ m parameter controling the DMRG truncation

ik = −S,−S + 1, ... , S − 1, S

I. Cirac
F. Verstraete

G. Vidal

Romer and Ostlund (PRL, 1995)
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∑
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Totsuka and M. Suzuki.,
 J. Phys.: Condens.Matter,7(1639), 1995.

(see G. Sierra’s talk)



Tensor Network for d=2 (and higher): 
Projected Entangled Paired States (PEPS)

“contract” product of tensors



Basic formula:

σ2
b

ρA = Uσ2
bU†

isometry: maps 2D onto 1D

“lives” on the boundary

Holographic framework

Consequence: expect area law !

lA = Nh/2

L R

A B

ρA L′
L



Boundary theories: main message

* gapped systems (AKLT):
                         is short-range

* approaching a critical point 
           (deformed AKLT):
                    becomes long-range

* for topological GS (Kitaev toric code, 
dimer wf, su(2)-RVB): 
        =>       non-local 

Hb

Hb

Hb

Can we describe TOPOLOGICAL systems ?

To what extend      is a local Hamiltonian ?Hb



Application to AKLT  ladders

Si = zi/2

HAKLT =
∑

<ij>

PSi+Sj

Nh = 2

PEPS 
representation

D=2  !

(Affleck-Lieb-Kennedy-Tasaki)

Nh# of legs from 2 to ∞



low energy 
c=1 CFT

Entanglement spectra of AKL ladders/cylinders

2 legs 8 legs

same perimeter 
= 16 sites



LT

Short-range
 boudary Hamiltonians

Extrapolate to infinite AKLT cylinders

A(r) ∼ exp (−r/ξb)



Critical point:

Deformed AKLT model

breaks SU(2) down to U(1)

(dr+1/d2)1/2 ∼ exp (−r/ξb)A(r)

A(r)
A(r)



Boundary theories of topological Resonating Valence Bond states
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I. INTRODUCTION

In order to detect topological order, a common setup
consists of dividing the system into two regions (named A
and B) and compute the reduced density matrix (RDM)
in the GS of e.g. the A subsystem. In particular, the en-
tanglement entropy (EE), defined as the Von Neumann
entropy of the RDM SVN = −ρA ln ρA, contains an exten-
sive term – proportional to the length of the boundary
(area law) – and a universal sub-leading constant, the
topological EE, characterizing the topological nature. In
addition, − ln ρA can be seen as a (dimensionless) Hamil-
tonian Hb which provides (even) more information on the
system. First, its spectrum, the so-called entanglement
spectrum (ES), has been conjectured to have a deep cor-
respondence with the actual boundary spectrum. This
remarkable property was first established in fractional
quantum Hall states1 – the ES was shown to reproduce
faithfully the spectrum of edge states – and, later on, in
quantum spin systems2. Furthermore, beyond its spec-
trum, the nature of Hb itself is directly linked to the
property of the bulk. PEPS offer a natural formulation
of the relation between bulk and boundary. In Ref. 3, an
explicit isometry was constructed which maps the Hamil-
tonian Hb onto another one H̃b acting on the space of
auxiliary spins living at the boundary of region A, while
keeping the spectrum. Furthermore, for various two-
dimensional (2D) models displaying quantum phase tran-
sitions, like a deformed AKLT4 or an Ising-type5 model,
it was found3 that a gapped bulk phase with local order
corresponds to a boundary Hamiltonian with local inter-
actions, whereas critical behavior in the bulk is reflected
on a diverging interaction length of H̃b.

II. RVB WAVEFUNCTIONS ON CYLINDERS

Here, to investigate the boundary Hamiltonian H̃b of
the RVB wavefunction, we consider cylinders of length
Nh and circumference Nv, as depicted in Fig. ??(a). Par-
titioning the cylinder into two half-cylinders (playing the
role of the two A and B subsystems defined above) reveals
two edges L and R along the cut, as shown in Fig. ??(a,b).
Ultimately, we will take the limit of infinite cylinders, i.e.
Nh → ∞. As we shall see later, for a topological state,

the boundary Hamiltonian H̃b depends on the choice of
the boundaries BL and BR. Open boundary conditions
(OBC) on the cylinder ends (Fig. 1(a)) are obtained by
setting the outgoing virtual indices to “2” as shown in
Fig. 1(b). Arbitrary boundary conditions can be realized
as in Fig. 1(c,d).

FIG. 1: (Color online) Cylinder geometry (Nh = 4) used to
compute the RDM. Equal-weight superposition of hardcore-
dimer coverings [see e.g. (a,c)] have simple representations in
terms of PEPS (b,d). The bipartition generates two L and
R edges along the cut. Various (fixed) boundary conditions
BL and BR can be chosen on the cylinder ends by fixing the
boundary (virtual) variables. OBC (a) are defined by setting
all boundary indices to “2” (b). Arbitrary boundary condi-
tions can be defined physically by freezing (with e.g. a local
magnetic field) some spins at the boundaries (c), translating
in the PEPS language by setting the boundary indices to 0
(spin ↓) or 1 (spin ↑) (d).

PEPS representation of RVB states. – We start with
the square lattice RVB wavefunction (NN | ↑↓〉 − | ↓↑〉

Topological spin liquids 

RVB = equal-weight superposition 
of NN singlet coverings

D=3 PEPS

Short-range spin-spin correlations



RVB on the kagome lattice

map on a square lattice 
(but no reflection symmetry)

Evidence for Z2 liquid from recent numerics:

PEPS:

Yan, Huse & White, Science 2011



* Square lattice: algebraic dimer-dimer correlations 
                                   Albuquerque & Alet, PRB 2010

* Kagome lattice: short-range dimer-dimer correlations

Some properties of  RVB wavefunctions

Disconnected topological sectors
in the space of dimer lattice coverings

        E.g. on a cylinder:
* square lattice : Nh+1 sectors
* kagome lattice: 2 sectors

Misguich et al., PRL 2002
Moessner & Sondhi, PRL 2001



Structure of the Boundary Hamiltonian

supported by the non-zero eigenvalue sector of the RDM

projector characterizing the sectors

Topological sectors translate into
 CONSERVATION LAWS of “transfer matrix” 

[i.e. on (parity) of # of “2” on each row]



Different sectors can be obtained 
by choosing different boundary conditions

P = Peven

(kagome)

P = Podd

NB: for the square lattice,       sectors/projectorsNv



Non-locality of Boundary Hamiltonian
(acting on the edge)

Hlocal is an extended t-J model !

local operator (on the edge):
D ×D matrix ⇒ basis of D2 operators



Topological entropy

SVN = S0 + ANv

# = 3Nv/2
SVN ∼ − ln #

# of states on the edge 
contributing to even sector:



Interpolation between orthogonal dimer and RVB states

can be mapped onto 
Kitaev’s toric code

gapless ES !

ES spectrum reflects the edge spectrum (conjecture)



Conclusion and outlook

* natural mapping between bulk and boundary
       properties of bulk reflected in the property of 
the boundary Hamiltonian
       property of the bulk can be “read off” the 
property of boundary Hamiltonian 

* applied also to TOPOLOGICAL states
       tool to identify spin liquids in microscopic 
models

* extensions to chiral SL, fermions, (non-Abelian) 
anyons or gauge models ...


