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Outlook

● Why simulations with optical lattices

● Why lattice gauge theories

● Describe the specific work on Abelian LGT
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What would we like to know

● “More is different”
● Equilibrium, phases: strong interaction 

produces macroscopic phases very different 
from constituents (confinement, 
fractionalization, topological order) .

● Short time out of Equilibrium dynamic?
● Equilibration



Classical simulations



Classical simulations

● Density functional theory (small interaction)

● Monte Carlo (positive Hamiltonians)

● Tensor Networks (generic)



Controversial results
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IS it t
he way

To dynamic?



Gauge theories

● Specific class of QMBS

● They are very important ingredients for the 
description of  both high and low energies physics 
(QCD... antiferromagnets...)

●  They typically involve more than 2 bodies 
interactions

● Their strongly coupled regime is still under debate
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How do we get four body interactions ?
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Four body interactions via the Rydberg gate

We need a two dimensional Hilbert space
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Pure Z2 lattice gauge theory as low energy of
the deformed toric code

Deconfined/
Topological Confined

Wegner 71, Kogut  79
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The U(1) gauge magnets

Topological
Gapless
Confined

Local
Gaped
Confined
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Hamiltonian is not frustration free
We do not know GS locally

We cannot make dissipative state preparation

We can perform time evolution
two level system which dynamic can be implemented via Rydberg 

We cannot make adiabatic preparation

Gapless interesting phase no easy state

Level crossing with other phase where easy state
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U(1) gauge magnet Rydberg state preparation 

Adiabatic

We need an easy state

Slowly change H

Engenier  L(t)

Need to locally know GS
            but 

but

Dissipative
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Conclusions

Intersting historical phase for MBQP

First  quantum simulations (QS)

We propose a possible candidate for U(1) LGT QS

Now should be  possible to perform 
out of equilibrium  time-evolution.

Further step towards complete QS   LGT...
 (need matter).


