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1D quantum gases

f #® Quasi-1D geometry:
ultracold atoms in tight transverse confinement
w, k'l < Lwi—
2D deep optical lattices, chip traps

I
Y
i




le bosons in the strongly interacting regime

Experimental results

-

density profiles, momentum distribution, correlation functions,
collective modes, transport...
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The model

f # Uultracold dilute bosonic gases: T
binary interactions through s-wave collisions

# for atoms in a tight waveguide [oishanii, 1998]

v(x) = go(x) with g = 2a, [wHE — 0.4602 a, /a )5*

® model Hamiltonian [Lieb and Liniger, 1963]

H = Z— E1o° +V(aji)+gz5(£€i—$j)

2m Ox? —
1<

Lieb-Liniger model with external potential
coupling strength:

v = gn/(d*/m)
L note: strong coupling at weak densities J
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From quasicondensate to TG

® Bose-Einstein condensation in 3D: off-diagonal long
range order for |X — X% —> OQ [Penrose and Onsager, 1965]

<L|JT(X)LP(X§> — Mg



From quasicondensate to TG

fquantum fluctuations: important in one-dimension T
# in 1D quasi-long range order for |z — 24 — oo [Haldane, 1981]

1
x — /2K

(W (2)W(Y) —

K. Luttinger parameter
depends on interactions

Luttinger parameters

#® Regimes of qguantum degeneracy at T’ = O:
v < 1 “quasicondensate”
condensate with fluctuating phase, K > 1
~v > 1 “Tonks-Girardeau” gas
L impenetrable-boson limit, K =1 J
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Impenetrable bosons: special features

f ® For g — oo the many-body wavefunction vanishes at T

o

contact
WY(.z; =24...) =0

Exact solution by mapping onto noninteracting fermions
[IMD Girardeau, 1960]

1
VNI

W(z:..2n) = MNicjco=nsSIgn(X; — X)

det(v(zx))

with ; (x) single particle orbitals

for arbitrary external potential, also time dependent

# fermionization = impenetrable bosons are robust to two-

and three-body particle losses

|
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Plan

fexact solutions for strongly interacting 1D gases:
external confinement and full qguantum dynamics

® TG gases in equilibrium: T
extensions of the model, Bose- ~ = =
_ _ | “ i ,/J \
Fermi mixtures AL
#® TG gases out-of-equilibrium: .

sudden stirring of bosons on a

ky L/m

rng
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New solvable models :
the Bose-Fermi mixture



1D spinors and mixtures

f #® Optical trapping allow for the study of multicomponent T
systems

spinor bosons [J. Kronjaeger et al

PRL 105, 090402 (2010)]

® Extensions of the Girardeau solution for the strongly
repulsive limit of Bose-Fermi mixtures [m. Girardeau and
A. Minguzzi PRL 99, 230402 (2007)], SPIN-1 DOSONS [F Deuretzbacher et al,
PRL 100, 160405 (2008)], SPIN-1/2 fermions [Liming Guan et al, PRL 102,

L 160402 (2009)] J
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1D Bose-Fermi mixtures
fwith repulsive BB and BF interactions

-

# mean-field and Luttinger liquid analysis at weak coupling:

Instability towards demixing

# Homogeneous system with equal coupling constants and
equal masses: Bethe Ansatz solution — no demixing

[C.K. Lai and C.N. Yang, PRA 3, 393 (1971), A. Imambekov and E. Demler Ann. Phys.

321, 2390 (2006)]

#® mixture in harmonic trap: partial demixing at intermediate

Interactions

[A. Imambekov, E. Demler, ibid. (2006)]

Bose

Fermi

Bose

Fermi

X

.4

% X

L = exact spatial structure in the trap at large interactions? <:J
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A symmetric model

f with a large degeneracy T
#® Model: Ny bosons, N fermions with coupling constants

g = gpr and mpg = mg, IN harmonic trap

® BF mixture with small relative mass difference:
173Yb_174Yb

® Inthe TG limit ggg, ggr — o0: large degeneracy of the
ground state (Ng + Ng)!/Ng!/Np!

/’” Energy levels for Ng = 1,
o f = 1

Nrp = at increasing
Interactions, the even and

// | odd levels approach |

interaction strength _pa1/36

Energy/ h w

-




o

A basis set for the manifold
-

We want to determine the wavefunction W in each of the
N! coordinate sectors

rTp1) < Tpe) < ... << TpN)
with P a permutation, P € Sy

TG limit: W = 0 at each BB and BF contact = in a given
coordinate sector, W o« Wr

Constraint: satisfy bosonic and fermionic symmetry under
particle exchange : Nz!Np! conditions

note! degeneracy left: N!/Ng!Ng! = ways you can order
In a row Ny bosons and Ny fermions, eg
BBFF, BFBF, BFFB, FBBF, FBFB, FFBB

|
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A basis set for the manifold

f BBFF, BFBF, BFFB, FBBF, FBFB, FFBB T
# Starting point: the snippet orthonormal basis

(z1..25|P) = VNI Wr(z1..28)]

nonvanishing only in the coordinate sector P

o |
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A basis set for the manifold

f BBFF, BFBF, BFFB, FBBF, FBFB, FFBB T
# Starting point: the snippet orthonormal basis

(z1..25|P) = VNI Wr(z1..28)]

nonvanishing only in the coordinate sector P

#® [dea! combine the snippets which correspond to the same
BBFF sequence =- orthonormal basis

(since each snippet is used only once)

o |
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A basis set for the manifold

f BBFF, BFBF, BFFB, FBBF, FBFB, FFBB T
# Starting point: the snippet orthonormal basis
(x1..x5|P) = VN!|Wr(x1..2N)|

nonvanishing only in the coordinate sector P

#® [dea! combine the snippets which correspond to the same
BBFF sequence =- orthonormal basis

(since each snippet is used only once)

® Example: =, x5, bosons; x5, v, fermions;
coordinate sectors associated to BB F'F
T < Ty < T3 < Xy
Ty < X1 < T3 < Xy
T < Xy < Ty < X3

Ty < T < Ty < T3

LIJBBFF — <£Cl..£EN|(€ + (12))(8 — (34))> _p13/36



A basis set for the manifold

f BBFF, BFBF, BFFB, FBBF, FBFB, FFBB T
# Starting point: the snippet orthonormal basis
(x1..x5|P) = VN!|Wr(x1..2N)|

nonvanishing only in the coordinate sector P

#® [dea! combine the snippets which correspond to the same
BBFF sequence =- orthonormal basis

(since each snippet is used only once)

® Example: =, x5, bosons; x5, v, fermions;
coordinate sectors associated to BF BF
T < X3 < Ty < Xy
Ty < X3 < T < Xy
T < Xy < Ty < X3

Ty < Ty <1 < T3

LIJBFBF — <£E1£CN|(23)(6 + (12))(8 — (34))> ~p13/36



Density profiles for the BBFF basis

f BBFF, BFBF, BFFB, FBBF, FBFB, FFBB T

#® Analogous to a system of distinguishable particles:

BBFF | | BFBF - | | |BFFB

| | FBFB | |FFBB.. .

[B. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, A. Minguzzi PRA 84, 023626 (2011)]

o |

—p.14/36



A special solution

start from the Bethe Ansatz solution for the homogeneousj

SYStem [Lai and Yang (1971), Imambekov and Demler (2006)]

introduce y1, ...yn, = P7*(1)..., P~'(INp) relative positions
of the bosons in a sequence

TG limit of the Bethe Ansatz solution: decoupling
Wpa = detfe! ¥ 5% | Wp(ay, ...xN)
where k = {—(Np —1)/24+ N/2,...,N/2,...(Np —1)/2 4+ N/2}
Generalize to the inhomogeneous case:
use Wr(x1,...xy) for harmonic trap

Conjecture: this solution is the one connected to the
(nondegenerate) solution at finite interactions (with

9BB = gBF)
o

—p.15/36



| ntermezzo: particle exchange symmetry

~» Two possible Young tableaus o
B | B
F| B | B
Y= Y=
I:
I:

The ground state at finite interactions has the Y
symmetry [Lai, Yang (1971)]

® to each tableau is associated a value of the Casimir
Invariant: C = Zi<j (i, ]) with (7, 7) particle permutation

cy = (Ng(VNp + 1) — Np(Np — 1)) /2
cyr = (Np(Np — 1) — Np(Np +1))/2

o |
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Casimir operator

f #® Representation of the Casimir operator on the BBFF T
basis for Ngp = 2, Ny = 2:

[0 1 -11 -1 0 )
1 0 1 1 0 -1
-1 1 0 0 1 -1
1 1 0 0 1 1
-1 0 1 1 0 1

\ 0 -1 -11 1 0 |

® similar structure for Ny =3 Npr = 3

- |
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Symmetry check
-

f #® Use the Casimir to “test” the symmetry of a wavefunction

| C|¥ O
v
® Check for Ng = 3 N = 3: the “BA” solution has the Y
symmetry
(WralCl¥Ba) _ 4
(Wpa|W54)
F| B |B|B
Wp4 has the symmetry of the
F
ground state
F

- |
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Spatial structure of the BF mixture

f #® The BA solution yields a non-demixed density profile: T
connection with partial demixing at intermediate
iInteractions?



Spatial structure of the BF mixture

f #® The BA solution yields a non-demixed density profile: T
connection with partial demixing at intermediate
Interactions?

# A density functional study:

[Ya-Jiang Hao, Chin. Phys. Lett. 28 010302 (2011)]
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Spatial structure of the BF mixture

f #® The BA solution yields a non-demixed density profile: T
connection with partial demixing at intermediate
iInteractions?

® our DMRG results [B. Fang,P. Vignolo, M. Gattobigio, C. Miniatura,
A. Minguzzi, PRA 84, 023626 (2011)]

Q
=
S,
= 03} ]
=
7 0 >

0 3 0 3
x/ap, x/ap,

No demixing at very large interactions



f ® our DMRG results for the momentum distribution

o

Further comparisons

0
p/pho

[B. Fang et al PRA 84, 023626 (2011)]

Wz 4 well describes the DMRG data at large interactions

0
p/pho

|
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Dynamical aspects

f #® The spatial structure influences the collective mode T
spectrum: demixing = frequency softening of
out-of-phase modes

"in phase" breathing mode

2.25¢
2,
g "out of phase" breathing mode
1. 5\
1. 25}

"in phase" dipole mode

=
0 oz 08 15 L6 0. 75{"out of phase” dipole mode
ag [nm] 0.2 0.4 06 08 1 1.2%

[P. Capuzzi, A. Minguzzi, M.P. Tosi [A. Imambekov, E. Demler, Ann. Phys.

PRA 67, 053605 (2003)] 321, 2390 (2006)]
the crossover partial demixing - no demixing should also

L be observable on the frequencies of collective modes J
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1D bosons on a ring trap



Bosons on a ring trap

-

® New topology realized in experiments (NIST, Oxford, Cambridge,

Villetanneuse...)

#® Possibility to set into rotation a barrier potential

[

< Norm. Density

Ramanathan et al (2011)

L # small, tight rings under construction J
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Bosons on a 1D ring

B ~ N
stirred by a rotating localized barrier

# artificial gauge fields — rotation < magnetic field
= 5-(i M — mv)® + Vg

m

gL

L ® Mesoscopic effects: energy levels depend on Coriolis ﬂUXJ
® = L, periodic in flux quantum ®, = 27 [/dh
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Macroscopic superposition states

f = B the “Schroedinger cat” . a quest T
with ultracold atoms; decoher-

ence due to particle losses and

magnetic fluctuations

#® 0n a ring: superpositions of /VWV\

current states vé

® weak interactions are harm- ", o
ful; robust superpositions at "’
strong Interactions [DW Hall-
wood et al (2010)]

10.015

0.01 10.01

AE/Ey

0.005 10.005

ol— . .
10* 102 10° 102

0

g/EoL
Lalso: fermionization prevents two- and three-body losses J
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A close look to the superpositions

fRabi-Iike oscillations between current states induced by a T
velocity quench

® at zero (or weak) interactions: "NOON" state,
superposition of ¢ = 0 and ¢ = ¢

t
INOON) o [(by)™ + (b} )V vac) ..
[A Nunnenkamp et al (2008)]
# strong interactions prevent from multiple occupation of

single particle state — not a simple NOON:
nature of the superposition?

o |
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Superpositions with a TG gas

f #® width of the TG gas iIn momentum space vg T
typical velocity at half Coriolis flux v = w [/dh L
If v < v difficult to resolve this superposition

o |
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Superpositions with a TG gas

f #® width of the TG gas iIn momentum space vg T
typical velocity at half Coriolis flux v = w [/dh L
If v < v difficult to resolve this superposition

® s it possible to choose well-separated velocity
components?

o |
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Superpositions with a TG gas

f #® width of the TG gas iIn momentum space vg T
typical velocity at half Coriolis flux v = w [/dh L
If v < v difficult to resolve this superposition

® s it possible to choose well-separated velocity
components?

o |
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Superpositions with a TG gas

f # width of the TG gas in momentum space vg T
typical velocity at half Coriolis flux v = w [/dh L
If v < v difficult to resolve this superposition

® s it possible to choose well-separated velocity
components?

occupation of highly excited states: through a velocity
guench!

o |
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Stirring Impenetrable bosons

f o o
TG bosons on a ring, with moving barrier
U(x,t) = Uyd(x — vt)

# Initial state: ground state of the static barrier problem

#® sudden guench of the barrier velocity to its final value v

) X X ) . o 00 ; ) ) 00
X X X X

#® exact solution of the quantum non-equilibrium problem
by the time-dependent Bose-Fermi mapping

o |
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A novel superposition

fSudden guench to v > vp: occupied states
mapped Fermi problem at avoided level crossings

wavevector  disper-
sion of the single
particle problem

|
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A novel superposition

fSudden guench to v > vp: occupied states T
mapped Fermi problem at avoided level crossings

occupied states for
N=3 TG bosons at

v = 4r [/ L

#® occupation number distribution:

om/A, 0 2m/A. 6W/L 8W/I, 107/, K

a superposition of two Fermi spheres

o |
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Exact qguantum dynamics

ffollowing a sudden quench of barrier velocity

& spatial

y integrated particle current vs time

t/ T

|
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Exact qguantum dynamics

ffollowing a sudden quench of barrier velocity

# spatially integrated particle current vs time

t/ T

# momentum distribution: tomography of Rabi-like

oscillations

4 1 o6 ' 4 o '
4 0.5 3

%2 : é{u}; - %2 '

02
1 0.1 ! '
gl = = 0.0% O
€0 —40 20 O 20 40 60 —60 —40 20 0 20 40 60 60 —40 =30 0 20 40 60
K Lfn kLix kLim

superposition of current states with velocity 0 and 2v

-

|
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Quantum state engineering

-

New! exact many-body wavefunction for the
superposition state of correlated bosons

WYp = nlsj<€sN5i a; ¢i(zr) "; Bi®iron ()]
2, (N —1)/2,k = 1..N}Wcityv = 2mn/mL

Particle cor tons and Bose symmetry under particle
exchange

with {i = —(IN —

Superposition In each single particle state

Is it a nonclassical state?

|
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Wigner function

fdemonstrating nonclassicality of the superposition... T

# Wigner function

:

R/L

-]
¢ fw
2

kL/n

R/L 0.3

[C Schenke, AM and FWJ Hekking, PRA 84, 053636 (2011)]

o |
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Time-of-flight images

k, L/m
k, L/m

k, L/x

L Ln

L superposition state: interferences in TOF J
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Resolving the components

f ® momentum distribution and TOF images for a small T
velocity v = w [/ L

20

10t

0.0 _J . ]
A0 20 -10 0 106 20 30 - - D 1
KL/ k. Lix

k, Lix

)
~
=

the components are not well resolved at v < vg
(the Fermi spheres largely overlap)

#® Same results are obtained for adiabatic stirring at large
L velocities: importance of the quench J
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Conclusions

-

® Progress on solvable models: A
wavefunction of the inhomogeneous i
Bose-Fermi mixture at large interac- . /"
tions |

#® Exact dynamical solution for a quench | e [
problem: macroscopic superpositions = | |
3 -
of correlated bosons on a ring trap ——
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