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Motivations
• Linear theory of relativistic cosmological perturbations 

extremely useful

• Non-linear aspects are needed in some cases:
– non-gaussianities
– Universe on very large scales (beyond the Hubble scales)
– small scales

• Conservation laws
– solve part of the equations of motion
– useful to relate early universe 

and ``late cosmology’’

Early Universe
geometry



Linear theory 

• Perturbed metric (with only scalar perturbations)

• related to the intrinsic curvature of constant time 
spatial hypersurfaces

• Change of coordinates, e.g. 



Linear theory

• Curvature perturbation on uniform energy density 
hypersurfaces

• The time component of yields

For adiabatic perturbations,      conserved on large scales  

gauge-invariant

[Wands et al (2000)]

[Bardeen et al (1983)]



Covariant formalism

• How to define unambiguously

• One needs a map  

If is such that , 

then

• Idea: instead of , use its spatial gradient 

[ Ellis & Bruni (1989) ]



• Perfect fluid: 

• Spatial projection:

• Expansion:

• Integrated expansion :

• Spatially projected gradients : 

Local scale factor



New approach

• Define

• Projection of along yields

• Spatial gradient 

[ DL & Vernizzi, PRL ’05; PRD ’05 ]



• One finally gets

• This is an exact equation, fully non-linear and val id 
at all scales !

• It “mimics” the linear equation  





Comparison with the coordinate based 
approach 

• Choose a coordinate system

• Expand quantities: 

• First order

Usual linear equation !



• Second order perturbations

After some manipulations, one finds

in agreement with previous results  [ Malik & Wands ’04]



Gauge-invariance

• Second-order coordinate transformation

• ζa is gauge-invariant at 1st order but not 2nd order

• But, on large scales, 
and 

is gauge-invariant on large scales!

Bruni et al. ‘97



Cosmological scalar fields: single and 
multi-field inflation

• Multi-field inflation

– Generated fluctuations can be richer (adiabatic and isocurvature)
– Adiabatic and isocurvature perturbations can be correlated 

(D.L. ’99)
– Decomposition into adiabatic & isocurvature modes 

(Gordon et al. ‘01)

E.g. for two fields φ and χ, 
one can write

From Gordon et al. ‘01



Cosmological scalar fields: covariant 
approach

• Several (minimally coupled) scalar fields

• Equation of motion 

• Energy-momentum tensor



Two scalar fields
• Adiabatic and entropy directions

with

• Adiabatic and entropy covectors



Equations of motion

• “Homogeneous-like” equations

• FLRW equations



“Linear-like” equations 

1. Evolution of the adiabatic covector

2. Evolution of the entropy covector



Linearized equations

• First order spatial components of and 

Second order equations for δσ and δs

• One usually replaces δσ by the gauge-invariant quantity



Linearized equations

• Adiabatic equation

• Entropy equation

• On large scales,

[Gordon et al. ’01]



Second order perturbations

• Entropy perturbation

• Adiabatic perturbation



Large scale evolution

• Alternative adiabatic variable

• Using the 2nd order energy and moment constraints,



Large scale evolution

• The entropy evolution on large scales is given by 

• Evolution for ζ(2)

• Non-local term 



Conclusions

• New approach to study cosmological perturbations
– Non linear
– Purely geometric formulation (extension of the 

covariant formalism)
– ``Mimics’’ the linear theory equations 
– Get easily the second order results
– Exact equations: no approximation

• Can be extended to scalar fields
– Covariant and fully non-linear generalizations of the adiabatic 

and entropy components
– Evolution, on large scales, of the 2nd order adiabatic and entropy 

components


