SEARCHES OF VERY HIGH ENERGY NEUTRINOS

Esteban Roulet CONICET, Centro Atómico Bariloche

THE NEUTRINO SKY

THE ENERGETIC UNIVERSE

multimessenger astronomy

Examples of powerful astrophysical Objects/potential CR accelerators

SNR

Radio Galaxy

Colliding

galaxies

Pulsar

GRB

Diffuse emission

Discriminating leptonic vs. hadronic scenarios (a way to know if protons are indeed accelerated in SNR)

Synch: $e + Bfield \rightarrow e + Xray$ **IC:** $e + Xray \rightarrow \gamma + e$ **Brems:** $e + gas \rightarrow \gamma + \dots$ $\pi^0 \rightarrow \gamma \gamma$, $\pi^- \rightarrow e + \overline{\nu}_e + \nu_{\mu} + \overline{\nu}_{\mu}$ **Hadronic:** $CR + \gamma(p) \rightarrow \pi + X$

Fig. 3.— Energy spectrum of Cas A in a leptonic emission model. Shown is the Ferr detected emission (filled circles) in comparison to the energy spectra detected by 1 (black open circles; Albert et al. 2007) and VERITAS (green open circles; Humensky

Fig. 4.— Same as Fig. \square but in a hadronic emission model. Shown are π^0 -decay spectra for

Still inconclusive, observation of neutrinos would be unambiguous!

Can measure IR background from observed attenuation

beyond few TeV, high redshift Universe is unobservable with photons

NEUTRINO TELESCOPES (10 GeV to PeV and beyond)

-3900 m

-2600 m

-1300 m

km³ detector at South Pole, completed by 2011, looking at northern v sky (and to southern sky above PeV)

1300 m

2600 n

3900 n

km³ detector at Mediterranean
looking at southern neutrino
sky (proposed km3NET
& GVD in Baikal)

Deep inelastic Neutrino nucleon interactions

Earth opaque for E>40 TeV→ Need to look above horizon

One may even distinguish neutrino flavors

muon neutrino (track)

electron neutrino (cascade, also from NC)

tau neutrino (double bang)

(a)

No point sources observed by Icecube nor Antares

Full-Sky Search (2007-2010)

Sky map in equatorial coordinates (3058 candidates)

Results compatible with the background hypothesis

Targeted searches (galactic and extra-galactic candidates): SNR, AGN,...

ICECUBE stacked search for neutrinos coincident with observed GRB 2008/2010

Bound factor 4 below standard predictions \rightarrow GRB are not main source of

Cosmic ray flux

Power law flux ~ E⁻³ higher E → larger detector required

1660 detectors instrumenting 3000 km² and 27 telescopes the Auger Collaboration: 17 countries, ~ 400 scientists Telescope Array (~ 760 km² in Utah) Previous experiments: AGASA, Fly's Eye/HiRes, Haverah Park, Volcano Ranch

surface detector

fluorescence detector

event reconstruction with the surface detector

Event with $\theta \sim 48^{\circ}$, E ~ 70 EeV

 $(1 \text{ EeV} = 10^{18} \text{ eV})$

a hybrid event

the Greisen-Zatsepin-Kuzmin effect (1966)

AT THE HIGHEST ENERGIES, PROTONS LOOSE ENERGY BY INTERACTIONS WITH THE CMB BACKGROUND

PROTONS CAN NOT ARRIVE WITH E > 6x10¹⁹ eV FROM D > 200 Mpc

 $(\pi^{0} \text{ produce GZK photons})$ $(\pi^{\pm} \text{produce cosmogenic neutrinos})$ (Berezinsky & Zatsepin 69)

For Fe nuclei: after ~ 200 Mpc the leading fragment has E < 6x10¹⁹ eV

ligther nuclei get disintegrated on shorter distances

(fewer neutrinos produced)

Some basics on air showers:

ELECTROMAGNETIC SHOWERS (e^+ , e^- , γ)

HADRONIC SHOWERS

each interaction produces n_{tot} pions (multiplicity) $n_{neut} = n_{tot}/3 \ (\pi^0 \rightarrow 2\gamma)$ em component $n_{ch} = 2 n_{tot}/3 \ (\pi^{\pm})$ reinteract until $E < E_{dec} \ (\pi \rightarrow \mu \nu \nu) \sim 10 \, GeV$

Typically number of pion generations = 5 - 6 $(E_{EM} \simeq 0.9 E_{tot})$

Estimating X_{max} as the maximum of the first generation π^0 s:

1

$$X_{max} = \lambda_I + X_R \ln \left(\frac{E_0 / n_{tot}}{E_c} \right)$$

For nuclei: behave as

A nucleons with $E_n = E_0 / A$

depends on $\lambda_I \sim \sigma_{p-air}^{-1}$ and n_{tot}

COSMOGENIC NEUTRINO FLUXES:

- ankle models (harder fluxes) lead to larger cosmogenic neutrino fluxes than dip models

- fluxes at EeV comparable to CR fluxes, but cross section tiny (~ 10 nb) \rightarrow probability of Interacting in atmosphere small (~10⁻⁵ for vertical)

If GZK neutrinos were observed,

it would be a strong hint favoring a light composition,

And could confirm that spectrum attenuation is due to GZK effect

Flux not so much 'guaranteed'

Neutrino detection in AUGER

Only neutrinos can produce young horizontal showers

For downgoing showers: (assuming 1:1:1 flavor ratios) 38% from v_e , 18% from v_{μ} , 29% from v_{τ} – air, 15% from v_{τ} – mountain but Earth-skimming v_{τ} searches are more sensitive

Fargion 2000, Bertou et al '01 Feng et al. '02

Up-going Earth-skimming v_{τ} showers

 $\sigma_{CC} \simeq 10^{-32} \, cm^2 \, E^{0.36} \qquad (E \, [\, EeV \,])$

Probability of interacting in the last 10 km ~ 0.01

→ Effective exposure ~ 0.1 km² sr (c.f. ~ 10^4 km² sr for UHECR)

AUGER BOUNDS ON DIFFUSE NEUTRINO FLUX

unlike hadronic CRs, neutrinos can produce young horizontal showers above the detector, and upcoming near horizontal tau lepton induced showers

Horizontal young showers? tank signals with large Area / peak Elongated tracks, Propagation with v ~ c ZERO CANDIDATES

0 events observed \rightarrow bounds scale linearly with exposure

The two highest energy neutrino events observed by ICECUBE

LOOKING TO v FROM THE SKY

ANITA looked for up-going neutrino showers on ice producing radio coherent emission (Askaryan effect) ~ 1 month balloon flights in Antarctica → next generation: EVA ? (x 100 better) ARA: Askaryan Radio Array (prototipe deployment in 2011)

Or from the space station? → JEM-EUSO

AUGER sky map above 55 EeV

Nearby AGN at < 75 Mpc

Excess around Centaurus A: closest AGN

13 events within 18 deg of CenA, while 3.2 expected for isotropy

F10. 2.— Optical image of Cen A (UK 48-inch Schmidt) overlaid with radio ontours (black, VLA, Condon et al. [1996). VHE best fit position with 1 σ

FIG. 4.— Spectral energy distribution of Cen A. Shown are the VHE spectrum as measured by II.E.S.S. (red filled circles), previous upper limits and tentative detections in the VHE regime (purple markers: Grindlay et al. 1975)

If γ are hadronic \rightarrow neutrinos from CenA may be observed at ICECUBE/ Auger? (but predictions ~ 0.01 – 1 per year)

Auger observed no neutrinos (in particular none from Cen A)

CONCLUSIONS

breakthroughs expected to come from very high energy neutrinos:

TeV NEUTRINO SEARCHES (km³ detectors) \rightarrow **identify CR accelerators**

EeV COSMOGENIC NEUTRINOS \rightarrow **CR propagation, GZK effect, CR composition**

EXOTIC SOURCES? TOPOLOGICAL DEFECTS, SUPER HEAVY DECAYS,

POSITIVE DETECTIONS HOPEFULLY NOT VERY FAR AWAY, STAY TUNED