The Very Low Energy Seesaw, One Perspective on Sterile Neutrinos

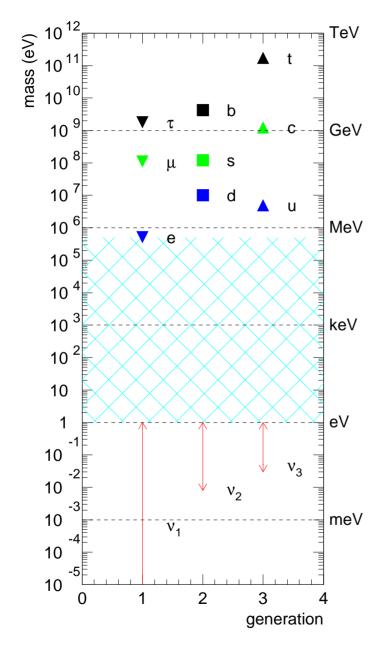
André de Gouvêa

Northwestern University

"What is ν – Smirnov Fest"

Galileo Galilei Institute, Firenze, Italia

June 25–29, 2012



What We Are Trying To Understand:

← NEUTRINOS HAVE TINY MASSES

↓ LEPTON MIXING IS "WEIRD" ↓

$$V_{MNS} \sim egin{pmatrix} 0.8 & 0.5 & \textbf{0.2} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \qquad V_{CKM} \sim egin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$$

$$V_{CKM} \sim \left(egin{array}{ccc} 1 & 0.2 & {}_{\scriptscriptstyle{0.001}} \ 0.2 & 1 & 0.01 \ {}_{\scriptscriptstyle{0.001}} & 0.01 & 1 \end{array}
ight)$$

What Does It Mean?

Candidate ν SM: The One I'll Concentrate On

SM as an effective field theory – non-renormalizable operators

$$\mathcal{L}_{\nu \text{SM}} \supset -y_{ij} \frac{L^i H L^j H}{2\Lambda} + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + H.c.$$

There is only one dimension five operator [Weinberg, 1979]. If $\Lambda \gg 1$ TeV, it leads to only one observable consequence...

after EWSB:
$$\mathcal{L}_{\nu \text{SM}} \supset \frac{m_{ij}}{2} \nu^i \nu^j$$
; $m_{ij} = y_{ij} \frac{v^2}{\Lambda}$.

- Neutrino masses are small: $\Lambda \gg v \to m_{\nu} \ll m_f \ (f = e, \mu, u, d, \text{ etc})$
- Neutrinos are Majorana fermions Lepton number is violated!
- ν SM effective theory not valid for energies above at most Λ/y .
- Define $y_{\text{max}} \equiv 1 \implies \text{data require } \Lambda \sim 10^{14} \text{ GeV}.$

What else is this "good for"? Depends on the ultraviolet completion!

The Seesaw Lagrangian

A simple^a, renormalizable Lagrangian that allows for neutrino masses is

$$\mathcal{L}_{\nu} = \mathcal{L}_{\text{old}} - \frac{\lambda_{\alpha i}}{\lambda_{\alpha i}} L^{\alpha} H N^{i} - \sum_{i=1}^{3} \frac{M_{i}}{2} N^{i} N^{i} + H.c.,$$

where N_i (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions.

 \mathcal{L}_{ν} is the most general, renormalizable Lagrangian consistent with the SM gauge group and particle content, plus the addition of the N_i fields.

After electroweak symmetry breaking, \mathcal{L}_{ν} describes, besides all other SM degrees of freedom, six Majorana fermions: six neutrinos.

^aOnly requires the introduction of three fermionic degrees of freedom, no new interactions or symmetries.

To be determined from data: λ and M.

The data can be summarized as follows: there is evidence for three neutrinos, mostly "active" (linear combinations of ν_e , ν_{μ} , and ν_{τ}). At least two of them are massive and, if there are other neutrinos, they have to be "sterile."

This provides very little information concerning the magnitude of M_i (assume $M_1 \sim M_2 \sim M_3$).

Theoretically, there is prejudice in favor of very large $M: M \gg v$. Popular examples include $M \sim M_{\rm GUT}$ (GUT scale), or $M \sim 1$ TeV (EWSB scale).

Furthermore, $\lambda \sim 1$ translates into $M \sim 10^{14}$ GeV, while thermal leptogenesis requires the lightest M_i to be around 10^{10} GeV.

we can impose very, very few experimental constraints on M

What We Know About M:

- M=0: the six neutrinos "fuse" into three Dirac states. Neutrino mass matrix given by $\mu_{\alpha i} \equiv \lambda_{\alpha i} v$.
 - The symmetry of \mathcal{L}_{ν} is enhanced: $U(1)_{B-L}$ is an exact global symmetry of the Lagrangian if all M_i vanish. Small M_i values are 'tHooft natural.
- $M \gg \mu$: the six neutrinos split up into three mostly active, light ones, and three, mostly sterile, heavy ones. The light neutrino mass matrix is given by $m_{\alpha\beta} = \sum_i \mu_{\alpha i} M_i^{-1} \mu_{\beta i}$ $[m \propto 1/\Lambda \Rightarrow \Lambda = M/\mu^2]$. This the **seesaw mechanism.** Neutrinos are Majorana fermions. Lepton number is not a good symmetry of \mathcal{L}_{ν} , even though L-violating effects are hard to come by.
- $M \sim \mu$: six states have similar masses. Active—sterile mixing is very large. This scenario is (generically) ruled out by active neutrino data (atmospheric, solar, KamLAND, K2K, etc).

Why are Neutrino Masses Small in the $M \neq 0$ Case?

If $\mu \ll M$, below the mass scale M,

$$\mathcal{L}_5 = \frac{LHLH}{\Lambda}.$$

Neutrino masses are small if $\Lambda \gg \langle H \rangle$. Data require $\Lambda \sim 10^{14}$ GeV.

In the case of the seesaw,

$$\Lambda \sim \frac{M}{\lambda^2},$$

so neutrino masses are small if either

- they are generated by physics at a very high energy scale $M \gg v$ (high-energy seesaw); or
- they arise out of a very weak coupling between the SM and a new, hidden sector (low-energy seesaw); or
- cancellations among different contributions render neutrino masses accidentally small (fine-tuning or symmetry?).

High-Energy Seesaw: Brief Comments

- This is everyone's favorite scenario.
- Upper bound for M (e.g. Maltoni, Niczyporuk, Willenbrock, hep-ph/0006358):

$$M < 7.6 \times 10^{15} \text{ GeV} \times \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right).$$

• Hierarchy problem hint (e.g., Casas, Espinosa, Hidalgo, hep-ph/0410298):

$$M < 10^7 {\rm GeV}.$$

• Physics "too" heavy! No observable consequence other than leptogenesis. From thermal leptogenesis $M>10^9$ GeV. Will we ever convince ourselves that this is correct? (e.g., Buckley, Murayama, hep-ph/0606088)

$Low-Energy\ Seesaw \quad \tiny{[AdG\ PRD72,033005)]}$

The other end of the M spectrum (M < 100 GeV). What do we get?

- Neutrino masses are small because the Yukawa couplings are very small $\lambda \in [10^{-6}, 10^{-11}];$
- No standard thermal leptogenesis right-handed neutrinos way too light? [For a possible alternative see Canetti, Shaposhnikov, arXiv: 1006.0133 and reference therein.]
- No obvious connection with other energy scales (EWSB, GUTs, etc);
- Right-handed neutrinos are propagating degrees of freedom. They look like sterile neutrinos \Rightarrow sterile neutrinos associated with the fact that the active neutrinos have mass;
- sterile–active mixing can be predicted hypothesis is falsifiable!
- Small values of M are natural (in the 'tHooft sense). In fact, theoretically, no value of M should be discriminated against!

More Details, assuming three right-handed neutrinos N:

$$m_{
u} = \left(\begin{array}{cc} 0 & \lambda v \\ (\lambda v)^t & M \end{array} \right),$$

M is diagonal, and all its eigenvalues are real and positive. The charged lepton mass matrix also diagonal, real, and positive.

To leading order in $(\lambda v)M^{-1}$, the three lightest neutrino mass eigenvalues are given by the eigenvalues of

$$m_a = \lambda v M^{-1} (\lambda v)^t,$$

where m_a is the mostly active neutrino mass matrix, while the heavy sterile neutrino masses coincide with the eigenvalues of M.

 $6 \times 6 \text{ mixing matrix } U \ [U^t m_{\nu} U = \text{diag}(m_1, m_2, m_3, m_4, m_5, m_6)] \text{ is}$

$$U = \left(\begin{array}{cc} V & \Theta \\ -\Theta^{\dagger} V & 1_{n \times n} \end{array} \right),$$

where V is the active neutrino mixing matrix (MNS matrix)

$$V^t m_a V = \operatorname{diag}(m_1, m_2, m_3),$$

and the matrix that governs active-sterile mixing is

$$\Theta = (\lambda v)^* M^{-1}.$$

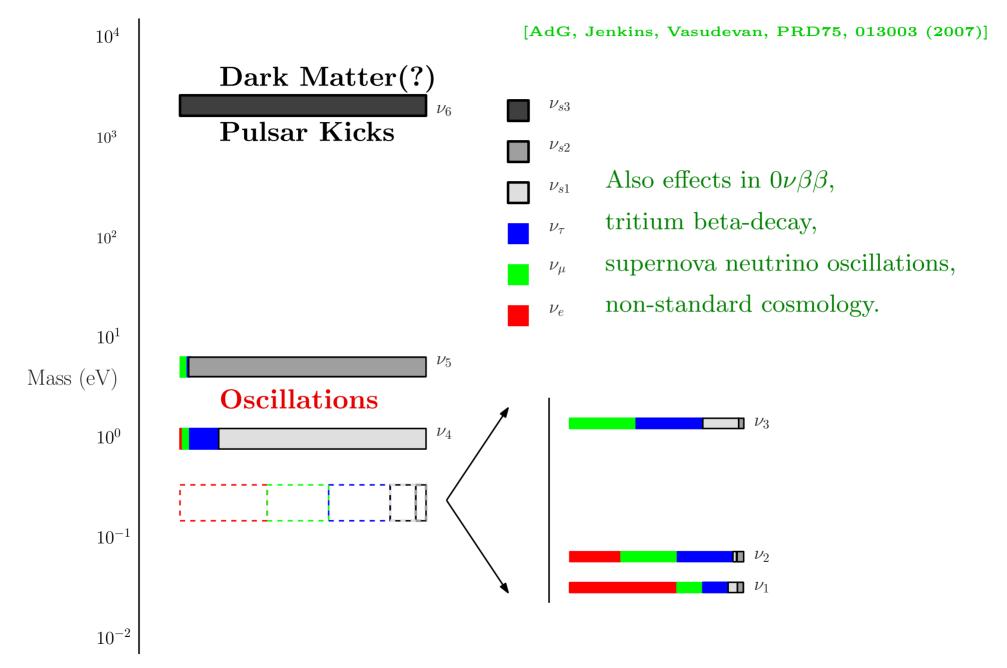
One can solve for the Yukawa couplings and re-express

$$\Theta = V \sqrt{\operatorname{diag}(m_1, m_2, m_3)} R^{\dagger} M^{-1/2},$$

where R is a complex orthogonal matrix $RR^t = 1$.

June 25, 2012 ____

_ miniseesaw and steriles



June 25, 2012

miniseesaw and steriles

Predictions: Neutrinoless Double-Beta Decay

The exchange of Majorana neutrinos mediates lepton-number violating neutrinoless double-beta decay, $0\nu\beta\beta$: $Z \to (Z+2)e^-e^-$.

For light enough neutrinos, the amplitude for $0\nu\beta\beta$ is proportional to the effective neutrino mass

$$m_{ee} = \left| \sum_{i=1}^{6} U_{ei}^2 m_i \right| \sim \left| \sum_{i=1}^{3} U_{ei}^2 m_i + \sum_{i=1}^{3} \vartheta_{ei}^2 M_i \right|.$$

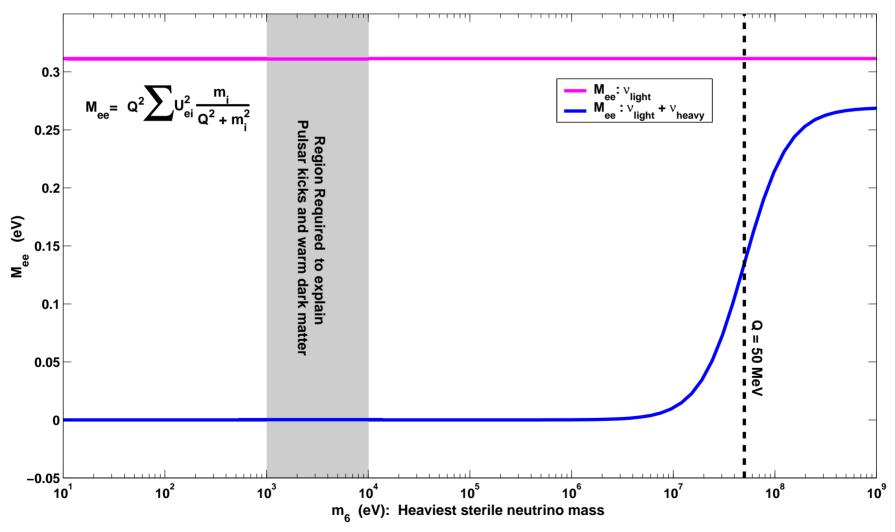
However, upon further examination, $m_{ee} = 0$ in the eV-seesaw. The contribution of light and heavy neutrinos exactly cancels! This seems to remain true to a good approximation as long as $M_i \ll 1$ MeV.

$$\left[\begin{array}{cc} \mathcal{M} = \left(\begin{array}{cc} 0 & \mu^{\mathrm{T}} \\ \mu & M \end{array}\right) & \rightarrow & m_{ee} \text{ is identically zero!} \end{array}\right]$$

June 25, 2012 _____

(lack of) sensitivity in $0\nu\beta\beta$ due to seesaw sterile neutrinos

[AdG, Jenkins, Vasudevan, hep-ph/0608147]



Predictions: Tritium beta-decay

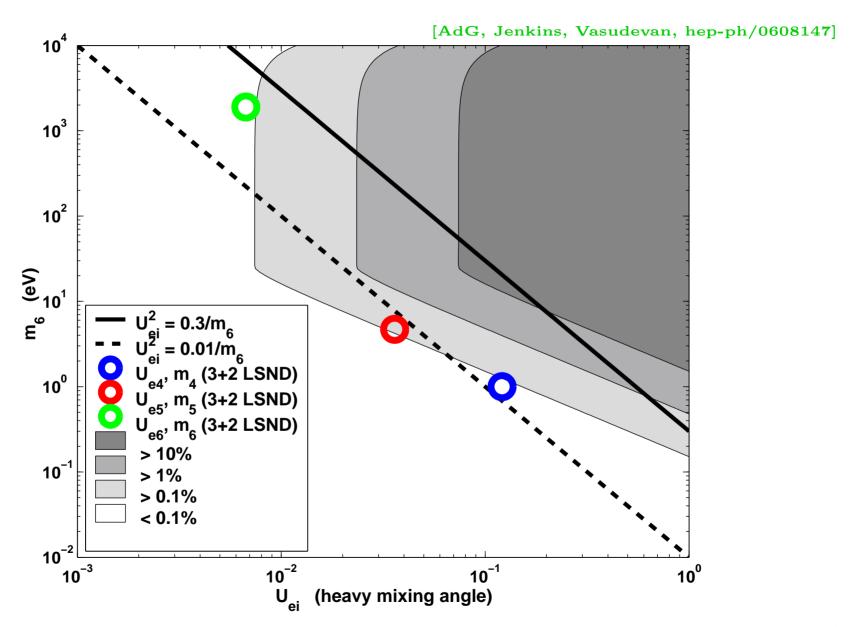
Heavy neutrinos participate in tritium β -decay. Their contribution can be parameterized by

$$m_{\beta}^2 = \sum_{i=1}^6 |U_{ei}|^2 m_i^2 \simeq \sum_{i=1}^3 |U_{ei}|^2 m_i^2 + \sum_{i=1}^3 |U_{ei}|^2 m_i M_i,$$

as long as M_i is not too heavy (above tens of eV). For example, in the case of a 3+2 solution to the LSND anomaly, the heaviest sterile state (with mass M_1) contributes the most: $m_{\beta}^2 \simeq 0.7 \text{ eV}^2 \left(\frac{|U_{e1}|^2}{0.7} \right) \left(\frac{m_1}{0.1 \text{ eV}} \right) \left(\frac{M_1}{10 \text{ eV}} \right)$.

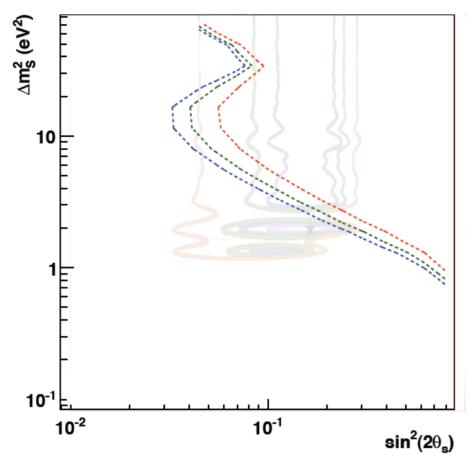
NOTE: next generation experiment (KATRIN) will be sensitive to $O(10^{-1}) \text{ eV}^2$.

sensitivity of tritium beta decay to seesaw sterile neutrinos



André de Gouvêa _

Northwestern



[Barrett, Formaggio, 1105.1326]

FIG. 2: Sensitivity of the KATRIN neutrino mass measurement for a sterile neutrino with relatively large mass splitting (dashed contours). Figures shows exclusion curves of mixing angle $\sin^2(2\theta_S)$ versus mass splitting $|\Delta m_S^2|^2$ for the 90% (blue), 95% (green), and 99% (red) C.L. after three years of data taking. Figure 7 from Ref. [2] show in solid curves in the background.

June 25, 2012 _

_ miniseesaw and steriles

On Early Universe Cosmology / Astrophysics

A combination of the SM of particle physics plus the "concordance cosmological model" severely constrain light, sterile neutrinos with significant active-sterile mixing. Taken at face value, not only is the eV-seesaw ruled out, but so are all oscillation solutions to the LSND anomaly.

Hence, eV-seesaw \rightarrow nonstandard particle physics and cosmology? On the other hand...

• Right-handed neutrinos make good warm dark matter particles.

Asaka, Blanchet, Shaposhnikov, hep-ph/0503065.

- Sterile neutrinos are known to help out with r-process nucleosynthesis in supernovae, . . .
- ... and may help explain the peculiar peculiar velocities of pulsars ...

What if 1 GeV < M < 1 TeV?

Naively, one expects

$$\Theta \sim \sqrt{\frac{m_a}{M}} < 10^{-5} \sqrt{\frac{1 \text{ GeV}}{M}},$$

such that, for $M=1~{\rm GeV}$ and above, sterile neutrino effects are mostly negligible.

However,

$$\Theta = V \sqrt{\operatorname{diag}(m_1, m_2, m_3)} R^{\dagger} M^{-1/2},$$

and the magnitude of the entries of R can be arbitrarily large $[\cos(ix) = \cosh x \gg 1 \text{ if } x > 1].$

This is true as long as

- $\lambda v \ll M$ (seesaw approximation holds)
- $\lambda < 4\pi$ (theory is "well-defined")

This implies that, in principle, Θ is a quasi-free parameter – independent from light neutrino masses and mixing – as long as $\Theta \ll 1$ and M < 1 TeV.

What Does $R \gg 1$ Mean?

It is illustrative to consider the case of one active neutrino of mass m_3 and two sterile ones, and further assume that $M_1 = M_2 = M$. In this case,

$$\Theta = \sqrt{\frac{m_3}{M}} \left(\cos \zeta \sin \zeta \right),$$

$$\lambda v = \sqrt{m_3 M} \left(\cos \zeta^* \sin \zeta^* \right) \equiv \left(\lambda_1 \lambda_2 \right).$$

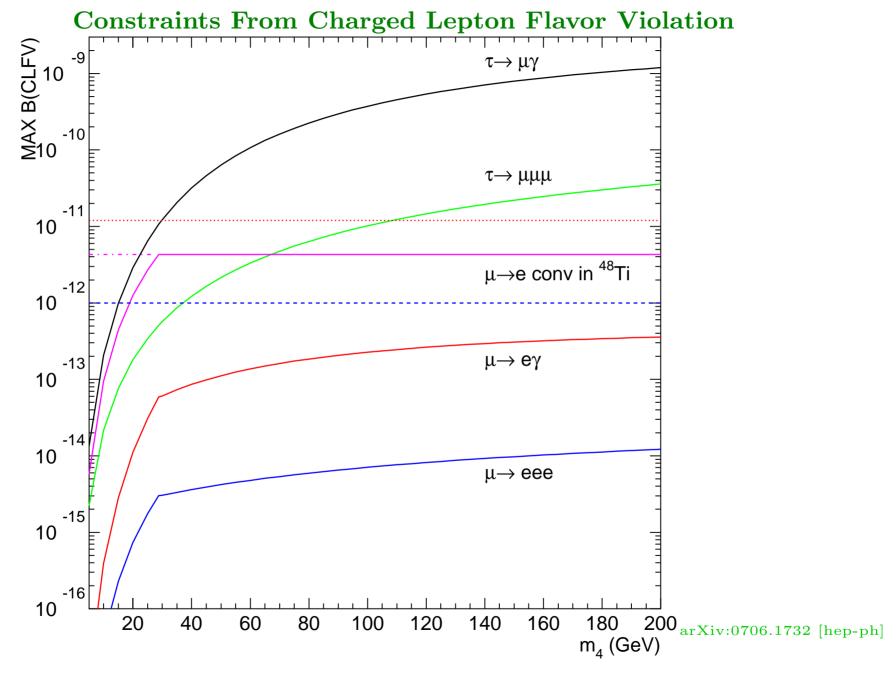
If ζ has a large imaginary part $\Rightarrow \Theta$ is (exponentially) larger than $(m_3/M)^{1/2}$, λ_i neutrino Yukawa couplings are much larger than $\sqrt{m_3M}/v$

The reason for this is a strong cancellation between the contribution of the two different Yukawa couplings to the active neutrino mass $\Rightarrow m_3 = \lambda_1^2 v^2 / M + \lambda_2^2 v^2 / M$.

For example: $m_3 = 0.1 \text{ eV}$, M = 100 GeV, $\zeta = 14i \Rightarrow \lambda_1 \sim 0.244$, $\lambda_2 \sim -0.244i$, while $|y_1| - |y_2| \sim 3.38 \times 10^{-13}$.

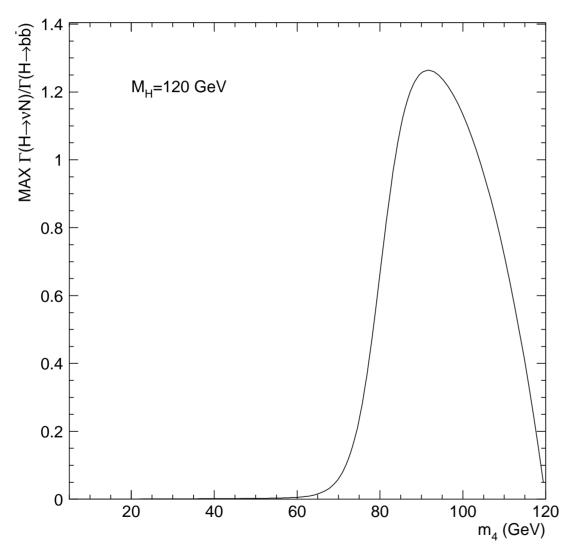
NOTE: cancellation may be consequence of a symmetry (say, lepton number). See, for example, the "inverse seesaw" Mohapatra and Valle, PRD34, 1642 (1986).

June 25, 2012 _



Weak Scale Seesaw, and Accidentally Light Neutrino Masses

[AdG arXiv:0706.1732 [hep-ph]]



What does the seesaw Lagrangian predict for the LHC?

Nothing much, unless...

- $M_N \sim 1 100 \text{ GeV}$,
- Yukawa couplings larger than naive expectations.

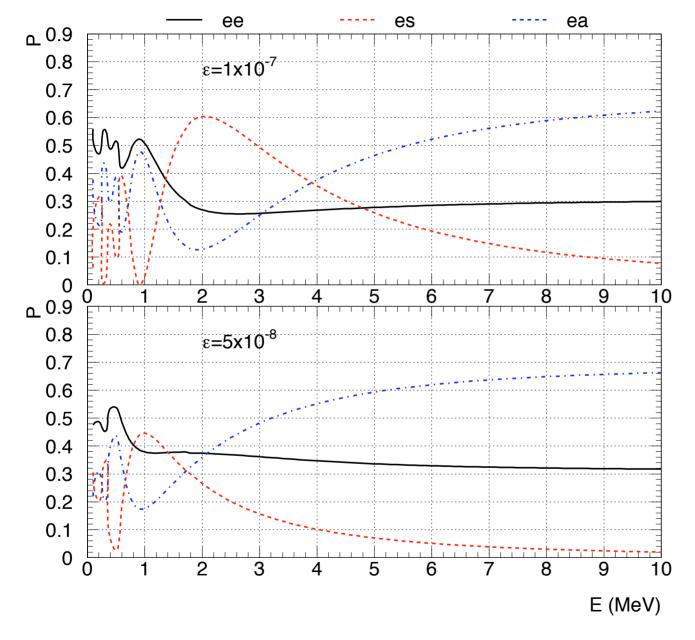
 $\Leftarrow H \to \nu N$ as likely as $H \to b\bar{b}!$ (NOTE: $N \to \ell q'\bar{q}$ or $\ell\ell'\nu$ (prompt) "Weird" Higgs decay signature!)

André de Gouvêa	No	orthwestern

Going All the Way: What Happens When $M \ll \mu$?

In this case, the six Weyl fermions pair up into three quasi-degenerate states ("quasi-Dirac fermions").

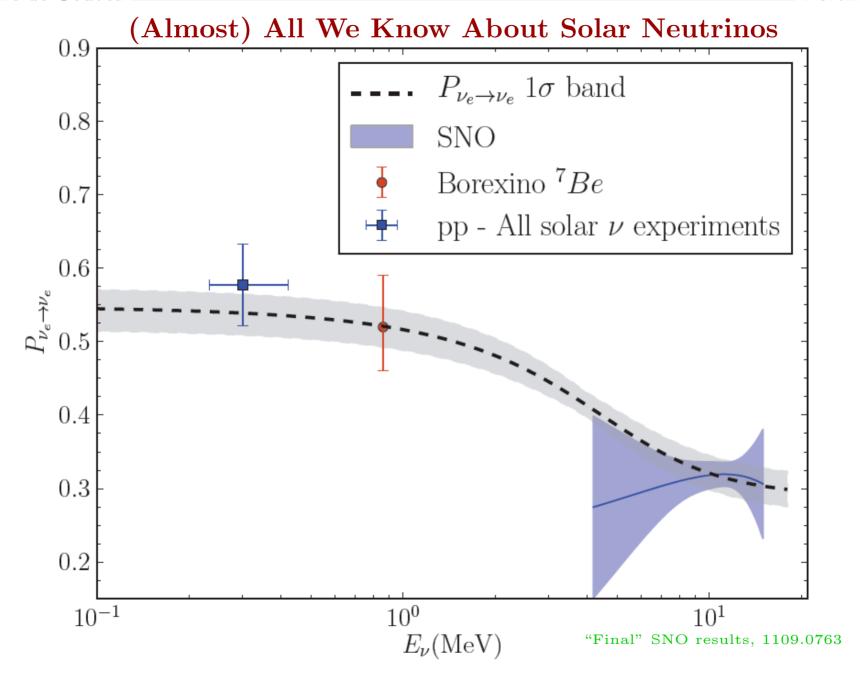
These states are fifty-fifty active-sterile mixtures. In the limit $M \to 0$, we end up with Dirac neutrinos, which are clearly allowed by all the data.



Quasi-Sterile Neutrinos

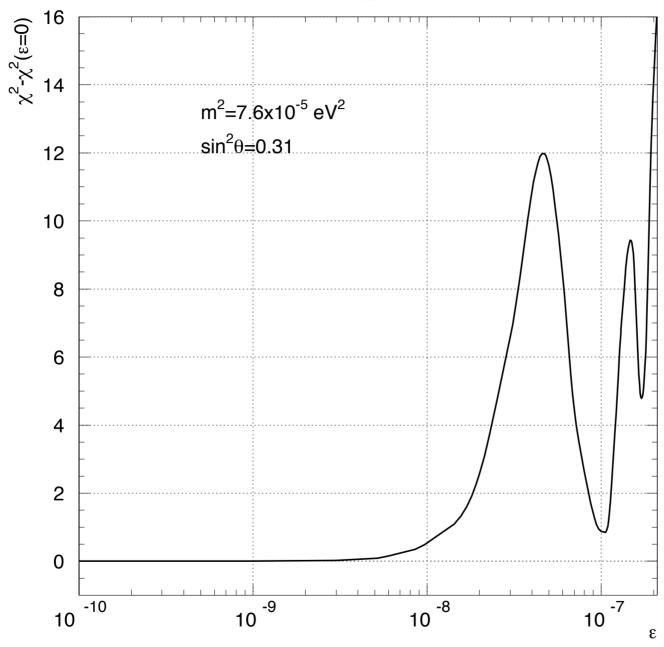
- tiny new $\Delta m^2 = \epsilon \Delta m_{12}^2$,
- maximal mixing!
- Effects in Solar ν s

[AdG, Huang, Jenkins, arXiv:0906.1611]



June 25, 2012 -

miniseesaw and steriles

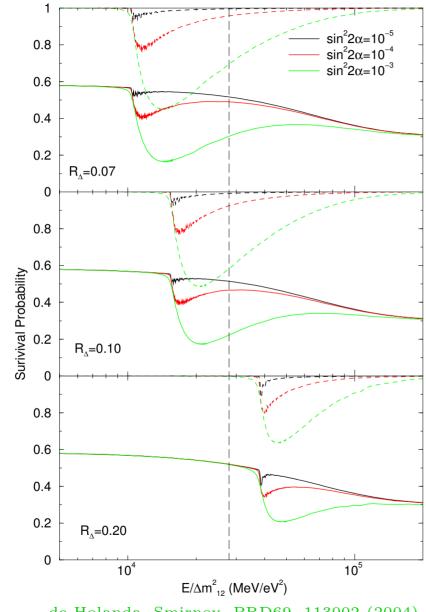


Quasi-Sterile Neutrinos

- tiny new $\Delta m^2 = \epsilon \Delta m_{12}^2$,
- maximal mixing!
- Effects in Solar ν s

[AdG, Huang, Jenkins, arXiv:0906.1611]

Non-Seesaw Sterile Solar ν s – Explaining the "Non-MSW Dip"



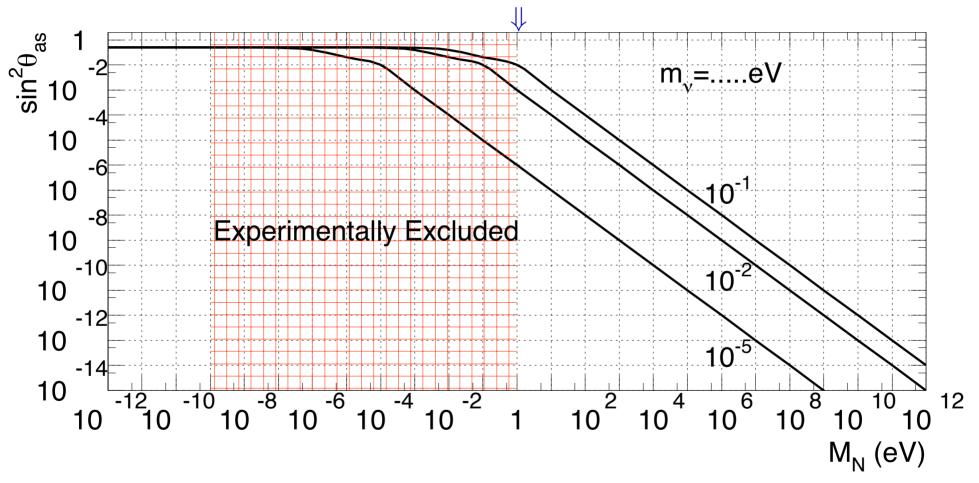
- $R_{\Delta} = \frac{\Delta m_{01}^2}{\Delta m_{12}^2} \rightarrow \text{very light, mostly sterile state}$
- solid line: P_{ee}
- dashed line: $1 P_{es}$

 $^7\mathrm{Be}$ neutrinos at $1.1\times10^4~\mathrm{MeV/eV^2}$

Low Energy 8 B neutrinos at $6.3 \times 10^4 \text{ MeV/eV}^2$

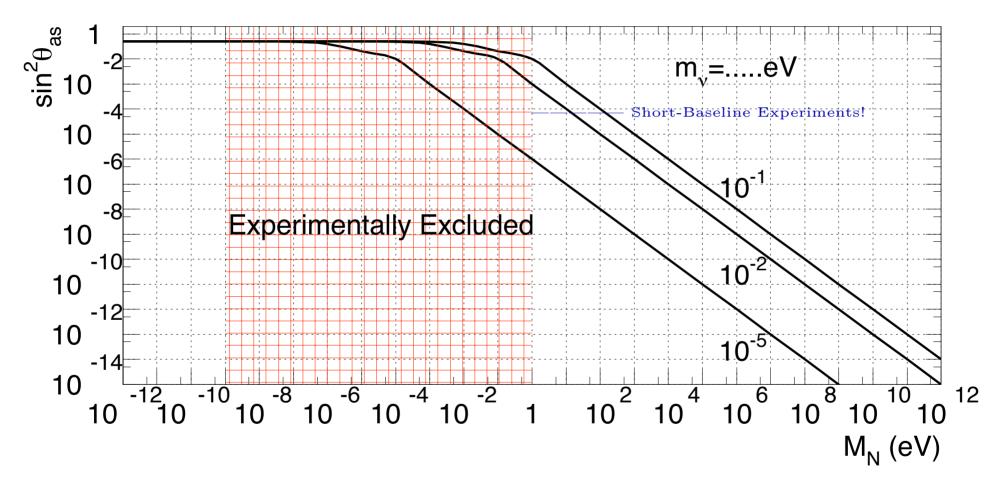
de Holanda, Smirnov, PRD69, 113002 (2004).

Constraining the Seesaw Lagrangian



[AdG, Huang, Jenkins, arXiv:0906.1611]

Can we improve our sensitivity?



[AdG, Huang, Jenkins, arXiv:0906.1611]

Model independent constraints

Constraints depend, unfortunately, on m_i and M_i and R. E.g.,

$$U_{e4} = U_{e1}A\sqrt{\frac{m_1}{m_4}} + U_{e2}B\sqrt{\frac{m_2}{m_4}} + U_{e3}C\sqrt{\frac{m_3}{m_4}},$$

$$U_{\mu 4} = U_{\mu 1} A \sqrt{\frac{m_1}{m_4}} + U_{\mu 2} B \sqrt{\frac{m_2}{m_4}} + U_{\mu 3} C \sqrt{\frac{m_3}{m_4}},$$

$$U_{\tau 4} = U_{\tau 1} A \sqrt{\frac{m_1}{m_4}} + U_{\tau 2} B \sqrt{\frac{m_2}{m_4}} + U_{\tau 3} C \sqrt{\frac{m_3}{m_4}},$$

where

$$A^2 + B^2 + C^2 = 1.$$

One can pick A, B, C such that two of these vanish. But the other one is maximized, along with $U_{\alpha 5}$ and $U_{\alpha 6}$.

Can we (a) constrain the seesaw scale with combined bounds on $U_{\alpha 4}$ or (b) testing the low energy seesaw if nonzero $U_{\alpha 4}$ are discovered?

AdG, Huang arXiv:1110.6122

Concrete Example: 2 right-handed neutrinos

$$X_{\text{normal}} = \begin{pmatrix} 0.23e^{i\phi} & 0.1e^{i\delta} \\ (0.25 - 0.02e^{-i\delta})e^{i\phi} & 0.70 \\ -(0.25 + 0.02e^{-i\delta})e^{i\phi} & 0.70 \end{pmatrix} \begin{pmatrix} \cos \zeta & \sin \zeta \\ -\sin \zeta & \cos \zeta \end{pmatrix}$$

$$X_{\text{inverted}} = \begin{pmatrix} 0.83e^{i\psi} & 0.55 \\ -(0.39 + 0.06e^{-i\delta})e^{i\psi} & 0.59 - 0.04e^{-i\delta} \\ (0.39 - 0.06e^{-i\delta})e^{i\psi} & -0.59 - 0.04e^{-i\delta} \end{pmatrix} \begin{pmatrix} \cos \zeta & \sin \zeta \\ -\sin \zeta & \cos \zeta \end{pmatrix}$$

where

$$X_{\text{normal (inverted)}} = \Theta \sqrt{\frac{m_{\text{heavy}}}{m_3 (m_2)}}$$

June 25, 2012 ___

Some Relevant Examples: [AdG, W-C Huang, arXiv:1110.6122]

 $\zeta = 3/4\pi + i$, $\delta = 6/5\pi$, $\phi = \pi/2$ and a normal mass hierarchy,

$$X_{\text{normal}} = \begin{pmatrix} 0.41e^{-0.66i} & 0.45e^{1.03i} \\ 0.62e^{2.67i} & 0.61e^{-2.62i} \\ 1.27e^{2.44i} & 1.26e^{-2.41i} \end{pmatrix}.$$

 $\zeta = 2/3\pi + 0.3i$, $\delta = 0$, $\psi = \pi/2$, and an inverted mass hierarchy,

$$X_{\text{inverted}} = \begin{pmatrix} 0.44e^{-2.24i} & 0.62e^{1.83i} \\ 0.69e^{2.66i} & 0.66e^{-2.14i} \\ 0.71e^{-0.39i} & 0.60e^{0.89i} \end{pmatrix}.$$

both accommodate 3+2 fit for $m_4^2 = 0.5 \text{ eV}^2$ and $m_5^2 = 0.9 \text{ eV}^2$. Furthermore, $|U_{\tau 4}|$ and $|U_{\tau 5}|$ are completely fixed. No more free parameters. They are also both larger than (or at least as large as $|U_{\mu 4}|$ and $|U_{\mu 5}|$).

 $\nu_{\mu} \rightarrow \nu_{\tau}$ MUST be observed if this is the origin of the two mostly sterile neutrinos.

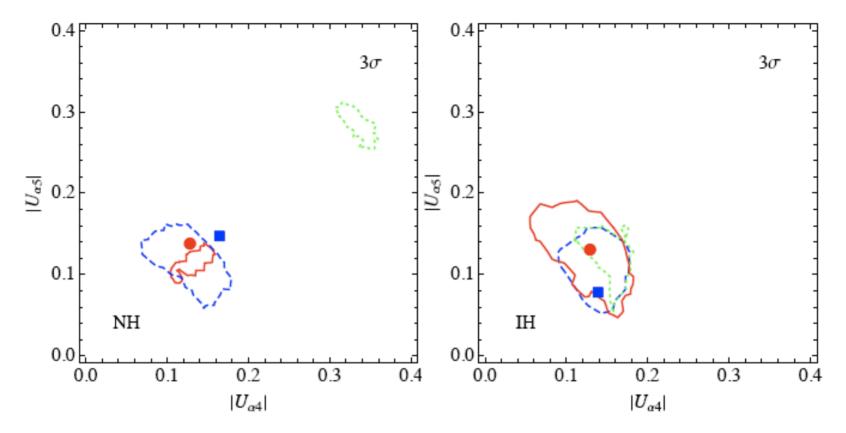
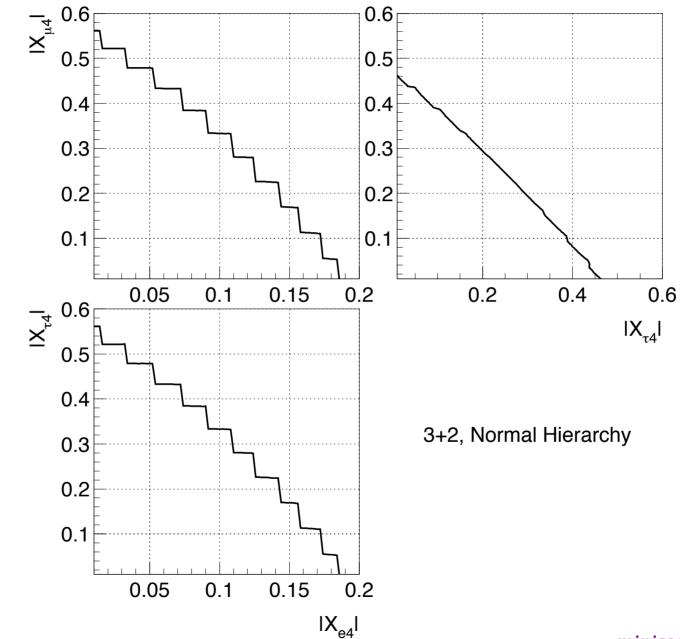


Figure 2: Left: 3σ ranges on the plane $(|U_{\alpha 4}|, |U_{\alpha 5}|)$ for $\alpha = e$ (solid), μ (dashed) and τ (dotted) for the NH, with M_1 and M_2 fixed to the KMS values of Table 2. Right: same for the IH and with the GL values of M_1 and M_2 . The symbols: circle (e) and square (μ) correspond to the best fit points of the 3+2 PM fits from Table 2.

More detailed recent analysis done by Donini et al in arXiv:1205.5230



June 25, 2012

miniseesaw and steriles

Making Predictions, for an inverted mass hierarchy, $m_4 = 1 \text{ eV} (\ll m_5)$

- ν_e disappearance with an associated effective mixing angle $\sin^2 2\vartheta_{ee} > 0.02$. An interesting new proposal to closely expose the Daya Bay detectors to a strong β -emitting source would be sensitive to $\sin^2 2\vartheta_{ee} > 0.04$;
- ν_{μ} disappearance with an associated effective mixing angle $\sin^2 2\vartheta_{\mu\mu} > 0.07$, very close to the most recent MINOS lower bound;
- $\nu_{\mu} \leftrightarrow \nu_{e}$ transitions with an associated effective mixing angle $\sin^{2} \vartheta_{e\mu} > 0.0004$;
- $\nu_{\mu} \leftrightarrow \nu_{\tau}$ transitions with an associated effective mixing angle $\sin^2 \vartheta_{\mu\tau} > 0.001$. A $\nu_{\mu} \to \nu_{\tau}$ appearance search sensitive to probabilities larger than 0.1% for a mass-squared difference of 1 eV² would definitively rule out $m_4 = 1$ eV if the neutrino mass hierarchy is inverted.

June 25, 2012 _____

miniseesaw and steriles

CONCLUSION

- 1. We know very little about the new physics uncovered by neutrino oscillations.
 - It could be renormalizable "boring" Dirac neutrinos
 - It could be due to Physics at absurdly high energy scales $M \gg 1 \text{ TeV} \rightarrow \text{high energy seesaw}$. How can we ever convince ourselves that this is correct?
 - It could be due to very light new physics → low energy seesaw.
 Prediction: new light propagating degrees of freedom sterile neutrinos
 - It could be due to new physics at the TeV scale → either weakly coupled, or via a more subtle lepton number breaking sector.
 Predictions: charged lepton flavor violation, collider signatures!
- 2. We need more experimental input!