

Future Facilities in Europe Challenges and Opportunities

Elena Wildner, CERN

⁽⁾ The EUROnu Project 2008-2012

• FP7 Design Study of

Next generation neutrino oscillation facilities in Europe

"Precision facilities"...

- CERN to Frejus Superbeam (SB)
- Neutrino Factory (NF), in collaboration with IDS-NF
- Beta Beams (BB)
- Performance of baseline detector / near detector
- Physics reach

EUROnu outcome

Comparison: performance – cost – safety – risk

Input to the definition of a Road Map for neutrino physics in Europe 31/7 (together with other neutrino facilities studies) Report to CERN Council via Stragey Group and ECFA

Partners

Country	Partner
Belgium	Louvain
Bulgaria	Sofia
France	CEA
	CNRS (4)
Germany	MPG (3)
Italy	INFN (3)
Poland	Cracow
Spain	CSIC (2)
Switzerland	CERN
UK	Durham
	Glasgow
	Imperial
	Oxford
	STFC
	Warwick

Country	Associate
Canada	TRIUMF
France	GANIL
Germany	Aachen
India	INO
Israel	Weizmann
Portugal	Lisbon
Russia	IAP, Novgorad
	JINR, Dubna
Switzerland	Geneva
UK	Brunel
USA	Argonne
	Brookhaven
	FNAL
	Virginia Tech
	Muon Collaboration

EUROnu physics

- Precision measurements of neutrino oscillation parameters
 - θ_{13} , δ_{cp} , mass hierarchy
 - However θ_{13} was measured (> 5 σ)
 - Recent: updates of facilities not yet final
- Document for European strategy being prepared
 - Has to be there for the 31st of July 2012

4MW accommodation

- ▷ E_b = 4.5 GeV
- Beam Power = 4MW -> 4x1-1.3MW
- Repetition Rate = 50Hz -> 12.5Hz
- > Protons per pulse = 1.1×10^{14}
- Beam pulse length = 0.6ms

4-horn/target system in order to accommodate the 4MW
 power @ 1-1.3MW, repetition rate @ 12.5Hz for each target

EUROnu Super Beam

Choice of beta (+ and -) active isotopes

Considerations		z -	• 0	1	2										
 Pair of β⁺ and β⁻ active i 	ons	n 4	n	н	He	3	4								
for v and anti-v		0		¹ H	² He	Li	Be	5	6						
- Production rates		1	¹ n ² n	² H	³ He ⁴ He	⁴ Li ⁵ Li	⁵ Be ⁶ Be	в ⁷ В	с ⁸ С	7 N	8				
- Life time	ion ring	3		⁴ H	⁵ He	⁶ Li	⁷ Be	8 ₈	°C	¹⁰ N	0	9			
optimized for baseline	~1s	4	4n	ЪН	He	'Li	⁸ Be	⁹ B	10C	¹¹ N	120	F	10		
- Reactivity		5		6H	He	18Li	⁹ Be	¹⁰ B	¹¹ C	¹² N	130	14F	Ne	11	
noble gases are good		6		⁷ H	He	⁹ Li	¹⁰ Be	11B	110	¹³ N	140	¹⁵ F	¹⁶ Ne	Na	12
- Low Z preferred				7	⁹ He	10Li	1111e	¹² B	13C	¹⁴ N	150	16F	¹⁷ Ne	¹⁸ Na	Mg
minimize accelerated	nass nor ch	arna		8	¹⁰ He	LiLi	¹² Be	13B	¹⁴ C	⁵ N	¹⁶ 0	¹⁷ F	¹⁸ Ne	¹⁹ Na	²⁰ Mg
	mass per cri	arge			9	¹² Li	¹³ Be	14 _b	¹⁵ C	16 1	170	1°F	¹⁹ Ne	²⁰ Na	²¹ Mg
	i obierna			T		10	¹⁴ Be	¹⁵ B	n c	17 N	¹⁸ 0	¹⁹ F	²⁰ Ne	²¹ Na	²² Mg
	aalina			L			11	165	17C	1 ⁸ N	⁹ 0	²⁰ F	²¹ Ne	²² Na	²³ Mg
defines v-energy & baseline								12	¹⁸ C	19N	200	²¹ F	²² Ne	²³ Na	²⁴ Mg
					_								0"		
		LO	W	u "			_		_			ign	u ~		_
	lsotope	¹⁸ Ne		6	H	e				8	3		8	Li	

"Q value" is the kinetic energy release of a particle at rest

E.g. for the neutron decay $Q=m_n-m_p-m_{ar{
u}}-m_e$

lsotope	¹⁸ Ne	۴He	⁸ B	⁸ Li
A/Z	1.8	3	1.6	2.7
Emitter	β⁺ (ν)	β ⁻ (anti-ν)	β ⁺ (ν)	β ⁻ (anti-ν)
T1/2 [S]	1.67	0.81	0.77	0.83
Q [MeV]	3.3	3.5	13.9	13.0

Production of Beta Beam isotopes

Aim ⁶He and ¹⁸Ne: 2 10¹³/s Targets below MWatt is a considerable advantage!

Isotope	⁶ He	¹⁸ Ne	⁸ Li	⁸ B
Prod.	ISOL(n)	ISOL	P-Ring	P-Ring
Beam	SPL(p)	Linac4(p)	d	³ He
I [mA]	0.07	6	0.160	0.160
E [MeV]	2000	160	25	25
P [kW]	140	960	4	4
Target	W/BeO	²³ Na, ¹⁹ F	⁷ Li	⁶ Li
r [10 ¹³ /s]	5	0.9	0.1	0.08

⁶He production exp. T. Stora, CERN-2010-003, pp. 110-117

¹⁸Ne Experiments for Beta Beams

Molten salt loop experiment to produce 18Ne

- experiments at CERN & LPSC (Grenoble)
- Very positive results from mid June 2012

¹⁸Ne production rate estimated to 1×10^{13} ions/s (dc) for 960 kW on target.

Beta Beam

^A The Neutrino Factory...

The Neutrino Factory, NOW

Proton Driver

- HARP: primary beam on production target
- Target, Capture and Decay

MERIT: first create π and later decay into μ

Bunching and Phase Rotation

Reduce the spread in energy (ΔE) of bunch

♦ Cooling

MICE: Reduce the transverse emittance

♦ Acceleration

EMMA: go from 130 MeV to 10 GeV with RLAs or FFAGs

Decay Ring

Store for roughly 1000 turns; long straight sections

A Staged Approach is conceivable with outstanding physics cases at each stage!

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012

21/28

EUROnu and IDS-NF

EUROnu is the European contribution to the IDS-NF

MERIT: Hg targets

EMMA: Linear nonscaling FFAG

Science & Technology Facilities Council

- EMMA electron model of muon accelerator
- Commissioning without surprises
- Proof of principle!

		· • · ·	
	Muon FFAG	ΕΜΜΑ	Ratio
Momentum	12.6 – 25 GeV/c	10-20 MeV/c	1:0.001
rf voltage	1214 MV	2.28 MV	1:0.002
Number of cell	64	42	1:0.66
Circumference	667 m	16.6 m	1:0.025
QD/QF length	2.251/1.087 m	0.0777/0.0588 m	1:0.035/0.054
Straight section	5 m	0.2 m	1:0.04
Aperture	~ 300 mm	~ 30 mm	1:0.1

Neutrino Factory

- Far detector: 100 kton at 2000-4000 km
- Magic detector: 50 kton at 7500 km
- Appearance of "wrong-sign" muons
- Segmentation: 3 cm Fe + 2 cm scintillator
- 1 T magnetic field

The MEMPHYS Detector

1 shaft = 215 kt

Water target

Possible location: extension of Fréjus laboratory

Ongoing R&D for single photo detection

Synergy with HK (Japan) and UNO (USA)

Near Detectors

Control of the systematics for the long baseline neutrino oscillation

- * Characterize neutrino beam
 - in addition to moun/ion beam instrumentation
- * Cross section measurements

The outcome of the detector study may be decisive for the future of the neutrino-facilities due to cost of the detector and the cavern.

European sites: LAGUNA-LBNO

- Large Water Cerenkov Detector. CERN-Fréjus is a short baseline. It offers good synergy for enhanced physics reach with βbeam at γ=100
- Liquid Argon TPC & magnetized iron + Liquid Scintillator detectors CERN-Pyhäsalmi is the longest baseline. It offers good synergy for enhanced physics reach with a NF
- [CNGS is an existing beam but is considered at lower priority (missing near detector, limited power upgrade scenarios)]

arXiv:1003.1921 [hep-ph]

C2P

C2P: Bi Magic Baseline

Future Neutrino Beams – possible timeline

Future Neutrino Beams – possible timeline

Large θ_{13} : from discovery reach to precision

BB: not so good in precision ... (not enough spectral info, statistics)

Superbeams here and there (really super)

Shorter baselines outperform longer ones for precision (obviously not matter) but SPL baseline maybe not fully optimal...

GGI, Florence, Elena Wildner

EURONU contenders

Courtesy of E. Fernandez-Martinez

Official systematic errors: signal 1% (Nufact), 5% (rest) background 10% all

Physicswise: 1) Nufact absolute winner 2) SPL very good for CP (better at ~700km 3) BB-100 precision limited 4) SB+BB synergetic

- Statistics !!!
 - big detectors & powerful, well understood beams
- Systematics !!!
 - vacuum (true) CP asymmetry < 0.3
- Resources !!!
 - 1 to 5 Billion units
- Patience & Good Health !!!

-more than 10 years before results on MH and CPV

- Mass Hierarchy (other exp.)
- Precision measurement of Theta_23, including quadrant (other exp.)
- CPV
- If detector underground (not NuFactory)
 - proton decay, atmos. nu's and supernova nu's

Organization:

Physics and Opportunities in Japan & USA

- Stephen Parke, Fermilab

• Future Facilities in Europe

- Elena Wildner, CERN
- Questions and Discussion

- All of you

20 mins each !

- Light Speed Summary of Long Baseline Physics
- Japanese opportunities: brief
- USA opportunities: LBNE reconfiguration

$$\begin{array}{lll} & \mathcal{V}_{\mu} \longrightarrow \mathcal{V}_{e} \\ & \mathsf{Vacuum} & P_{\mu \rightarrow e} \approx | \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} |^{2} \\ & & \downarrow \\ & & \downarrow \\ & \Delta_{ij} = \delta m_{ij}^{2} L/4E & \text{CP violation } !!! \\ & \text{where } \sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31} \\ & \text{and } \sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \sin \Delta_{21} \end{array}$$

$$\begin{array}{cccc} & \mathcal{V}_{\mu} \longrightarrow \mathcal{V}_{e} \\ & \mathcal{V}_{\mu \rightarrow e} \approx | \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} |^{2} \\ & & \downarrow \\ \Delta_{ij} = \delta m_{ij}^{2} L/4E & \text{CP violation } !!! \\ & \text{where } \sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31} \\ & \text{and } \sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \sin \Delta_{21} \\ \hline & P_{\mu \rightarrow e} \approx P_{atm} + 2\sqrt{P_{atm}P_{sol}} \cos(\Delta_{32} \pm \delta) + P_{sol} \\ & & \downarrow \\ & \text{cos}(\Delta_{32} \pm \delta) = \cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta \end{array}$$

 $\Delta P_{cp} = 2 \sin \delta \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \cos \theta_{13} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

Bi-Probability Figures:

For every baseline there is a critical value of θ_{13} : θ_{crit}

at Vac. Osc. Max
$$\left(\Delta_{31} = \frac{\pi}{2}\right)$$

 $\theta_{crit}^{vom} = \frac{\pi^2}{8} \frac{\sin 2\theta_{12}}{\tan \theta_{23}} \left(\frac{\delta m_{21}^2}{\delta m_{31}^2}\right) / (aL)$
 $a = G_F N_e / \sqrt{2} = (4000 \ km)^{-1},$
 $\theta_{crit}(\Delta_{31}) = \left[\frac{4\Delta_{31}^2 / \pi^2}{1 - \Delta_{31} \cot \Delta_{31}}\right] \theta_{crit}^{vom}$
when $\Delta \equiv \frac{\delta m_{31}^2 L}{4E} = \pi/2$ then $[\cdots] = 1$
for smaller Δ 's $[\cdots] > 1$ and slowly varying
for larger Δ 's $[\cdots] < 1$ and changing rapidily

for NO
$$\nu$$
A sin² $2\theta_{crit} = 0.14$
for LBNE sin² $2\theta_{crit} = 0.05$

in the overlap region of the hierarchies:

$$\langle \sin \delta \rangle_{NH} - \langle \sin \delta \rangle_{IH} = 2 \ \theta / \theta_{crit} = \begin{cases} 1.7 & NO\nu A \\ 0.55 & T2K \\ 0.3 & C2F \end{cases}$$

O. Mena et al hep-ph/0408070

7

Stephen Parke

With Uncertainties:

Neutrino oscillations in NOVA

Horiz. separation caused by matter effect for NOvA, The smaller Vert. separation by matter effect for T2K. It is IMPORTANT that the matter effects are significantly different for the two experiments.

Mena, Nunokawa and SP hep-ph/0609011

Asymmetry:

 $A_{vac} pprox rac{1}{11} rac{\sin 2 heta_{13} \sin \delta}{(\sin^2 2 heta_{13} + 0.002)} ~pprox \mathbf{0.3} \sin \delta$

$$[A_{vac} \equiv \frac{P - \bar{P}}{P + \bar{P}} = \frac{P_{\delta} - P_0}{P_0} \text{ at } \Delta_{31} = \frac{\pi}{2} \text{ (VOM) }]$$

Energy 1/3, flux and cross section reduced.

Japanese options:

TABLE I. Detector parameters of the baseline design.

TABLE I. Detector parameters of the baseline design.		the baseline design.	Mass Hiererchy
Detector type		Ring-imaging water Cherenkov detector	
Candidate site	Address	Tochibora mine	
		Kamioka town, Gifu, JAPAN	
	Lat.	36°21′08.928″N	Hyper K (ECOld EV) / 1 Evrov + 2 Evrov / 1 COMM
	Long.	$137^{\circ}18'49.688''E$	1 TypeI-K (500kt FV) / 1.5yIs V + 3.5yIs V/1.00101V
	Alt.	508 m	
	Overburden	$648~{\rm m}$ rock (1,750 m water equivalent)	Ē
	Cosmic Ray Muon flux	$1.0\sim 2.3\times 10^{-6}~{\rm sec}^{-1}{\rm cm}^{-2}$	
	Off-axis angle for the J-PARC ν	2.5° (same as Super-Kamiokande)	
	Distance from the J-PARC	295 km (same as Super-Kamiokande)	
Detector geometry	Total Volume	0.99 Megaton	Ĕ 0 <u>-</u>
	Inner Volume (Fiducial Volume)	$0.74 \ (0.56) \ Megaton$	
	Outer Volume	0.2 Megaton	
Photo-multiplier Tubes	Inner detector	99,000 20-inch ϕ PMTs	-(())
		20% photo-coverage	
	Outer detector	25,000 8-inch ϕ PMTs	
Water quality	light attenuation length	> 100 m @ 400 nm	-1
	Rn concentration	$< 1 \mathrm{~mBq/m^3}$	0 0.05 0.1 0.15
			sin ² 2θ ₁₃

For $\sin^2 2\theta_{13} = 0.1$, the mass hierarchy can be determined with more than 3σ significance for 46% of the δ parameter space.

USA options:

LBNE

業

LBNE original

• LBNE:

- Beamline @ Fermilab: 1-5 GeV, 700 kW ---> 2.1 MW
- Baseline: 1300 km on-axis, Fermilab to Homestake
- Detector: 34 ktons LAr @ 4300 mwe in Homestake

LBNE original

- 30 kton LAr @ Ash River next to NOvA on surface
 - off axis, narrow band beam, little spectral info.
 - surface detector (?): no proton decay or supernova nus or atmos nus

- 15 kton LAr @ Soudan next to MINOS at 2100 mwe
 - on axis, but spectrum is at higher energy than optimal
 - under ground detector, proton decay (K+nu), supernova nus and atmos nus. Broader program.
- 10 kton LAr @ Homestake on surface
 - NEW NEUTRINO BEAMLINE required, can be optimize
 - surface detector (?): no proton decay, supernova nus or atmos nus
 - upgrade potential

All fiducial masses

	Ash River	Soudan	Homestake
Baseline	810 km	735 km	1300 km
Detector Mass	30 kt	15 kt	10 kt
Detector position	Surface	Underground 2300 ft	Surface
Beamline	Existing NuMI	Existing NuMI	New
			Preferred Option

Preferred Option, best upgrade potential, most expensive

? = Can one operate a LAr detector on surface for LBL physics ?

Atmospheric (31) Mass Hierarchy

Physics Reach (conti)

CPV

Now for European Opportunities: