Experimental review of LHC data

10 1 A. M. 4.

GGI Workshop – What is NU? *Firenze, İtaly*

Andy Lankford

University of California, Irvine June 26, 2012

Experimental review of LHC data

Outline:

- Where is the LHC now?
- Laying the groundwork
- Exploring for new physics
- Summary and prospects

LHC instantaneous luminosity

The LHC continues to surprise with its outstanding performance. $2009 - 1^{st}$ physics collisions at injection energy late in year $2010 - 1^{st}$ full year of physics data taking, at 7 TeV E_{cm} 2011 - improving luminosity as bunches added to ring; peak $3.65x10^{33}$ 2012 - further improvements; 8 TeV E_{cm}; peak to date $6.76x10^{33}$ Design luminosity at 14 TeV = 10^{34} ; expect better in future

26 June 2012

LHC integrated luminosity

The LHC continues to surprise with its outstanding performance. 2010 – 45 pb⁻¹ recorded; 7 TeV 2011 – 5.25 fb⁻¹ recorded; 7 TeV 2012 – 6.28 fb⁻¹ recorded to date; 8 TeV; target for 2012 ~15 fb⁻¹

26 June 2012

Andy Lankford - GGI: "What is v?" - Firenze, 2012

4

Where is the LHC today?

~1/3 of way thru 2nd year of 2-yr run at 7-8 TeV

- Already recorded slightly more data than in all of 1st year
- Expect to quadruple 1st year data sample

Late 2012 – start "long shutdown 1"

- for magnet "consolidation" (replace splices)
- until Autumn 2014

Return to operations in late 2014

- train SC magnets for 13-13.5 TeV
- prepare for full design luminosity (and more)

The experiments

- Goal detect all particles produced in each pp collision
- The experiments detect, identify, and measure physics objects:

e, μ , τ , γ , jets, b-jets, v (missing E_T)

- The experimental conditions are somewhat challenging.
 - ~10⁹ interactions/sec \rightarrow ~10² recorded/sec (select ~1 per 10⁷)
 - ~10⁸ readout channels; radiation tolerance; limited access, etc.
 - ~ 50µm point precision over ~ 50m detector; (~5µm near vertex)
 - Multiple interactions per crossing.

26 June 2012

6

Event pileup - multiple interactions per crossing

26 June 2012

Andy Lankford - GGI: "What is v?" - Firenze, 2012

7

Event pileup - multiple interactions per crossing

Improving electron id for high pileup

Number of reconstructed primary vertices

26 June 2012

Electron identification efficiency [%]

Improving missing E_T measurement for high pileup

Andy Lankford - GGI: "What is v?" - Firenze, 2012

10

LHC physics

4 major experiments: ATLAS, CMS, LHCb, ALICE (I will focus on ATLAS & CMS, for their interest to today's theme.)

Rich physics program: CMS physics groups (ATLAS very similar): Forward & small-x QCD physics **Higgs physics B** physics & quarkonium **Supersymmetry**

Standard Model physics Top physics

Exotica Heavy ion physics

11

ATLAS & CMS each have published >150 papers by this time.

I must select just a few topics to report here. All results will be based on 2011 data at 7 TeV, often less than the full 5 fb⁻¹ There will be many new results next week at ICHEP: many more 5 fb⁻¹ analyses, some 2012 8 TeV analyses (even some w/ data recorded thru last Monday)

26 June 2012

SM processes are backgrounds to many searches

Standard Model is being studied and tested in detail.

Agreement of theory & experiment illustrates quality of:

- Theoretical background calculations/models
- Understanding of detector performance

26 June 2012

Top is also a background to many searches

Top pair cross-sections measured in all important modes.

Differential cross-sections measured as well.

Searching for the SM Higgs

Searching for the SM Higgs

- Searches in di-electrons and di-muons in both CMS & ATLAS with similar sensitivity
- Comparison of data with expectations of: Z'_{ssm} of Sequential SM; Z'_{ψ} & Z'_{χ} of E_6 GUT; G^{*} or G_{KK} of Randall-Sundrum; Z'_{St} of Stueckelberg extension.
- Experimental signatures are clean

16

- Searches in di-electrons and di-muons in both CMS & ATLAS with similar sensitivity
- Comparison of data with expectations of: Z'_{ssm} of Sequential SM; Z'_{ψ} and Z'_{χ} of E_6 GUT; G^{*} or G_{KK} of Randall-Sundrum; Z'_{St} of Stueckelberg extension.
- Experimental signatures are clean, but Drell-Yan backrounds are irreducible.

- Searches in di-electrons and di-muons in both CMS & ATLAS with similar sensitivity
- Comparison of data with expectations of: Z'_{ssm} of Sequential SM; Z'_{ψ} and Z'_{χ} of E_6 GUT; G^{*} or G_{KK} of Randall-Sundrum; Z'_{St} of Stueckelberg extension.
- Experimental signatures are clean, but Drell-Yan backrounds are irreducible.
- Uncertainty on extrapolation of background to high mass limits the mass constraints.

26 June 2012

- Searches in di-electrons and di-muons in both CMS & ATLAS with similar sensitivity
- Comparison of data with expectations of: Z'_{ssm} of Sequential SM; Z'_{ψ} and Z'_{χ} of E_6 GUT; G^{*} or G_{KK} of Randall-Sundrum; Z'_{St} of Stueckelberg extension.
- Experimental signatures are clean, but Drell-Yan background is irreducible.
- Uncertainty on extrapolation of background to high mass limits the mass constraints.

CMS constraints are presently most stringent $m(Z'_{SSM}) > 2.3$ TeV

19

- Decay channel is *lepton* + *missing* E_T
- Signature is excess above background in transverse mass distribution.
- Dominant, irreducible background is W decays.

CMS $m(W'_R) > 2.5 \text{ TeV}$ @95%CL w/ 5 fb⁻¹ (assuming a light decay neutrino)

ATLAS m(W'_R) >2.15 TeV @95%CL w/ 1 fb⁻¹ (assuming a light decay neutrino)

CMS also has limits on:

- W'_L with & w/o interference
- W'_{KK} for various values of bulk mass parameter μ
 ATLAS (1 fb⁻¹) & CMS (5 fb⁻¹) have also studied WZ production

Heavy neutrino & right-handed W

Both ATLAS & CMS

- Search in 2l + 2j
- CMS 5.0 fb⁻¹ μ only Left-right symmetric model $qq' \rightarrow W_R \rightarrow \mu N_\mu \rightarrow \mu (\mu W_R^*) \rightarrow \mu (\mu jj)$
- ATLAS 2.1 fb⁻¹ e or μ Left-right symmetric model $qq' \rightarrow W_R \rightarrow lN \rightarrow l(l W_R^*) \rightarrow l(ljj)$ Heavy neutrino effective operators $qq' \rightarrow lN \rightarrow l(ljj)$
- Opposite sign *l*'s for Dirac *N* dominant background: t-tbar
- Same sign *l*'s allowed if Majorana *N* dominant background: fake lepton(s)

95% C.L. upper limits on the heavy neutrino and W_R for the Majorana case in no-mixing and maximalmixing scenarios

Heavy neutrino & right-handed W

95% C.L. exclusion region for the μ channel as a function of the mass of the W_R and the N_{μ}, for equal coupling in the L & R sectors and N_{μ} as only *l* decay.

95% C.L. upper limits on $\Lambda/\sqrt{\alpha}$ (scale Λ & coupling α) as a function of the mass of the heavy neutrino for three different operators in the effective Lagrangian formalism for the Majorana scenario.

New Gauge Bosons - W'→ tb

- Previous search depends on $m(W_R) > m(N)$ for $W_R \rightarrow l N$ decay.
- $W' \rightarrow tb$ decay channel is open even if $m(N) > m(W_R)$.
- Signature is lepton $+ \ge 2$ jets + missing E_T , with ≥ 1 jet tagged as a b jet.

• Dominant backgrounds are ttbar and $W(\rightarrow l v)+jets$.

26 June 2012

New Gauge Bosons - W'→ tb

- Previous search depends on $m(W_R) > m(N)$ for $W_R \rightarrow l N$ decay.
- $W' \rightarrow tb$ decay channel is open even if $m(N) > m(W_R)$.
- Signature is *lepton* + ≥ 2 *jets* + *missing* E_T , with ≥ 1 jet tagged as a b jet.
- Dominant backgrounds are ttbar and $W(\rightarrow l v)+jets$.

CMS analysis using multivariate techniques: $m(W'_R) > 1.85 \text{ TeV}$ @95%CL

ATLAS $m(W'_R) > 1.13 \text{ TeV}$ @95%CL w/ 1 fb⁻¹

CMS has also performed a search for $W' \rightarrow td$, in $dg \rightarrow t W' \rightarrow t td$

Doubly-charged Higgs - $H^{\pm\pm}$

pair production - 4 l

associated production - 3l + v

- Production produces multi-lepton final states, w/ same-sign lepton pairs.
- ATLAS searches (1.0-1.6 fb⁻¹):
 - Same-sign μ pairs m($\mu^{\pm}\mu^{\pm}$)
 - \geq 3 leptons (e, μ) counting, pair
 - = 4 leptons (e, μ) counting, pair

- CMS searches (4.6 fb⁻¹):
 - \geq 3 leptons (e, μ , τ) m($l^{\pm}l^{\pm}$)
 - \geq 3 leptons (e, μ , τ) counting

CMS mass search is now the most sensitive.

26 June 2012

Doubly-charged Higgs - $H^{\pm\pm}$

26 June 2012

1 lepton + 4 jets + missing E_T

- Search usually performed in SUSY context
 - and often as $1l + \ge 3j + MET$
- But consider Type-III Seesaw (fermion triplet) $qq' \rightarrow \Sigma^+ \Sigma^0 \rightarrow vW^+ W^{\pm} l^{-/+} \rightarrow MET + 4 j + l$

1 lepton + 4 jets + missing E_T

 $p_T(e) = 265 \text{ GeV}$ $p_T(j) = 690, 254, 117, 84, (36) \text{ GeV}$ MET = 381 GeV $m_{eff} = 1827 \text{ GeV}$

1 lepton + 4 jets + missing E_T

Search for anomalous production of multilepton events

Selection		$N(\tau)=0$	$N(\tau)=1$		$N(\tau)=2$	
	obs	expect	obs	expect	obs	expect
4ℓ Lepton Results						
4ℓ (DY0) S_T (High)	0	0.0010 ± 0.0009	0	0.01 ± 0.09	0	0.18 ± 0.07
4ℓ (DY0) S_T (Mid)	0	0.004 ± 0.002	0	0.28 ± 0.10	2	2.5 ± 1.2
4ℓ (DY0) S_T (Low)	0	0.04 ± 0.02	0	2.98 ± 0.48	4	3.5 ± 1.1
4ℓ (DY1, no Z) S_T (High)	1	0.009 ± 0.004	0	0.10 ± 0.07	0	0.12 ± 0.05
4ℓ (DY1, Z) S_T (High)	1	0.09 ± 0.01	0	0.51 ± 0.15	0	0.43 ± 0.15
4ℓ (DY1, no Z) S_T (Mid)	0	0.07 ± 0.02	1	0.88 ± 0.26	1	0.94 ± 0.29
4ℓ (DY1, Z) S_T (Mid)	0	0.45 ± 0.11	5	4.1 ± 1.2	3	3.4 ± 0.9
4ℓ (DY1, no Z) S_T (Low)	0	0.09 ± 0.04	7	5.5 ± 2.2	19	13.7 ± 6.4
4ℓ (DY1, Z) S_T (Low)	2	0.80 ± 0.34	19	17.7 ± 4.9	95	60 ± 31
4ℓ (DY2, no Z) S_T (High)	0	0.02 ± 0.01	_	_	_	_
4ℓ (DY2, Z) S_T (High)	0	0.89 ± 0.34	_	_	_	_
4ℓ (DY2, no Z) S_T (Mid)	0	0.20 ± 0.09	_	_	_	_
4ℓ (DY2, Z) S_T (Mid)	3	7.9 ± 3.2	_	_	_	_
4ℓ (DY2, no Z) S_T (Low)	1	2.4 ± 1.1	_	_	_	_
4ℓ (DY2, Z) S_T (Low)	29	29 ± 12	_	_	_	_
3ℓ Lepton Results						
3ℓ (DY0) S_T (High)	2	1.14 ± 0.43	17	11.2 ± 3.2	20	22.5 ± 6.1
3ℓ (DY0) S_T (Mid)	5	7.4 ± 3.0	113	97 ± 31	157	181 ± 24
3ℓ (DY0) S_T (Low)	17	13.5 ± 4.1	522	419 ± 63	1631	2018 ± 253
3ℓ (DY1, no Z) S_T (High)	6	3.5 ± 0.9	10	13.1 ± 2.3	_	_
3ℓ (DY1, Z) S_T (High)	17	18.7 ± 6.0	35	39.2 ± 4.8	_	_
3ℓ (DY1, no Z) S_T (Mid)	32	25.5 ± 6.6	159	141 ± 27	_	_
3ℓ (DY1, Z) S_T (Mid)	89	102 ± 31	441	463 ± 41	_	_
3ℓ (DY1, no Z) S_T (Low)	126	150 ± 36	3721	2983 ± 418	_	_
3ℓ (DY1, Z) S_T (Low)	727	815 ± 192	17631	15758 ± 2452	_	_
Total 4ℓ	37	42 ± 13	32.0	32.1 ± 5.5	124	85 ± 32
Total 3ℓ	1021	1137 ± 198	22649	19925 ± 2489	1808	2222 ± 255
Total	1058	1179 ± 198	22681	19957 ± 2489	1932	2307 ± 257

CMS 5 fb⁻¹ classify events by: • # leptons

• #τ

- # Drell-Yan pairs
- whether Z excluded

• H_T or S_T

• Models can be compared to numbers of events in all categories.

• Models explored include RPV scenarios.

ATLAS $\geq 4l$ 2 fb⁻¹ cross-section upper limit 3.5 fb w/o Z, 1.5 fb w/ Z

26 June 2012

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

Inclusive searches	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.40 TeV q = g mass	
	MSUGRA/CMSSM : 1-lep + j's + $E_{\tau,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	1.20 TeV q̃ = g̃ mass	$\int Ldt = (0.03 - 4.7) \text{fb}$
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	850 GeV g̃ mass (large m ₀)	(s = 7 TeV
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.38 TeV q̃ mass (<i>m</i> (g̃) < 2 Te ¹	/, light $\tilde{\chi}_1^0$) ATLAS
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	940 GeV \tilde{g} mass $(m(\tilde{q}) < 2$ TeV, light	tr $\overline{\chi}_{1}^{0}$ Preliminary
	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV},$	$m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$
	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156]	810 Gev ĝ mass (tanβ < 35)	-
	GMSB : 1- τ + j's + $E_{\tau,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005]	920 GeV g̃ mass (tanβ > 20)	
	$GMSB: 2-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002]	990 GeV g̃ mass (tanβ > 20)	
Third generation	GGM : γγ + E _{τ.miss}	L=1.1 fb ⁻¹ (2011) [1111.4116]	805 GeV g̃ mass (<i>m</i> (χ̃ ⁰ ₁) > 50 GeV)	
	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \overline{b} \tilde{\chi}_{1}^{0}$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$	
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	710 GeV g̃ mass (m(χ̃ ⁰ ₁) < 150 GeV)	
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$) : 2-lep (SS) + j's + $E_{\tau \text{ miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004]	650 GeV g̃ mass (m(χ̃ ⁰ ₁) < 210 GeV)	
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t t \tilde{\chi}_1^0$) : multi-j's + $E_{T, miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	830 GeV \tilde{g} mass ($m(\bar{\chi}_1^0) < 200 \text{ GeV}$)	
	Direct $\tilde{b}\tilde{b}$ ($\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832]	\tilde{b} mass $(m(\tilde{\chi}_1^0) < 60 \text{ GeV})$	
	Direct \widetilde{tt} (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310	3ev t̃ mass (115 < m(χ̃ ⁰ ₁) < 230 GeV)	
G	Direct gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 2-lep SS + $E_{\tau, \text{miss}}$	L=1.0 fb ⁻¹ (2011) [1110.6189] 170 GeV $\tilde{\chi}_{1}^{\pm}$	mass $((m(\tilde{\chi}_1^0) < 40 \text{ GeV}, \tilde{\chi}_1^0, m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0), m(\tilde{l}_1^{\pm}))$	$(\bar{x}) = \frac{1}{2}(m(\bar{\chi}_1^0) + m(\bar{\chi}_2^0)))$
<u>ц</u>	Direct gaugino $(\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 3-lep + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV	$\overline{\chi}_1^{\pm}$ mass ($m(\overline{\chi}_1^0)$ < 170 GeV, and as above)	_
es	AMSB : long-lived $\tilde{\chi}_1^{\pm}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\overline{\chi}_1^{\pm}$ mass	$(1 < \tau(\bar{\chi}_1^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns})$	
artic	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	562 GeV ĝ mass	
d þ	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 G	ev b̃ mass	
-live	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309	₃ev f mass	
oud	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022]	810 GeV ĝ mass	
- -	GMSB : stable τ	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV で mas	s	
>	RPV : high-mass eμ	L=1.1 fb ⁻¹ (2011) [1109.3089]	1.32 TeV \tilde{v}_{τ} mass (λ'_{311} =0.10, λ	₃₁₂ =0.05)
RPI	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606]	<mark>760 Gev</mark> q̃ = g̃ mass (cτ _{LSP} < 15 mm)	
	MSUGRA/CMSSM - BC1 RPV : 4-lepton + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035]	1.77 TeV ĝ mass	
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV SQ	luon mass (excl: m _{sg} < 100 GeV, m _{sg} ≈ 140 ±	3 GeV)
		10 ⁻¹	1	10
*0-1				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.40 TeV q̃ = g̃ mass	
	MSUGRA/CMSSM : 1-lep + j's + $E_{\tau,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	1.20 TeV q = g mass	$\int Ldt = (0.03 - 4.7) \text{fb}^{-1}$
	MSUGRA/CMSSM : multijets + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	850 Gev ğ̃ mass (large m₀)	/s = 7 TeV
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.38 теу q̃ mass (<i>m</i> (g̃) < 2 Те	eV, light $\tilde{\chi}_1^0$) ATLAS
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	940 GeV g̃ mass (<i>m</i> (q̃) < 2 TeV, lig	the $\bar{\chi}_1^0$ Preliminary
	$\overset{\mathfrak{g}}{\underset{\sim}{\cong}} \qquad $	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV})$	$(m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^{0}) + m(\tilde{g}))$
	$GMSB : 2-lep OS_{SF} + E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156]	810 GeV \tilde{g} mass (tan β < 35)	L Contraction
	\subseteq GMSB : 1- τ + j's + $E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005]	920 Gev g̃ mass (tanβ > 20)	
	GMSB : $2-\tau + j's + E_{\tau, miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002]	990 Gev g̃ mass (tanβ > 20)	
	$GGM: \gamma\gamma + E_{\tau,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	805 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) > 50 \text{ GeV})$	
	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \bar{\chi}_1^0$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$)
	$\tilde{\underline{Q}}$ Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	710 GeV g̃ mass (<i>m</i> (χ̃ ⁰ ₁) < 150 GeV)	
	$ [\widetilde{g} \rightarrow tt \widetilde{\chi}_1^0) : 2 \text{-lep (SS)} + j \text{'s} + E_{T, \text{miss}} $	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004]	650 GeV g̃ mass (m(χ̃ 1) < 210 GeV)	
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi_1^0$) : multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	830 GeV g̃ mass (m(χ̃ ⁰ ₁) < 200 GeV)	
	$\stackrel{\sim}{=} Direct \ \widetilde{b}\widetilde{b} \ (\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0) : 2 \text{ b-jets } + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832]	390 GeV \tilde{b} mass $(m(\bar{\chi}_1^0) < 60 \text{ GeV})$	
	Direct tt̃ (GMSB) : Z(→II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036]	310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)	
	birect gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3 \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,\text{miss}}$	L=1.0 fb ⁻¹ (2011) [1110.6189] 170 Ge	$\bar{\chi}_{1}^{\pm}$ mass (($m(\bar{\chi}_{1}^{0}) < 40 \text{ GeV}, \bar{\chi}_{1}^{0}, m(\bar{\chi}_{1}^{\pm}) = m(\bar{\chi}_{2}^{0}), m$	$(\tilde{l}, \tilde{v}) = \frac{1}{2}(m(\tilde{\chi}_1^0) + m(\tilde{\chi}_2^0)))$
	Direct gaugino $(\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_3^0)$: 3-lep + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	250 GeV $\bar{\chi}_1^{\pm}$ mass $(m(\bar{\chi}_1^0) < 170 \text{ GeV}, \text{ and as above})$	2
	$\&$ AMSB : long-lived $\tilde{\chi}_1^{\pm}$	118 GeV L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\widetilde{\chi}_{\star}^{\pm}$	mass (1 < $\tau(\tilde{\chi}_1^{\pm})$ < 2 ns, 90 GeV limit in [0.2,90] ns	
	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	562 GeV ĝ mass	
	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	294 GeV b mass	
	RPV : high-mass	eμ L=1.1 to ⁻¹ (2011) [1109.308	ej 1.32 T	ev ν _s mass (λ ₃₁₁ =0.10, λ ₃₁₂ =0.05)
	Bilinear RPV : 1-len + i's + F		~ ~	~
	Diffical IX V. Hep 13 CZ7,n	niss L=1.0 fb" (2011) [1108.680	8] 760 GeV Q =	g mass (ct _{LSP} < 15 mm)
MSU	JGRA/CMSSM - BC1 RPV : 4-lepton + E _{7,n}	1 SS L=2.1 10 ⁻¹ (2011) (ATLA8-C	ONF-2012-036] 1	.77 TeV g mass
(+	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 G	ev sgluon mass (excl: m _{sg} < 100 GeV, m _{sg} ≈ 140 :	3 GeV)
- c.		10-1	1	10
1	*Only a selection of the available mass limits on new states or i	ohenomena shown		Mass scale [TeV]

26 June 2012

PN

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV M _D (δ=2)	1	
ŝ	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]	3.0 TeV M _S (GRW cut	-off) ATLAS	
	UED : $\gamma\gamma + E_{T.miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 TeV Compact. scale 1/R (SPS	8) Preliminary	
ion	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 TeV Graviton mass	_	
sue	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm H}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Graviton mass	$\int dt = (0.04 - 5.0) \text{ fb}^{-1}$	
ime	RS with $k/M_{PI} = 0.1$: ZZ resonance, $m_{III / III}$	L=1.0 fb ⁻¹ (2011) [1203.0718]	845 Gev Graviton mass	$\int Ldt = (0.04 - 5.0)$ lb	
ad	RS with $g_{gaskk}/g_s = -0.20$: $t\bar{t} \rightarrow l+jets, m_{t\bar{t}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 Tev KK gluon mass	s = 7 TeV	
Extr	ADD BH $(M_{TH}^{qgr})M_{D}^{=}=3)$: multijet, Σp_{T} , N_{jets}^{u}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV M _D (δ=6)		
4	ADD BH $(M_{TH}/M_{D}=3)$: SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV M _D (δ=6)		
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV M _D (δ=6)		
	Quantum black hole : dijet, $F_{\chi}(m_{ij})$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	4.11 TeV M _D (δ=6)		
	qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	7.8 TeV	1	
C	qqll Cl : ee, $\mu\mu$ combined, m_{μ}	L=1.1-1.2 fb ⁻¹ (2011) [1112.4462]	10.2 Te	 A (constructive int.) 	
	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV Λ		
5	SSM Z' : m _{ee/µµ}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass		
	SSM W:m _{T,e/µ}	L=1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mass		
q	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [1112.4828]	660 Gev 1° gen. LQ mass		
7	Scalar LQ pairs (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass		
ks	$4^{"}$ generation : $Q_{4}Q_{4} \rightarrow WqWq$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	Q ₄ mass		
uan	4 th generation : u $\Pi_4 \rightarrow WbWb$	L=1.0 fb ⁻¹ (2011) [1202.3076] 404 GeV	u ₄ mass		
ά	4" generation : d d ₄ \rightarrow WtWt	L=1.0 fb ⁻¹ (2011) [Preliminary] 480 G	ev d ₄ mass		
Vev	New quark b' : b'b' \rightarrow Zb+X, m _{zb}	L=2.0 fb ⁻¹ (2011) [Preliminary] 400 GeV	b' mass		
	$TT_{exo, 4th, gen} \rightarrow tt + A_0 A_0$: 1-lep + jets + $E_{T, miss}$	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 GeV	T mass (<i>m</i> (A ₀) < 140 GeV)		
n	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV q* mass		
t. fe	Excited quarks : dijet resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	3.35 TeV q* mass		
XCI	Excited electron : e-y resonance, m	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	2.0 TeV e* mass (A = m(e*))	
Щ	Toobni bodrono i dilonton m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$)		
	Techni-hadrons : WZ resonance (vIII) m	L=1.1-1.2 fb ⁻¹ (2011) [ATLAS-CONF-2011-125] 470 G	$\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = 100 {\rm Ge}$	eV)	
		L=1.0 fb ⁻¹ (2011) [Preliminary] 483 G	ev $\rho_{\rm T}$ mass $(m(\rho_{\rm T}) = m(\pi_{\rm T}) + m_{\rm W}, m(a_{\rm T}) =$	$1.1m(\rho_{T}))$	
~	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	1.5 TeV N mass (<i>m</i> (W _R) = 2 16	V)	
the	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	2.4 TeV VV _R mass (m(N)	< 1.4 GeV)	
0	H_{L} (DT prod., BR($H \rightarrow \mu\mu$)-T): SS diffuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV	H_ mass		
	Vector like quark : CC m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar resonance m	lass	
	Vector-like quark : CC, mivq	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)		
	vector-like quark : NC, m _{llq}	L=1.0 fb (2011) [1112.5755]	760 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)		
		40-1			
		10	1	10 10-	
+ 6	Mass scale [TeV]				
*0	niy a selection of the available mass limits on new states or	ohenomena shown			

LHC plans

References

https://twiki.cern.ch/twiki/bin/view/AtlasPublic http://cms.web.cern.ch/org/cms-papers-and-results

Doubly-charged Higgs $- H^{++}$

ATLAS: arXiv:1201.1091

ATLAS-CONF-2011-144

ATLAS-CONF-2011-158

ATLAS-CONF-2012-041

ATLAS-CONF-2012-001

CMS: arXiv:1204.5341

CMS PAS HIG-12-005

CMS-SUS-11-013

1 l + 4 jets + MET

Multileptons

New gauge bosons - Z' ATLAS-CONF-2012-007 CMS: arXiv:1206.1849

New gauge bosons - W'

ATLAS: Phys.Lett. B705 (2011) 28-45 CMS: arXiv:1204.4764

Heavy neutrinos and right-handed W's

ATLAS: arXiv:1203.5420 (accepted by EPJC) CMS PAS EXO-11-091

$W' \rightarrow tb$

ATLAS: arXiv:1205.1016 CMS PAS EXO-12-001

$W' \rightarrow td$

CMS PAS EXO-11-056

$W' \rightarrow WZ$

ATLAS: arXiv:1204.1648 CMS-EXO-11-041

26 June 2012

LHC is midway in its first long successful run.

• The accelerator and experiments are performing extremely well.

Standard model and Top are measured and understood. Modeling of backgrounds is excellent.

Searches for excesses beyond SM being performed in many channels.

- No significant excesses observed (yet)
- Results expressed as:
 - (fiducial) cross-section limits,
 - limits on new particle masses in specific models.

Expect limits on new physics to improve increased statistics (this year, and after) increased energy (in 2015) – a doubling!