Inflation and Thermal Right-Handed Sneutrino Dark Matter

Apostolos Pilaftsis

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

GGI, Florence, 25–29 June 2012

Plan of the Talk

- *F_D*-Term Hybrid Inflation
- Natural Solution to the Gravitino Overabundance Problem
- Right-Handed Sneutrino as Thermal Dark Matter
- Further Cosmological and Particle-Physics Implications
- Conclusions and Future Directions

*Talk based on

- B. Garbrecht and A.P., PLB636 (2006) 154;
- B. Garbrecht, C. Pallis and A. P., JHEP0612 (2006) 038;
- F. Deppisch and A. P., JHEP10 (2008) 080

• Standard Big-Bang Cosmology and WMAP

Density perturbations as observed by WMAP

$$\frac{\delta T}{T} \sim \frac{\delta \rho}{\rho} \sim 10^{-5}$$

– Inflation Dynamics

Number of *e*-folds:

$$\mathcal{N}_e = \int_{t_{\mathcal{N}}}^{t_{\text{end}}} dt \ H(t) \approx \frac{1}{m_{\text{Pl}}^2} \int_{\phi_{\text{end}}}^{\phi_{\mathcal{N}}} d\phi \ \frac{V}{V_{\phi}} \approx 50 - 60$$

Power spectrum of curvature perturbations:

$$P_{\mathcal{R}}^{1/2} = \frac{1}{2\sqrt{3}\pi m_{\rm Pl}^3} \frac{V^{3/2}}{|V_{\phi}|} \approx 4.86 \times 10^{-5} \qquad (k_0 = 0.002 \; {\rm Mpc}^{-1})$$

Spectral index:

$$n_s - 1 = \frac{d \ln P_R^{1/2}}{d \ln k} = 2\eta - 6\varepsilon \approx -0.037 \, {}^{+0.015}_{-0.014}$$
 (WMAP 5 years data)

Slow-roll parameters:

$$\varepsilon = \frac{1}{2} m_{\rm Pl}^2 \left(\frac{V_{\phi}}{V}\right)^2 \ll 1 , \qquad \eta = m_{\rm Pl}^2 \frac{V_{\phi\phi}}{V} \ll 1$$

• *F*_D-Term Hybrid Inflation

– Hybrid Inflation

[A.D. Linde, PLB259 (1991) 38]

$$V = \frac{\lambda}{4} (|\chi|^2 - M^2)^2 + \frac{1}{2} g |\chi|^2 |\phi|^2 + \frac{1}{2} m^2 |\phi|^2$$

Inflation starts, when $\phi \gg \phi_c \sim M$, $\chi = 0 \rightarrow V \simeq \frac{\lambda}{4}M^4 + \frac{1}{2}m^2|\phi|^2$ Inflation ends with the so-called waterfall mechanism

GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. PILAFTSIS

- *F*-Term Hybrid Inflation

[E. Copeland, A. Liddle, D. Lyth, E. Stewart, D. Wands, PRD49 (1994) 6410; G. Dvali, Q. Shafi, R. Schaefer, PRL73 (1994) 1886]

Superpotential:

$$W = \kappa \,\widehat{S} \left(\widehat{X}_1 \,\widehat{X}_2 - M^2 \right)$$

Real Potential determined from F terms:

$$V = |\partial W/\partial S|^2 + |\partial W/\partial X_1|^2 + |\partial W/\partial X_2|^2$$

= $\kappa^2 |X_1 X_2 - M^2|^2 + \kappa^2 |S|^2 (|X_1|^2 + |X_2|^2)$

Start of inflation: $S^{in} > M$, $X_{1,2}^{in} = 0$, with $V = \kappa^2 M^4$. $X_{1,2}$ -Mass Matrix:

$$M_{X_{1,2}}^2 = \begin{pmatrix} |\kappa|^2 |S|^2 & -\kappa^2 M^2 \\ -\kappa^{*2} M^2 & |\kappa|^2 |S|^2 \end{pmatrix}$$

End of inflation: $S < M \rightarrow \det M^2_{X_{1,2}} < 0 \rightarrow \text{waterfall mechanism.}$

- Slope of the Potential

Potential is too flat! $\partial V / \partial S = 0$.

Radiative lifting of the S-flat direction:

$$V_{1-\text{loop}} = \frac{\kappa^4 M^4}{16\pi^2} \ln\left(\frac{|S|^2}{M^2}\right)$$

SUGRA corrections: $V_{\text{SUGRA}} = -c_H^2 H^2 |S|^2 + \kappa^2 M^4 \frac{|S|^4}{2 m_{\text{Pl}}^4} + \dots$

Number of *e*-folds:

$$\mathcal{N}_e = \frac{4\pi^2}{\kappa^2} \frac{(S^{\rm in})^2}{m_{\rm Pl}^2} \approx 55$$

For $10^{-3} \lesssim \kappa \lesssim 10^{-2} \longrightarrow S^{\text{in}} \lesssim 10^{-1} m_{\text{Pl}} \rightarrow \text{predictive scenario}$

Power spectrum: $P_{\mathcal{R}}^{1/2} = \sqrt{\frac{4N_e}{3}} \left(\frac{M}{m_{\rm Pl}}\right)^2 = 5 \times 10^{-5} \rightarrow M \sim 10^{16} \text{ GeV}.$

M close to the GUT or gauge-coupling unification scale M_X .

Spectral index: $n_s - 1 = -\frac{1}{N_e} \approx -0.02$ (mSUGRA).

- F_D-Term Hybrid Inflation

$$W = \kappa \widehat{S} \left(\widehat{X}_1 \widehat{X}_2 - M^2 \right) + \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\rho}{2} \widehat{S} \widehat{N}_i \widehat{N}_i + h_{ij}^{\nu} \widehat{L}_i \widehat{H}_u \widehat{N}_j + W_{\text{MSSM}}^{(\mu=0)}$$

+ Subdominant Fl *D*-term of U(1)_X: $-\frac{g_X}{2}m_{FI}^2D_X$

Remarks:

- Mass scales: $m_{\rm Pl}$, M, $m_{\rm FI}$ and $M_{\rm SUSY}$.
- $\langle S \rangle \sim \frac{1}{\kappa} M_{SUSY}$ sets the Electroweak and the Singlet Majorana scale:

$$\mu = \lambda \langle S \rangle, \quad m_N = \rho \langle S \rangle$$

- Lepton Number Violation mediated by right-handed neutrinos N_i occurs at the EW scale $\mu \sim m_N$.
 - \rightarrow BAU may be explained by thermal EW-scale resonant leptogenesis.

GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter

A. PILAFTSIS

Next-to-mSUGRA with $-c_H^2 H^2 S^2$ [B. Garbrecht, C. Pallis, A.P., JHEP**0612** (2006) 038]

GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. PILAFTSIS

– Post-inflationary Dynamics

$$\begin{aligned} X_{\pm} &= \frac{1}{\sqrt{2}} \left(X_1 \pm X_2 \right) = \langle X_{\pm} \rangle + \frac{1}{\sqrt{2}} \left(R_{\pm} + iI_{\pm} \right), \\ \text{with } \langle X_{\pm} \rangle &= \sqrt{2}M \text{ and } \langle X_{\pm} \rangle = \frac{v}{\sqrt{2}} = \frac{m_{\text{FI}}^2}{2\sqrt{2}M} \end{aligned}$$

Sector	Boson	Fermion	Mass	D-parity
Inflaton $(\kappa$ -sector)	S , R_+ , I_+	$\psi_{\kappa} = \left(\begin{array}{c}\psi_{X_{+}}\\\psi_{S}^{\dagger}\end{array}\right)$	$\sqrt{2}\kappa M$	+
${\sf U}(1)_X$ Gauge $(g ext{-sector})$	$V_{\mu}~[I_{-}]$, R_{-}	$\psi_g = \left(\begin{array}{c} \psi_{X} \\ -\mathrm{i}\lambda^{\dagger} \end{array}\right)$	gM	

$$\Gamma_{\kappa} = \frac{1}{32\pi} (4\lambda^2 + 3\rho^2) m_{\kappa}, \qquad \Gamma_g = \frac{g^2}{128\pi} \frac{m_{\rm FI}^4}{M^4} m_g.$$

- Reheat Temperature and Gravitino Constraint

Inflaton decays reheat the Universe, when $\Gamma_{\kappa} \gtrsim H(T_{\kappa}^{\text{reh}})$:

$$T_{\kappa}^{\rm reh} = \left(\frac{90}{\pi^2 g_*}\right)^{1/4} \sqrt{\Gamma_{\kappa} m_{\rm Pl}}$$

Generic Gravitino constraint ($T_{\kappa}^{\rm reh} \lesssim 10^9$ GeV) implies

$$\kappa \left(\lambda^2 + \frac{3}{4}\rho^2\right) \lesssim 3 \cdot 10^{-15} \times \left(\frac{T_{\kappa}^{\text{reh}}}{10^9 \text{ GeV}}\right)^2 \left(\frac{10^{16} \text{ GeV}}{M}\right)$$

For $\kappa \approx \lambda \approx \rho \quad \rightarrow \quad \kappa, \ \lambda, \ \rho \ \stackrel{<}{{}_\sim} \ 10^{-5}$

Minimal F_D -Term Hybrid Inflation ruled out by $n_s - 1 < 0$, unless . . . there is an extra source of entropy release - Thermal History of the Universe

• Right-Handed Sneutrino as Thermal Dark Matter

Related considerations:

- D. Hooper, J. March-Russell and S. M. West, PLB605 (2005) 228.
- C. Arina and N. Fornengo, JHEP0711 (2007) 029.
- C. Arina, F. Bazzocchi, N. Fornengo, J. C. Romao and J. W. F. Valle, PRL101 (2008) 161802.

ŝ

But all with significant Left-Handed Sneutrino component!

- Right-Handed Sneutrinos in the *F*_D-Term Hybrid Model

 $\Delta(B-L) = 0 \text{ or } 2 \longrightarrow R$ -Parity Conservation.

Right-handed sneutrino mass matrix:

$$\mathcal{M}_{\widetilde{N}}^2 = \begin{pmatrix} \rho^2 v_S^2 + M_{\widetilde{N}}^2 & \rho A_\rho v_S + \rho \lambda v_u v_d \\ \rho A_\rho^* v_S + \rho \lambda v_u v_d & \rho^2 v_S^2 + M_{\widetilde{N}}^2 \end{pmatrix}$$

$$\longrightarrow m_{\widetilde{N}_{\rm LSP}}^2 = \rho^2 v_S^2 + M_{\widetilde{N}}^2 - (\rho A_\rho v_S + \rho \lambda v_u v_d).$$

New LSP interaction:

[B. Garbrecht, C. Pallis and A. P., JHEP0612 (2006) 038]

$$\mathcal{L}_{\text{int}}^{\text{LSP}} = \frac{1}{2} \lambda \rho \, \widetilde{N}_i^* \widetilde{N}_i^* H_u H_d \quad + \quad \text{H.c.}$$

SUSY version of the Higgs-Portal scenario. [V. Silveira and A. Zee, PLB161 (1985) 136; J. McDonald, PRD50 (1994) 3637.] Process: $\widetilde{N}_{\text{LSP}}\widetilde{N}_{\text{LSP}} \to \langle H_u \rangle H_d \to W^+W^- (m_{\widetilde{N}_{\text{LSP}}} > M_W)$

$$\Omega_{\rm DM} h^2 \sim \left(\frac{10^{-4}}{\rho^2 \lambda^2}\right) \left(\frac{\tan\beta M_H}{g_w M_W}\right)^2 \longrightarrow \lambda, \rho \gtrsim 0.1$$

Process: $\widetilde{N}_{\text{LSP}}\widetilde{N}_{\text{LSP}} \to \langle H_u \rangle H_d \to b\bar{b} \quad (M_{H_d} \approx 2m_{\widetilde{N}_{\text{LSP}}} < 2M_W)$

$$\Omega_{\rm DM} h^2 \sim 10^{-4} \times B^{-1} (H_d \to \tilde{N}_{\rm LSP} \tilde{N}_{\rm LSP}) \times \left(\frac{M_H}{100 \text{ GeV}}\right)^2 \longrightarrow \lambda, \rho \gtrsim 10^{-2}$$

Limits from Cosmological Inflation:

$$\lambda(M_{\rm SUSY}) \rho(M_{\rm SUSY}) \lesssim 2.3 \times 10^{-4} \text{ (mSUGRA)}$$
$$\lesssim 5.8 \times 10^{-4} \text{ (nmSUGRA)}$$

[F. Deppisch, A.P., JHEP10 (2008) 080]

Numerical estimate assisted by **CPsuperH2.0**

[J. S. Lee, M. Carena, J. Ellis, A. P., C. E. M. Wagner, arXiv:0712.2360 [hep-ph].]

GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. PILAFTSIS

 $m_0 = 70 \text{ GeV}, \ m_{1/2} = 243 \text{ GeV}, \ A_0 = 300 \text{ GeV}, \ \tan \beta = 10, \ \mu = 303 \text{ GeV}.$

 $m_0 = 125 \text{ GeV}, \ m_{1/2} = 212 \text{ GeV}, A_0 = 300 \text{ GeV}, \ \tan \beta = 30, \ \mu = 263 \text{ GeV}$.

• Baryogenesis through Leptogenesis

Out-of-equilibrium *L*-violating decays of heavy Majorana neutrinos produce a net lepton asymmetry, converted into the BAU through (B + L)-violating sphaleron interactions.

[M. Fukugita, T. Yanagida, PLB174 (1986) 45.]

• Importance of the self-energy effects, for $|m_{N_1} - m_{N_2}| \ll m_{N_{1,2}}$

[J. Liu, G. Segré, PRD48 (1993) 4609; M. Flanz, E. Paschos, U. Sarkar, PLB345 (1995) 248; L. Covi, E. Roulet, F. Vissani, PLB384 (1996) 169.]

• **Resonant Leptogenesis** (the importance of $\Gamma_{N_{1,2}}$ width effects)

[A.P., PRD56 (1997) 5431; A.P. and T. Underwood, NPB692 (2004) 303.]

– Resonant τ -Leptogenesis with Observable Lepton Flavour Violation

[A.P., PRL95 (2005) 081602; A.P. and T. Underwood, PRD72 (2005) 113001]

[F. Deppisch, A.P., PRD83 (2011) 076007.]

• LFV and Minimal RL

 $\gamma_1 = 3\pi/8, \, \gamma_2 = \pi/2$

[F. Deppisch, A.P., PRD83 (2011) 076007.]

• LFV and Minimal RL

 $\gamma_1 = 3\pi/8, \, \gamma_2 = \pi/2$

• Conclusions

- F_D -Term Hybrid Inflation provides an interesting framework for building a Minimal Particle Physics and Cosmology Model.
- The μ -parameter of the MSSM is tied to a universal Majorana mass m_N , via the VEV of the inflaton field.
- The entropy release from the late *D*-tadpole-induced decays of the *g*-sector particles offers a simple solution to the gravitino problem.
- Right-Handed Sneutrinos could be the Thermal Dark Matter
- Baryon Asymmetry in the Universe can be explained by thermal Electroweak-Scale Resonant Leptogenesis, independently of any pre-existing lepton or baryon-number abundance.

- Further Particle-Physics Implications:
 - Invisible Higgs Decays: $H \to \widetilde{N}_{\text{LSP}} \widetilde{N}_{\text{LSP}}$.
 - Observable Signatures: $B(\mu \to e\gamma) \sim 10^{-13}$, $B(\mu \to eee) \sim 10^{-14}$, $B(\mu \to e) \sim 10^{-13}$.

[A. Ilakovac and A.P., NPB437 (1995) 491; PRD80 (2009) 091902]

- EW-Scale Heavy Neutrinos and LNV/LFV at the LHC.

[A. Datta, M. Guchait, A. P., PRD50 (1994) 3195; S. Bray, J.-S. Lee, A.P., NPB786 (2007) 95;
 J. Kersten, A. Y. Smirnov, PRD76 (2007) 073005; T. Han, B. Zhang, PRL97 (2006) 171804;
 F. del Aguila, J.A. Aguilar-Saavedra, R. Pittau, JHEP10 (2007) 95;
 A. Atre, T. Han, S. Pascoli, B. Zhang, JHEP 0905 (2009) 030.]

• Future Directions

- Further improvements in the theory of the (pre-inflationary), inflationary and post-inflationary dynamics.
- Further connections between inflation, leptogenesis, CDM, neutrino-mass parameters, Higgs physics and other laboratory observables in constrained minimal versions of the F_D -Term Hybrid Model.

ŝ

• Possible realizations of the F_D -Term Hybrid Model in GUTs. [e.g. $E(7) \rightarrow SU(2)_X \otimes SO(12) \rightarrow SU(2)_X \otimes SO(10) \otimes U(1)$]

• Future Directions

- Further improvements in the theory of the (pre-inflationary), inflationary and post-inflationary dynamics.
- Further connections between inflation, leptogenesis, CDM, neutrino-mass parameters, Higgs physics and other laboratory observables in constrained minimal versions of the F_D -Term Hybrid Model.

ŝ

- Possible realizations of the F_D -Term Hybrid Model in GUTs. [e.g. $E(7) \rightarrow SU(2)_X \otimes SO(12) \rightarrow SU(2)_X \otimes SO(10) \otimes U(1)$]
- Model-building constraints from a natural solution to the cosmological constant problem.

• Back-up Slides

– The Non-Seesaw Paradigm

[F. Deppisch and A.P., PRD83 (2011) 076007; based on A.P., ZPC55 (1992) 275;
D. Wyler, L. Wolfenstein, NPB218 (1983) 205;
R.N. Mohapatra, J.W.F. Valle, PRD34 (1986) 1642.]

Break SO(3) and $U(1)_l$ flavour symmetries:

$$\mathsf{SO}(3) \ \stackrel{\sim h_{ au}}{\longrightarrow} \ \mathsf{SO}(2) \simeq \mathsf{U}(1)_l \ \stackrel{\sim h_e}{\longrightarrow} \ \mathsf{I}$$

– The Non-Seesaw Paradigm

 [F. Deppisch and A.P., PRD83 (2011) 076007; based on A.P., ZPC55 (1992) 275;
 D. Wyler, L. Wolfenstein, NPB218 (1983) 205;
 R.N. Mohapatra, J.W.F. Valle, PRD34 (1986) 1642.]

Break SO(3) and $U(1)_l$ flavour symmetries:

$$\mathsf{SO}(3) \ \stackrel{\sim h_{ au}}{\longrightarrow} \ \mathsf{SO}(2) \simeq \mathsf{U}(1)_l \ \stackrel{\sim h_e}{\longrightarrow} \ ert$$

 $U_l(1)$ -broken Yukawa sector:

$$\mathbf{m}_{D} = \frac{v_{\rm SM}}{\sqrt{2}} \begin{pmatrix} \varepsilon_{e} & a e^{-i\pi/4} & a e^{i\pi/4} \\ \varepsilon_{\mu} & b e^{-i\pi/4} & b e^{i\pi/4} \\ \varepsilon_{\tau} & \kappa_{1} e^{-i(\pi/4-\gamma_{1})} & \kappa_{2} e^{i(\pi/4-\gamma_{2})} \end{pmatrix},$$

with $a \sim b \sim 10^{-2} \sim h_{\tau}$, $\kappa_{1,2} \lesssim 10^{-3}$ & $|\varepsilon_l| \sim 10^{-7} \sim h_e$.

$$\implies \mathbf{m}_{\nu}^{\text{light}} \sim \frac{\varepsilon_l^2 v_{\text{SM}}^2}{m_N} \sim 0.1 \text{ eV} \implies m_N \sim 100 - 500 \text{ GeV}$$

 \Rightarrow 3 nearly degenerate heavy Majorana neutrinos.

Light neutrino-mass spectrum:

[A.P., T. Underwood, PRD72 (2005) 113001; F. Deppisch and A.P., PRD83 (2011) 076007]

$$m_{\nu}^{\text{light}} \approx \frac{v^2}{2m_N} \begin{pmatrix} \frac{\Delta m_N}{m_N} a^2 - \varepsilon_e^2 & \frac{\Delta m_N}{m_N} ab - \varepsilon_e \varepsilon_\mu & -\varepsilon_e \varepsilon_\tau \\ \frac{\Delta m_N}{m_N} ab - \varepsilon_e \varepsilon_\mu & \frac{\Delta m_N}{m_N} b^2 - \varepsilon_\mu^2 & -\varepsilon_\mu \varepsilon_\tau \\ -\varepsilon_e \varepsilon_\tau & -\varepsilon_\mu \varepsilon_\tau & -\varepsilon_\tau^2 \end{pmatrix} ,$$

where

$$\Delta m_N = 2(\Delta m_M)_{23} + i[(\Delta m_M)_{33} - (\Delta m_M)_{22}] .$$

$$a^{2} = \frac{2m_{N}}{v^{2}} \frac{8\pi^{2}}{\ln(M_{X}/m_{N})} \left(m_{11}^{\nu} - \frac{(m_{13}^{\nu})^{2}}{m_{33}^{\nu}}\right) \left[2\kappa_{1}\kappa_{2}\sin(\gamma_{1}+\gamma_{2}) + i(\kappa_{2}^{2}-\kappa_{1}^{2})\right]^{-1},$$

$$b^{2} = \frac{2m_{N}}{v^{2}} \frac{8\pi^{2}}{\ln(M_{X}/m_{N})} \left(m_{22}^{\nu} - \frac{(m_{23}^{\nu})^{2}}{m_{33}^{\nu}}\right) \left[2\kappa_{1}\kappa_{2}\sin(\gamma_{1}+\gamma_{2}) + i(\kappa_{2}^{2}-\kappa_{1}^{2})\right]^{-1},$$

$$\epsilon_{e}^{2} = \frac{2m_{N}}{v^{2}} \frac{(m_{13}^{\nu})^{2}}{m_{33}^{\nu}}, \quad \epsilon_{\mu}^{2} = \frac{2m_{N}}{v^{2}} \frac{(m_{23}^{\nu})^{2}}{m_{33}^{\nu}}, \quad \epsilon_{\tau}^{2} = \frac{2m_{N}}{v^{2}} m_{33}^{\nu}.$$