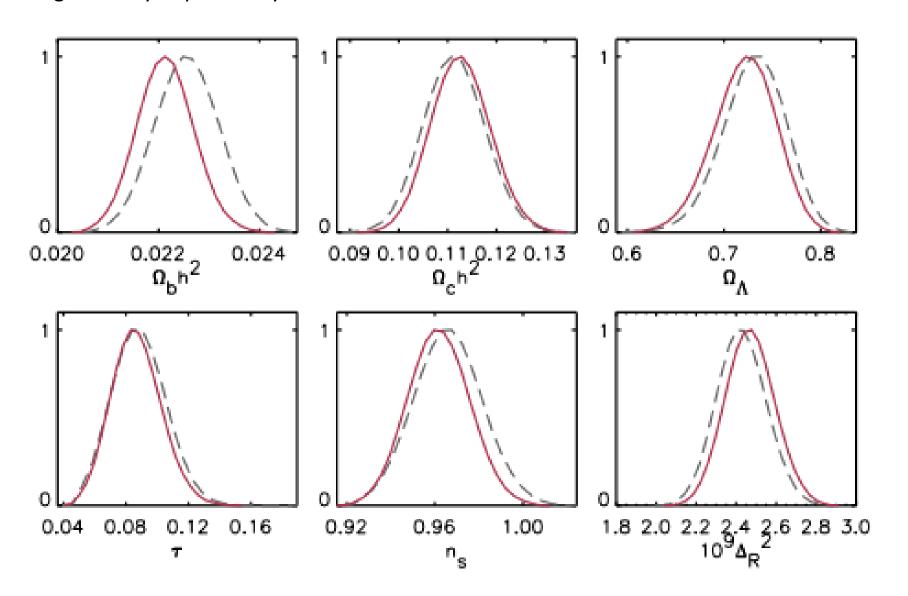


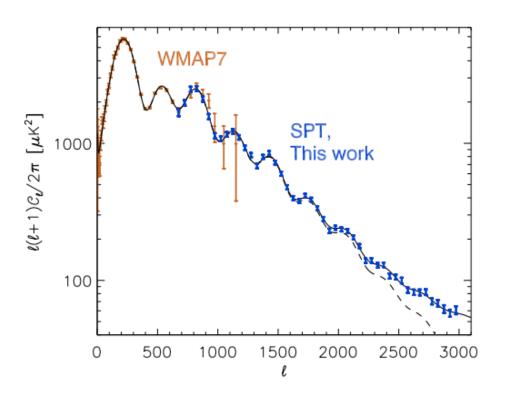
New ACT results

The **Atacama Cosmology Telescope** (**ACT**) is a six-meters telescope on Cerro Toco in the Atacama Desert in the north of Chile, at an altitude of 5190 metres.



S. Das et al, **Astrophys.J. 729 (2011) 62**

Constraints on the standard Λ -CDM parameters are not significantly improved by the new ACT data.

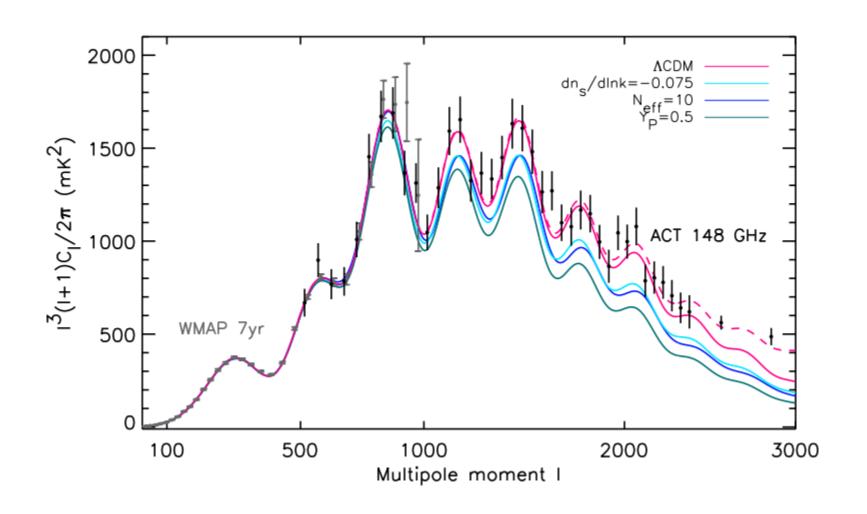


J. Dunkley et al, **Astrophys.J. 739 (2011) 52**

New SPT results

The South Pole Telescope (SPT) is a 10 meters diameter telescope located at the Amundsen-Scott South Pole Station, Antarctica.

The data consist of 790 square degrees of sky observed at 90, 150 & 220 GHz.


R. Keisler et al, **Astrophys.J. 743 (2011) 28**

Constraints on the standard Λ -CDM parameters are not significantly improved by the new SPT data.

R. Keisler et al, Astrophys.J. 743 (2011) 28

Small Scale CMB measurements test new parameters

Cosmological Neutrinos

Neutrinos are in equilibrium with the primeval plasma through weak interaction reactions. They decouple from the plasma at a temperature

$$T_{dec} \approx 1 MeV$$

We then have today a Cosmological Neutrino Background at a temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.945K \rightarrow kT_{\nu} \approx 1.68 \cdot 10^{-4} eV$$

With a density of:

$$n_f = \frac{3}{4} \frac{\varsigma(3)}{\pi^2} g_f T_f^3 \to n_{\nu_k, \bar{\nu}_k} \approx 0.1827 \cdot T_{\nu}^3 \approx 112 cm^{-3}$$

That, for a relativistic neutrinos translate in a extra radiation component of:

$$\Omega_{\nu}h^2 = \frac{7}{4} \left(\frac{4}{11}\right)^{4/3} N_{eff}^{\nu} \Omega_{\gamma}h^2$$
 Standard Model predicts: $N_{eff}^{\nu} = 3.046$

Dark Radiation

The total amount of relativistic particles in the Universe is **parametrized** as:

$$\Omega_R h^2 = \left[1 + \frac{7}{4} \left(\frac{4}{11}\right)^{4/3} N_{eff}^{\nu}\right] \Omega_{\gamma} h^2$$

Caveat: Neff can be a function of time (i.e. massive neutrinos).

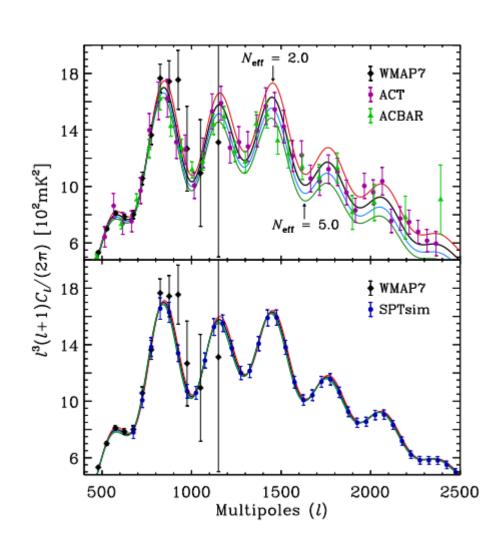
For most of the cases we consider here is assumed to be a constant.

A value of Neff > 3.046 is equivalent to the presence of a new «dark radiation» component :

$$\left(\frac{H}{H_0}\right)^2 = \frac{\Omega_M}{a^3} + \frac{\Omega_{\gamma}}{a^4} + \frac{\Omega_{\nu}}{a^4} + \Omega_{\Lambda} \left(+ \frac{\Omega_{DR}}{a^4} \right)$$

Probing the Neutrino Number with CMB data

Changing the Neutrino effective number essentially changes the expansion rate H at recombination.

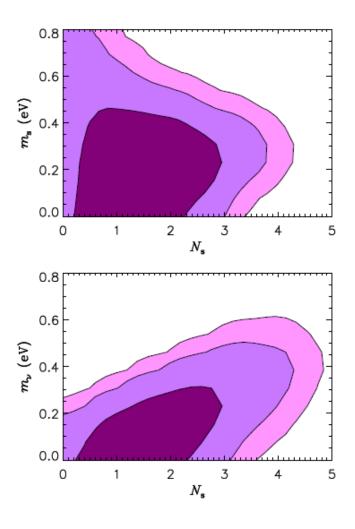

So it changes the sound horizon at recombination:

$$r_s = \int_0^{t_*} c_s \, dt / a = \int_0^{a_*} \frac{c_s \, da}{a^2 H}.$$

and the damping scale at recombination:

$$r_d^2 = (2\pi)^2 \int_0^{a_*} \frac{da}{a^3 \sigma_T n_e H} \left[\frac{R^2 + \frac{16}{15} (1+R)}{6(1+R^2)} \right]$$

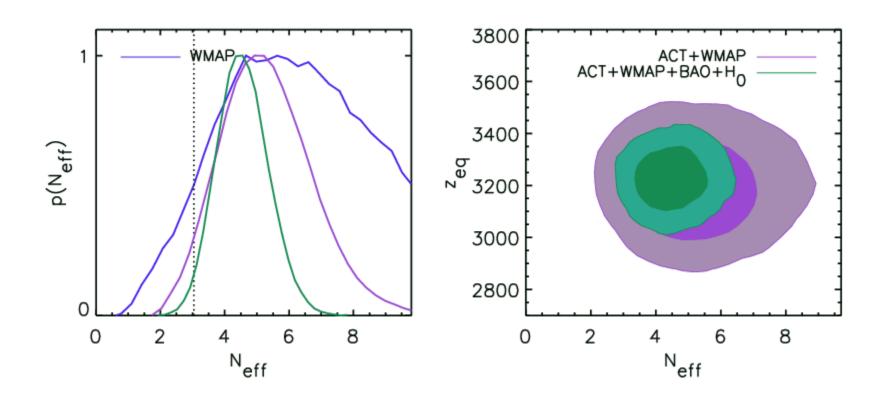
$$\theta_s = \frac{r_s}{D_A}$$
 $\theta_d = \frac{r_d}{D_A}$


Measuring the damping scale helps in breaking the degeneracy with H0!!

Hou et al, 2011 Bowen et al, 2002 WMAP provides first indication for the existance of the neutrino background from CMB data only.

Parameter	Year	WMAP only	WMAP + BAO + SN + HST	$WMAP+BAO+H_0$	$WMAP+LRG+H_0$
$z_{ m eq}$	5-year	3141^{+154}_{-157}	3240^{+99}_{-97}		
	7-year	$3141^{+154}_{-157} \ 3145^{+140}_{-139}$		3209^{+85}_{-89}	3240 ± 90
$\Omega_m h^2$	5-year	$0.178^{+0.044}_{-0.041} \ 0.184^{+0.041}_{-0.038}$	0.160 ± 0.025		
	7-year			0.157 ± 0.016	$0.157^{+0.013}_{-0.014}$
$N_{ m eff}$	5-year	> 2.3 (95% CL)	4.4 ± 1.5		
	7-year	> 2.7 (95% CL)		$4.34^{+0.86}_{-0.88}$	$4.25^{+0.76}_{-0.80}$

Subsequent analysis with WMAP+ACBAR+BICEP+QUAD+SDSS DR7+HST confirmed the «preference» for Neff > 3.



3 Active massless neutrinos+ Ns massive neutrinos

3 Active massive neutrinos + Ns massless neutrinos

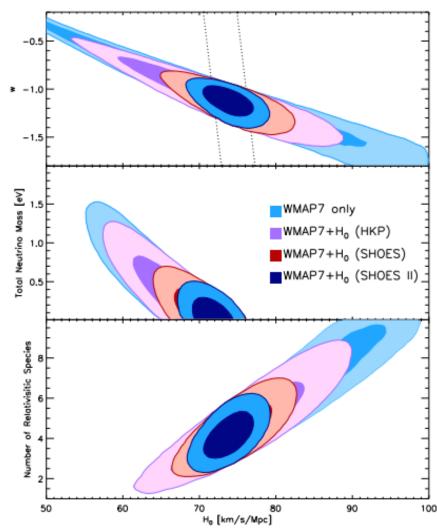
J. Hamann et al, Phys.Rev.Lett.105:181301,2010

ACT confirms indication for extra neutrinos but now at about two standard deviations

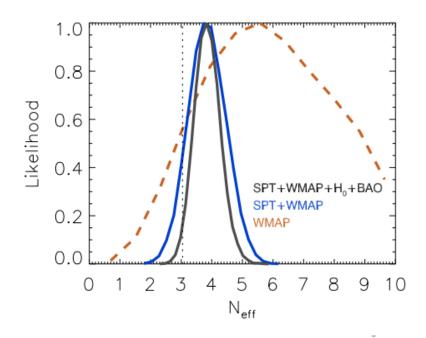
Latest results from ACT, Dunkley et al. 2010 (95 % c.l.)

$$Neff = 5.3 \pm 1.3$$
 ACT+WMAP
 $Neff = 4.8 \pm 0.8$ ACT+WMAP+BAO+H0

New HST determination of Ho

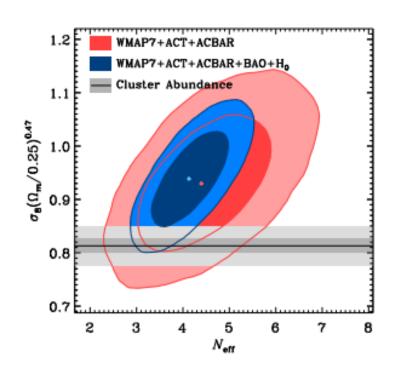

The new 3% determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3 points towards Neff > 3 when combined

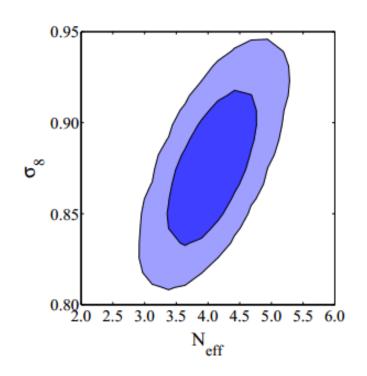
with WMAP-only data.


$$h = 0.738 \pm 0.024$$

Neff =
$$4.2 \pm 0.7$$

Riess et al, ApJ, 730, 119, 2011


SPT confirms indication for extra neutrinos but at less than two standard deviations (and closer to 3)



		ACDM	ACDM	ACDM	ACDM	ACDM	ACDM
			$+ A_L$	+r	$+ dn_s/d \ln k$	$+ Y_p$	$+ N_{eff}$
Primary	$100\Omega_b h^2$	2.23 ± 0.038	2.22 ± 0.039	2.24 ± 0.040	2.23 ± 0.040	2.27 ± 0.044	2.26 ± 0.042
Parameters	$\Omega_c h^2$	0.112 ± 0.0028	0.112 ± 0.0029	0.112 ± 0.0030	0.114 ± 0.0031	0.114 ± 0.0032	0.129 ± 0.0093
	$100\theta_s$	1.04 ± 0.0015	1.04 ± 0.0016	1.04 ± 0.0015	1.04 ± 0.0016	1.04 ± 0.0020	1.04 ± 0.0017
	n_s	0.9668 ± 0.0093	0.9659 ± 0.0095	0.9711 ± 0.0099	0.9758 ± 0.0111	0.9814 ± 0.0126	0.9836 ± 0.0124
	τ	0.0851 ± 0.014	0.0852 ± 0.014	0.0842 ± 0.014	0.0934 ± 0.016	0.0890 ± 0.015	0.0859 ± 0.014
	$10^{9}\Delta_{R}^{2}$	2.43 ± 0.082	2.44 ± 0.085	2.39 ± 0.088	2.35 ± 0.095	2.39 ± 0.085	2.41 ± 0.084
Extension	$A_L^{0.68}$	_	0.95 ± 0.15	_	_	_	_
Parameters	r	_	_	< 0.17	_	_	_
	$dn_s/d\ln k$	_	_	_	-0.020 ± 0.012	_	_
	Y_p	(0.2478 ± 0.0002)	(0.2478 ± 0.0002)	(0.2478 ± 0.0002)	(0.2478 ± 0.0002)	0.300 ± 0.030	(0.2581 ± 0.005)
	$N_{ m eff}$	(3.046)	(3.046)	(3.046)	(3.046)	(3.046)	3.86 ± 0.42
Derived	σ_8	(0.818 ± 0.019)	(0.818 ± 0.019)	(0.816 ± 0.019)	(0.824 ± 0.020)	(0.841 ± 0.024)	(0.871 ± 0.033)
	χ^2_{min}	7510.7	7510.6	7510.7	7507.8	7508.0	7507.4

WMAP7+ACT+SPT+H0+BAO Analyses

Most recent analyses they all point towards Neff>3 at about 2.6-2.8 standard deviations.

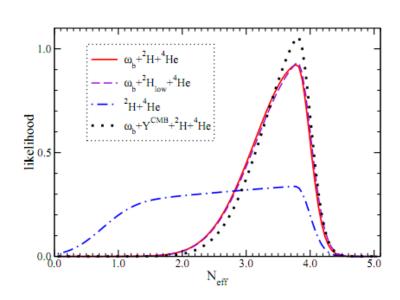
$$N_{\it eff}^{\it v}=4.08_{-0.68}^{+0.71}$$
 At 95% c.l.

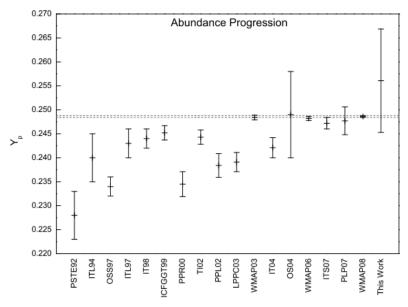
Archidiacono, Calabrese, AM, Phys.Rev. D84 (2011) 123008

Hou et al, arXiv:1104.2333, (2011)

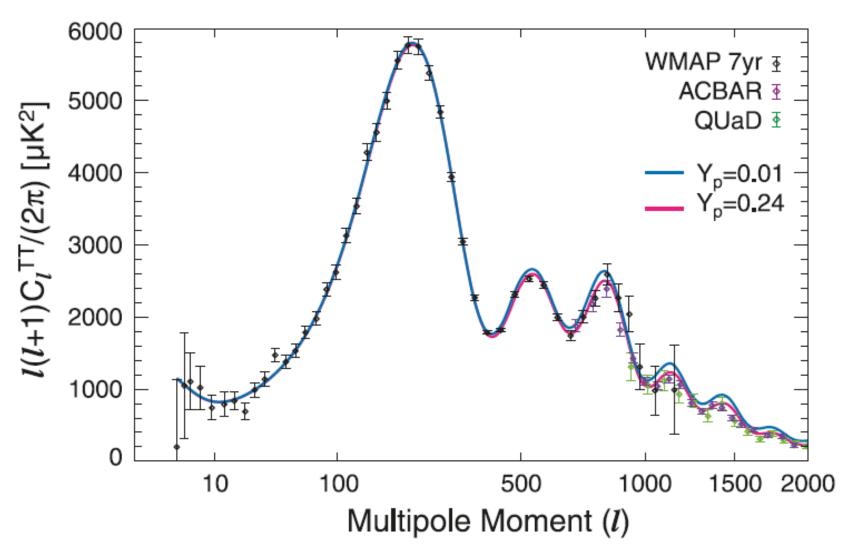
Smith et al, Phys.Rev. D85 (2012) 023001

Hamann, JCAP 1203 (2012) 021


Probing the Neutrino Number with BBN data


- BBN element abundances depend on nuclear interaction rates and expansion rate.
- Helium abundance Yp is the most sensitive probe for the neutrino number. Larger Helium -> Larger Neff

Recently Mangano and Serpico (Mangano, Serpico, PLB 2011) obtained the upper limit:

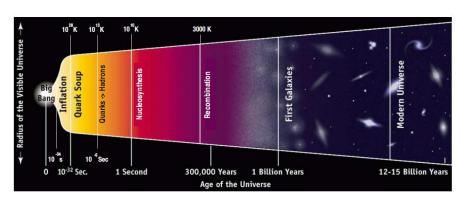

Neff < 4 at 95 % c.l.

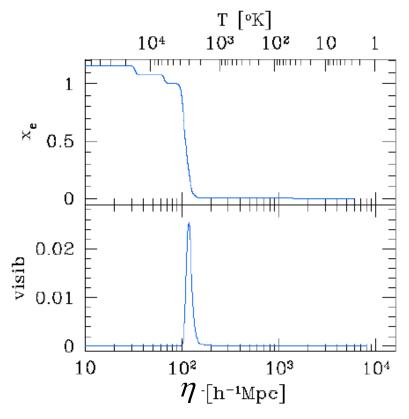
However Yp is measured in metal-poor H-II regions subject to systematics (see Aver, Olive and Skillman, 2010)

Small scale CMB also probes Helium abundance at recombination.

See e.g.,

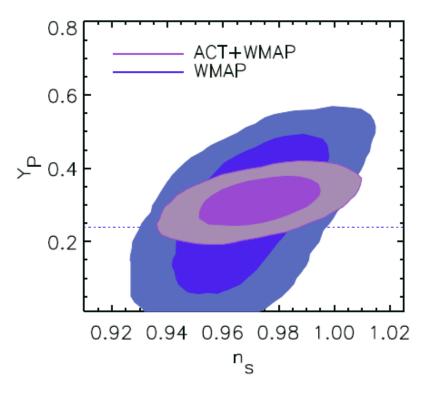
K. Ichikawa et al., Phys.Rev.D78:043509,2008

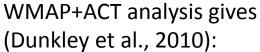

R. Trotta, S. H. Hansen, Phys.Rev. D69 (2004) 023509

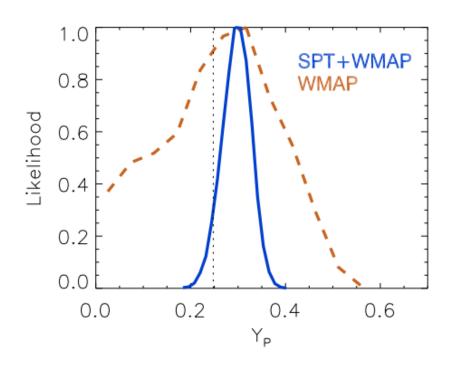

Thermal History and Recombination

- Dominant element hydrogen recombines rapidly around z 1000.
- Prior to recombination, Thomson scattering efficient and mean free path short cf. expansion time
- Little chance of scattering after recombination! photons free stream keeping imprint of conditions on last scattering surface
- Optical depth back to (conformal) time η_0 for Thomson scattering:

$$\tau(\eta) = \int_{\eta}^{\eta_0} a n_e \sigma_T d\eta'$$


• The visibility function $-\dot{\tau}e^{-\tau}$ is the density probability of photon last scattering at time η




Primordial Helium: Current Status

Current CMB data seems to prefer a slightly higher value than expected from standard BBN.

$$YP = 0.313 + -0.044$$

WMAP+SPT analysis gives (Keisler et al, 2011):

$$YP = 0.296 + -0.030$$

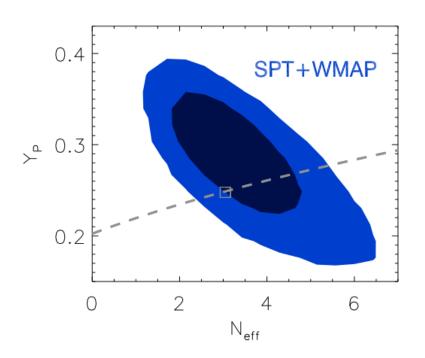
Probing the Neutrino Number with CMB data (now varying Helium!!)

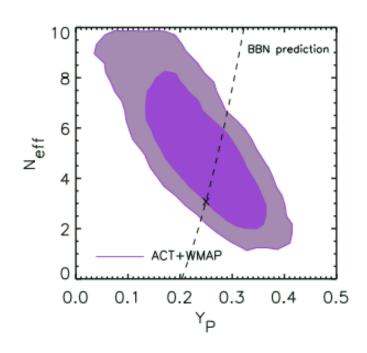
Changing the Neutrino effective number essentially changes the expansion rate H at recombination.

So it changes the sound horizon at recombination:

$$r_s = \int_0^{t_*} c_s \, dt / a = \int_0^{a_*} \frac{c_s \, da}{a^2 H}.$$

and the damping scale at recombination:


$$r_d^2 = (2\pi)^2 \int_0^{a_*} \frac{da}{a^3 \sigma_T n_e H} \left[\frac{R^2 + \frac{16}{15} (1+R)}{6(1+R^2)} \right]$$


$$\theta_s = \frac{r_s}{D_A}$$
 $\theta_d = \frac{r_d}{D_A}$

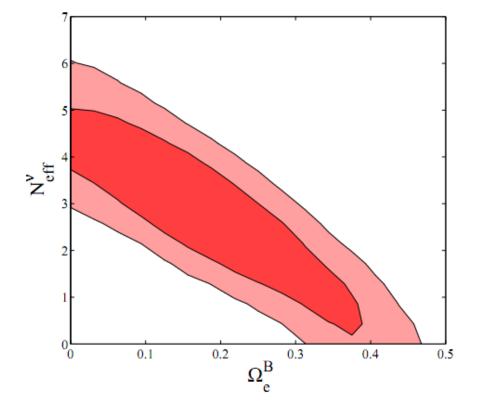
Hou et al, 2011 Bowen et al, 2002

Helium-Neutrino BBN/CMB complementarity

Current bounds on Neff from CMB only data are degenerate with the Helium abundance. When consistency with BBN is assumed current evidence for dark radiation is **weaker** (but still at about two standard deviations).

Why Neff>3 is interesting

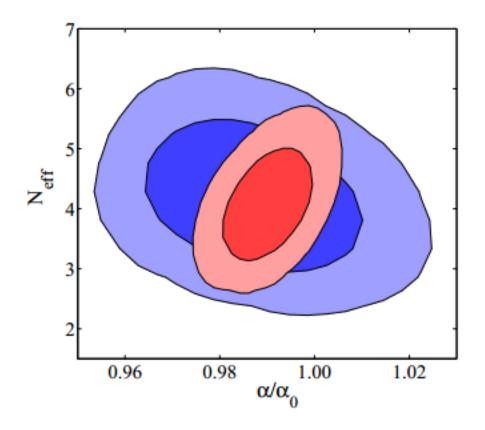
We have 1000 ways to explain this !!!


- Sterile Neutrino (hints from short base line experiments LSND, MiniBooNE).
- Non Standard Neutrino Decoupling
- Modified Gravity (Extra Dimensions)
- «Early» Dark Energy
- Gravity Waves
- Axions
- Variation of fundamental constants
- ...

Extra Neutrinos or Early Dark Energy?

An «Early» dark energy component could be present in the early universe at recombination and nucleosynthesis. This component could behave like radiation (tracking properties) and fully mimic the presence of an extra relativistic background!

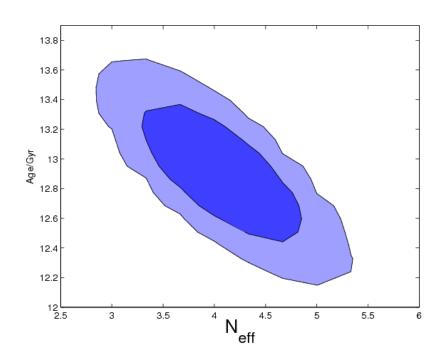
Barotropic component:


$$\rho_{\text{baro}}(a) = \rho_{\infty} + C \rho_{r,0} a^{-4}$$

E. Calabrese et al, Phys.Rev.D83:123504,2011

E. Calabrese et al, Phys.Rev.D83:023011,2011

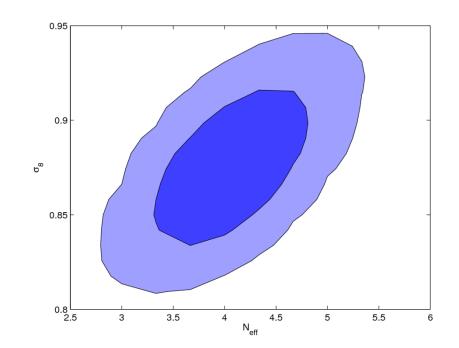
A variation in the fine structure constant at recombination?

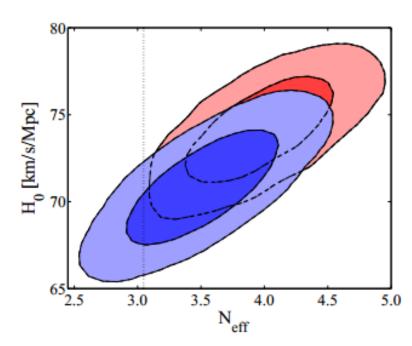


Red: analysis with Helium abundance fixed to Yp=0.24.

Blue: Yp is varied.

Menegoni et al, Phys.Rev. D85 (2012) 107301


What disfavours Neff>3?

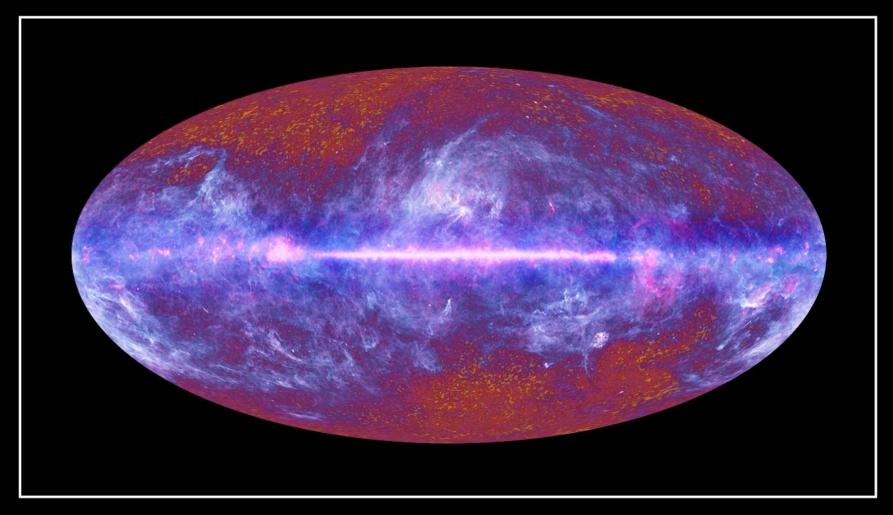

Larger values of the effective neutrino number are in better agreement with **lower** ages of the universe.

Globular clusters suggest higher ages.

Larger values of the effective neutrino number are in better agreement with **higher** σ_8 . Clusters abundance measurements prefer **lower** σ_8 .

Is the HST prior driving Neff>3?

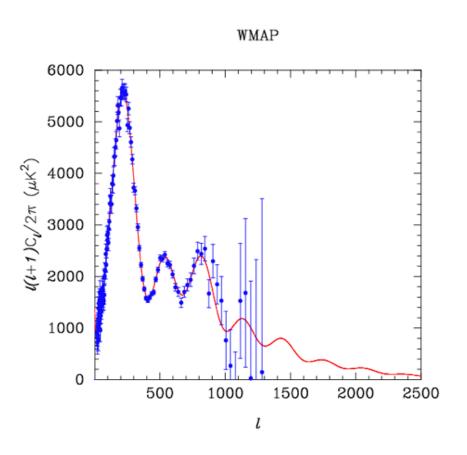
The HST prior on the Hubble constant plays and important role in the current evidence for Dark Radiation.

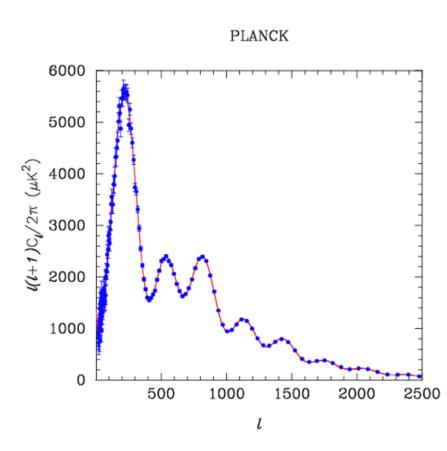

Constraints from CMB data alone on H0 are in tension with HST value when N_eff=3.046. This tension is solved when a fourth neutrino is included.

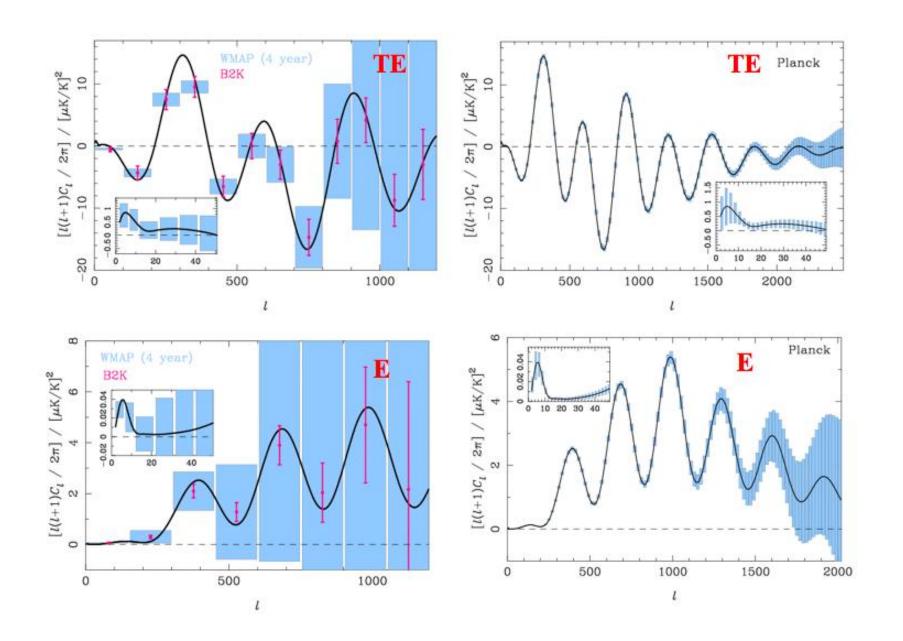
Assuming a different prior on HST, like the one coming from median statistics makes the evidence for dark energy below 2 sigma.

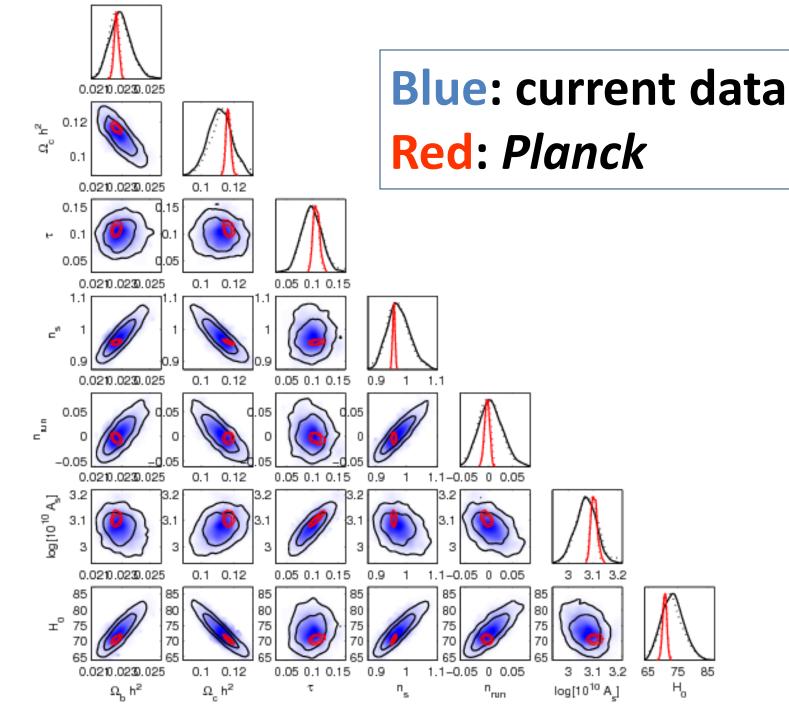
Parameters	No Prior	HST	Prior	MS Prior		
		$73.8 \pm 2.4 \text{ km/s/Mpc}$		$68 \pm 2.8 \text{ km/s/Mpc}$		
$\Omega_b h^2$	0.02258 ± 0.00050	0.02248 ± 0.00039	0.02212 ± 0.00037	0.02211 ± 0.00040	0.02191 ± 0.00037	
$\Omega_c h^2$	0.134 ± 0.010	0.1317 ± 0.0080	0.125 ± 0.011	0.1256 ± 0.0080	0.131 ± 0.012	
θ	1.0395 ± 0.0016	1.0397 ± 0.0016	1.0411 ± 0.0016	1.0400 ± 0.0017	1.0402 ± 0.0016	
au	0.085 ± 0.014	0.084 ± 0.013	0.082 ± 0.013	0.080 ± 0.013	0.080 ± 0.013	
n_s	0.984 ± 0.017	0.979 ± 0.012	0.9600 ± 0.0093	0.964 ± 0.012	0.9533 ± 0.0094	
N_{eff}	4.14 ± 0.57	3.98 ± 0.37	3.046	3.52 ± 0.39	3.046	
$\sum m_{\nu} [eV]$	0.0	0.0	< 2.2	0.0	< 2.4	
$H_0[\text{km/s/Mpc}]$	75.2 ± 3.6	74.2 ± 2.0	70.9 ± 1.4	70.9 ± 2.1	69.5 ± 1.4	

Calabrese et al., 2012, arXiv:1205.6753



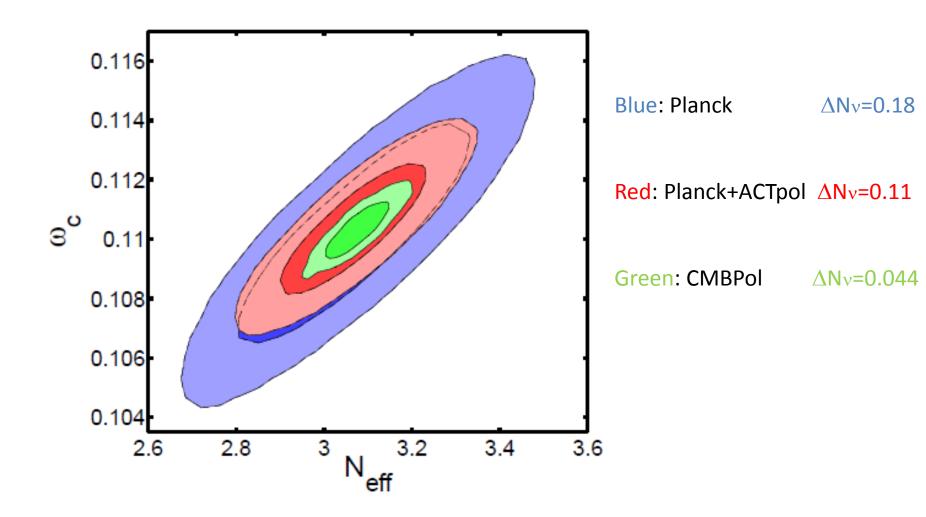

The Planck one-year all-sky survey


(c) ESA, HFI and LFI consortia, July 2010


Expected improvement on TT respect to WMAP (Real data in January 2013)

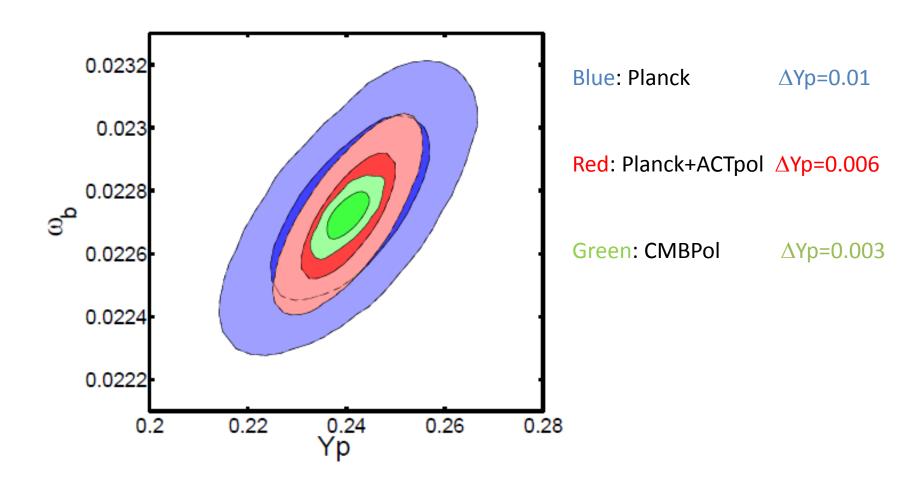
Expected improvement on TE and EE respect to WMAP (real data in January 2013 o 2014).

Let's consider not only Planck but also ACTpol (From Atacama Cosmology Telescope, Ground based, results expected by 2013) CMBpol (Next CMB satellite, 2020?)

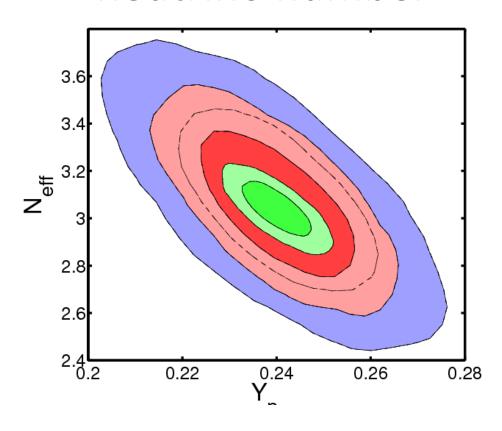

Experiment	Channel	FWHM	$\Delta T/T$	$\Delta P/T$
Planck	70	14'	4.7	6.7
$f_{sky} = 0.85$	100	10'	2.5	4.0
	143	7.1'	2.2	4.2
ACTPol	150	1.4'	14.6	20.4
$f_{sky} = 0.19$				
CMBPol	150	5.6'	0.037	0.052
$f_{sky} = 0.72$				

Parameter	Planck	Planck+ACTPol		CMBPol	
uncertainty					
$\sigma(\Omega_b h^2)$	0.00013	0.000078	(1.7)	0.000034	(3.8)
$\sigma(\Omega_c h^2)$	0.0010	0.00064	(1.6)	0.00027	(3.7)
$\sigma(\theta_s)$	0.00026	0.00016	(1.6)	0.000052	(5.0)
$\sigma(au)$	0.0042	0.0034	(1.2)	0.0022	(1.9)
$\sigma(n_s)$	0.0031	0.0021	(1.5)	0.0014	(2.2)
$\sigma(\log[10^{10}As])$	0.013	0.0086	(1.5)	0.0055	(2.4)
$\sigma(H_0)$	0.53	0.30	(1.8)	0.12	(4.4)

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, Phys.Rev.D82:123504,2010


See also Shimon et al 2010.

Constraints on Neutrino Number


Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, Phys.Rev.D82:123504,2010

Constraints on Helium Abundance

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, Phys.Rev.D82:123504,2010

Constraints on Helium Abundance AND neutrino number

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, Phys.Rev.D82:123504,2010

CONCLUSIONS

- Recent CMB measurements fully confirm Λ -CDM.
- Hints for extra relativistic neutrino background (or something new) but HST prior is driving this result.
- Planck experiment working as expected. Early results promising.

In early 2013 from Planck we may know:

- If the total neutrino mass is less than 0.4eV from CMB only data (assuming LCDM).
- If there is evidence for an extra background of relativistic particles in cosmological data.
- Helium abundance with 0.01 Yp accuracy.

... and much more!