

Aspects of the δN formalism

David H. Lyth

Particle Theory and Cosmology Group Physics Department Lancaster University

LANCASTER

• The δN formalism covers all scalar-field cases

• Slow-roll inf., k-inf., ghost inf., (R^2 gravity etc. ??)

- The δN formalism covers all scalar-field cases
 - Slow-roll inf., k-inf., ghost inf., (R^2 gravity etc. ??)
- User-friendly formulas for spectral index, non-gaussianity
 - Cf. spectral tilt: $n-1=2\eta-6\epsilon$ (Liddle/DHL 1992)

LANCASTER

- The δN formalism covers all scalar-field cases
 - Slow-roll inf., k-inf., ghost inf., (R^2 gravity etc. ??)
- User-friendly formulas for spectral index, non-gaussianity
 - Cf. spectral tilt: $n-1=2\eta-6\epsilon$ (Liddle/DHL 1992)
- Trispectrum, even higher correlators, could be as important as the bispectrum

LANCASTER

- The δN formalism covers all scalar-field cases
 - Slow-roll inf., k-inf., ghost inf., (R^2 gravity etc. ??)
- User-friendly formulas for spectral index, non-gaussianity
 - Cf. spectral tilt: $n-1 = 2\eta 6\epsilon$ (Liddle/DHL 1992)
- Trispectrum, even higher correlators, could be as important as the bispectrum
- Need to specify box size *L* (infrared cutoff)
 - But parameters run with L

The correlators

Spectrum \mathcal{P} , bispectrum[†] $f_{\rm NL}$, trispectrum^{††} $\tau_{\rm NL}$:

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') K_{1} \mathcal{P}$$

$$\frac{5}{3} \langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \rangle = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}' + \mathbf{k}'') K_{2} \mathcal{P}^{2} f_{\mathrm{NL}}$$

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \zeta_{\mathbf{k}''} \rangle_{c} = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}' + \mathbf{k}'' + \mathbf{k}''') K_{3} \mathcal{P}^{3} \tau_{\mathrm{NL}}$$

The correlators

Spectrum \mathcal{P} , bispectrum[†] $f_{\rm NL}$, trispectrum^{††} $\tau_{\rm NL}$:

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') K_{1} \mathcal{P}$$

$$\frac{5}{3} \langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \rangle = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}' + \mathbf{k}'') K_{2} \mathcal{P}^{2} f_{\mathrm{NL}}$$

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \zeta_{\mathbf{k}'''} \rangle_{c} = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}' + \mathbf{k}'' + \mathbf{k}''') K_{3} \mathcal{P}^{3} \tau_{\mathrm{NL}}$$

where the kinematic factors depend on the wave-vectors:

$$K_1 \equiv 2\pi^2/k^3$$

$$K_2 \equiv K_1(k)K_1(k') + 5 \text{perms}$$

$$K_3 \equiv K_2K_1(|\mathbf{k} + \mathbf{k}''|) + 23 \text{perms}$$

⁺ Komatsu/Spergel 2000; Maldacena 2003

Boubekeur/DHL 2005

• $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n-1 = -0.035 \pm 0.012$ (WMAP+···) $(n-1 \equiv d\mathcal{P}/d\ln k)$

- $\mathcal{P} = (5 imes 10^{-5})^2$ (wmap+sdss)
- $n 1 = -0.035 \pm 0.012$ (WMAP+···) $(n 1 \equiv d \mathcal{P} / d \ln k)$
- $-54 < f_{
 m NL} < 114 \ll {\cal P}^{-1/2}$ (wmap+sdss)

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n 1 = -0.035 \pm 0.012$ (WMAP+···) $(n 1 \equiv d\mathcal{P}/d\ln k)$
- $-54 < f_{\rm NL} < 114 \ll \mathcal{P}^{-1/2}$ (wmap+sdss)
- $au_{
 m NL} \lesssim 10^4 \ll \mathcal{P}^{-1}$ (wmap)

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n-1 = -0.035 \pm 0.012$ (WMAP+···) $(n-1 \equiv d\mathcal{P}/d\ln k)$
- $-54 < f_{
 m NL} < 114 \ll \mathcal{P}^{-1/2}$ (wmap+sdss)
- $au_{
 m NL} \lesssim 10^4 \ll \mathcal{P}^{-1}$ (wmap)
 - From last two, ζ is almost gaussian.

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n-1 = -0.035 \pm 0.012$ (WMAP+···) $(n-1 \equiv d\mathcal{P}/d\ln k)$
- $-54 < f_{
 m NL} < 114 \ll \mathcal{P}^{-1/2}$ (wmap+sdss)
- $au_{
 m NL} \lesssim 10^4 \ll \mathcal{P}^{-1}$ (wmap)
 - From last two, ζ is almost gaussian.
- Observation eventually will give (absent detection) $|f_{\rm NL}| \lesssim 1$ and $|\tau_{\rm NL}| \lesssim 300$

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n-1 = -0.035 \pm 0.012$ (WMAP+···) $(n-1 \equiv d\mathcal{P}/d\ln k)$
- $-54 < f_{
 m NL} < 114 \ll \mathcal{P}^{-1/2}$ (wmap+sdss)
- $au_{
 m NL} \lesssim 10^4 \ll \mathcal{P}^{-1}$ (wmap)
 - From last two, ζ is almost gaussian.
- Observation eventually will give (absent detection) $|f_{\rm NL}| \lesssim 1$ and $|\tau_{\rm NL}| \lesssim 300$
 - Or $|f_{\rm NL}| \lesssim 0.01$ (Coory 06) ??

- $\mathcal{P} = (5 imes 10^{-5})^2$ (WMAP+SDSS)
- $n-1 = -0.035 \pm 0.012$ (WMAP+···) $(n-1 \equiv d\mathcal{P}/d\ln k)$
- $-54 < f_{
 m NL} < 114 \ll \mathcal{P}^{-1/2}$ (wmap+sdss)
- $au_{
 m NL} \lesssim 10^4 \ll \mathcal{P}^{-1}$ (wmap)
 - From last two, ζ is almost gaussian.
- Observation eventually will give (absent detection) $|f_{\rm NL}| \lesssim 1$ and $|\tau_{\rm NL}| \lesssim 300$
 - Or $|f_{\rm NL}| \lesssim 0.01$ (Coory 06) ??

• Choose comoving \mathbf{x} but generic t

LANCASTER UNIVERSITY

- Choose comoving \mathbf{x} but generic t
- Write $g_{ij} = a^2(\mathbf{x}, t)\gamma_{ij}(\mathbf{x}, t)$ with $||\gamma|| = 1$
 - So $a(\mathbf{x}, t)$ is local scale factor.

- Write $g_{ij} = a^2(\mathbf{x}, t)\gamma_{ij}(\mathbf{x}, t)$ with $||\gamma|| = 1$
 - So $a(\mathbf{x}, t)$ is local scale factor.
- At t_1 choose $a(\mathbf{x}, t_1) = a(t_1)$ ('flat' slice)

- Write $g_{ij} = a^2(\mathbf{x}, t)\gamma_{ij}(\mathbf{x}, t)$ with $||\gamma|| = 1$
 - So $a(\mathbf{x}, t)$ is local scale factor.
- At t_1 choose $a(\mathbf{x}, t_1) = a(t_1)$ ('flat' slice)
- At t choose $\delta \rho = 0$ (uniform density slice)
 - And write $a(\mathbf{x},t) = a(t)e^{\zeta(\mathbf{x},t)}$

LANCASTE

- Write $g_{ij} = a^2(\mathbf{x}, t)\gamma_{ij}(\mathbf{x}, t)$ with $||\gamma|| = 1$
 - So $a(\mathbf{x}, t)$ is local scale factor.
- At t_1 choose $a(\mathbf{x}, t_1) = a(t_1)$ ('flat' slice)
- At t choose $\delta \rho = 0$ (uniform density slice)
 - And write $a(\mathbf{x},t) = a(t)e^{\zeta(\mathbf{x},t)}$
- Then $\zeta(\mathbf{x},t) = \delta N$ where

LANCASTE

- Choose comoving \mathbf{x} but generic t
- Write $g_{ij} = a^2(\mathbf{x}, t)\gamma_{ij}(\mathbf{x}, t)$ with $||\gamma|| = 1$
 - So $a(\mathbf{x}, t)$ is local scale factor.
- At t_1 choose $a(\mathbf{x}, t_1) = a(t_1)$ ('flat' slice)
- At t choose $\delta \rho = 0$ (uniform density slice)
 - And write $a(\mathbf{x},t) = a(t)e^{\zeta(\mathbf{x},t)}$
- Then $\zeta(\mathbf{x},t) = \delta N$ where

$$N = \int_{t_1}^t \frac{d\ln a(\mathbf{x}, t)}{dt} dt$$

Salopek & Bond 1990; DHL, Malik & Sasaki 2005

(non-perturbative refs.)

• Use (inverse) smoothing scale $k \ll aH$

- Use (inverse) smoothing scale $k \ll aH$
- Invoke separate universe assumption
 - Local evolution is that of an unperturbed universe
 - Zeroth order gradient expansion plus local isotropy

LANCASTE

- Use (inverse) smoothing scale $k \ll aH$
- Invoke separate universe assumption
 - Local evolution is that of an unperturbed universe
 - Zeroth order gradient expansion plus local isotropy
- Assume some light fields $\phi_i(\mathbf{x}, t_1)$ define subsequent expansion $N(\mathbf{x}, t)$
 - Choose $c_s a_1 H_1/k \sim$ a few, so that that $\delta \phi_i$ is classical

LANCASTE

- Use (inverse) smoothing scale $k \ll aH$
- Invoke separate universe assumption
 - Local evolution is that of an unperturbed universe
 - Zeroth order gradient expansion plus local isotropy
- Assume some light fields $\phi_i(\mathbf{x}, t_1)$ define subsequent expansion $N(\mathbf{x}, t)$
 - Choose $c_s a_1 H_1/k \sim$ a few, so that that $\delta \phi_i$ is classical

• Then

$$N(\mathbf{x}, t) = N(\phi_i(\mathbf{x}), \rho(t))$$

the expansion of a family of unperturbed universes DHL, Malik & Sasaki 2005 (non-perturbative)

- Light fields $\phi_i = \{\phi, \sigma_i\}$
 - ϕ is the inflaton
 - σ_i (if they exist) are Goldstone Bosons, no potential

LANCASTER

- Light fields $\phi_i = \{\phi, \sigma_i\}$
 - ϕ is the inflaton
 - σ_i (if they exist) are Goldstone Bosons, no potential
- Everything determined by ϕ
 - identical separate universes
 - constant ζ

- Light fields $\phi_i = \{\phi, \sigma_i\}$
 - ϕ is the inflaton
 - σ_i (if they exist) are Goldstone Bosons, no potential
- Everything determined by ϕ
 - identical separate universes
 - constant ζ

$$\zeta = \frac{\partial N}{\partial \phi} \delta \phi + \frac{1}{2} \frac{\partial^2 N}{\partial \phi^2} (\delta \phi)^2 + \cdots$$

LANCASTE

- Light fields $\phi_i = \{\phi, \sigma_i\}$
 - ϕ is the inflaton
 - σ_i (if they exist) are Goldstone Bosons, no potential
- Everything determined by ϕ
 - identical separate universes
 - constant ζ

$$\zeta = \frac{\partial N}{\partial \phi} \delta \phi + \frac{1}{2} \frac{\partial^2 N}{\partial \phi^2} (\delta \phi)^2 + \cdots$$

- Slow-roll, $GR \Rightarrow \mathcal{P}_{\delta\phi} = (H/2\pi)^2$ and $\partial N/\partial \phi = V/V'$
 - First term of ζ dominates

$$\mathcal{P}(k) = \frac{1}{2\epsilon_*} \left(\frac{H_*}{2\pi}\right)^2$$
$$n-1 = 2\eta_* - 6\epsilon_*$$

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$
- Seery & Lidsey (05) calculate $f_{\rm NL}$
- Reproduce Maldacena (03) result
 - $|f_{\rm NL}| \sim 0.01$ hence (?) unobservable

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$
- Seery & Lidsey (05) calculate $f_{\rm NL}$
- Reproduce Maldacena (03) result
 - $|f_{\rm NL}| \sim 0.01$ hence (?) unobservable
- SL (06) calculate $\tau_{\rm NL}$, also unobservable.

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$
- Seery & Lidsey (05) calculate $f_{\rm NL}$
- Reproduce Maldacena (03) result
 - $|f_{\rm NL}| \sim 0.01$ hence (?) unobservable
- SL (06) calculate $\tau_{\rm NL}$, also unobservable.

Comparison with Maldacena:

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$
- Seery & Lidsey (05) calculate $f_{\rm NL}$
- Reproduce Maldacena (03) result
 - $|f_{\rm NL}| \sim 0.01$ hence (?) unobservable
- SL (06) calculate $\tau_{\rm NL}$, also unobservable.

Comparison with Maldacena:

• He uses comoving slicing, computes $\mathcal{R} \rightarrow \zeta$ directly

- In the δN approach, non-gaussianity from
 - non-linearity of ζ in terms of $\delta \phi$
 - non-gaussianity of $\delta\phi$
- Seery & Lidsey (05) calculate $f_{\rm NL}$
- Reproduce Maldacena (03) result
 - $|f_{\rm NL}| \sim 0.01$ hence (?) unobservable
- SL (06) calculate $\tau_{\rm NL}$, also unobservable.

Comparison with Maldacena:

- He uses comoving slicing, computes $\mathcal{R} \rightarrow \zeta$ directly
- The δN approach instead uses two stages
 - Vacuum fluctuation converted to classical $\delta \phi$ (flat slicing)
 - Then δN gives ζ in terms of $\delta \phi$

Curvaton-type scenarios

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

• during multi-component inflation (Starobinsky 1985)

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

- during multi-component inflation (Starobinsky 1985)
- or at end of inflation (Bernardeau/Uzan 03, DHL 2005)

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

- during multi-component inflation (Starobinsky 1985)
- or at end of inflation (Bernardeau/Uzan 03, DHL 2005)
- or at preheating

(Bastero-Gil/Di Clemente/King 2004, Kolb/Riotto/Vallinotto 2004, Byrnes/Wands 2005)

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

- during multi-component inflation (Starobinsky 1985)
- or at end of inflation (Bernardeau/Uzan 03, DHL 2005)
- or at preheating

(Bastero-Gil/Di Clemente/King 2004, Kolb/Riotto/Vallinotto 2004, Byrnes/Wands 2005)

- or at a reheating by curvaton mechanism (Mollerach 1990, Linde/Mukhanov 1996, DHL/Wands 2001, Moroi/Takahashi 2001)
 - many curvaton candidates
 - serendipitous discovery (Hamaguchi/Murayama/Yanagida 2001)

• Two or more active light fields $\Rightarrow \zeta$ evolves after horizon exit

Dominant contribution to ζ can be generated

- during multi-component inflation (Starobinsky 1985)
- or at end of inflation (Bernardeau/Uzan 03, DHL 2005)
- or at preheating

(Bastero-Gil/Di Clemente/King 2004, Kolb/Riotto/Vallinotto 2004, Byrnes/Wands 2005)

- or at a reheating by curvaton mechanism (Mollerach 1990, Linde/Mukhanov 1996, DHL/Wands 2001, Moroi/Takahashi 2001)
 - many curvaton candidates
 - serendipitous discovery (Hamaguchi/Murayama/Yanagida 2001)
- or at a reheating by other mechanisms (Dvali/Gruzinov/Zaldarriaga 2004, Kofman 2004, Bauer/Graesser/Salem 2005

Linear in $\delta \phi_i$, NOT first-order cosmological perturbation theory

$$\begin{aligned} \zeta(\mathbf{x}, t) &= \sum N_i(t) \,\delta\phi_i(\mathbf{x}) \\ N_i &\equiv \partial N(\phi_i, \rho(t)) / \partial\phi_i \end{aligned}$$

Linear in $\delta \phi_i$, NOT first-order cosmological perturbation theory

$$\hat{J}(\mathbf{x},t) = \sum N_i(t) \,\delta\phi_i(\mathbf{x})$$

 $N_i \equiv \partial N(\phi_i,\rho(t))/\partial\phi_i$

Now assume slow-roll inflation

• Einstein gravity, light fields, canonical normalization

Linear in $\delta \phi_i$, NOT first-order cosmological perturbation theory

$$\hat{\zeta}(\mathbf{x},t) = \sum N_i(t) \,\delta\phi_i(\mathbf{x})$$
$$N_i \equiv \partial N(\phi_i,\rho(t))/\partial\phi_i$$

- Now assume slow-roll inflation
 - Einstein gravity, light fields, canonical normalization
- Choose basis $\phi_i = \{\phi, \sigma_i\}$ with ϕ along trajectory

Linear in $\delta \phi_i$, NOT first-order cosmological perturbation theory

$$\begin{aligned} \dot{\varsigma}(\mathbf{x},t) &= \sum N_i(t) \,\delta\phi_i(\mathbf{x}) \\ N_i &\equiv \partial N(\phi_i,\rho(t))/\partial\phi_i \end{aligned}$$

- Now assume slow-roll inflation
 - Einstein gravity, light fields, canonical normalization
- Choose basis $\phi_i = \{\phi, \sigma_i\}$ with ϕ along trajectory

$$\mathcal{P}_{\zeta}(k,t) = \left(\frac{H_*}{2\pi}\right)^2 \left[\frac{1}{2\epsilon_*} + \sum N_{\sigma_i}^2(t)\right]$$
$$r \equiv \mathcal{P}_{\text{tensor}}/\mathcal{P}_{\zeta} \le 16\epsilon_* \qquad (\epsilon \equiv -\dot{H}/H^2)$$

Starobinsky 1985, Sasaki & Stewart 1996

 $\eta_{ij} \equiv \left. \frac{M_{\rm P}^2}{V} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} \right|_*$

$$\eta_{ij} \equiv \left. \frac{M_{\rm P}^2}{V} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} \right|,$$

• Then (Sasaki & Stewart 1996; DHL & Riotto 1999)

$$n - 1 = 2\frac{\sum \eta_{ij} N_i N_j}{\sum N_n^2} - 2\epsilon_* - \frac{r_*}{4}$$

$$\eta_{ij} \equiv \left. \frac{M_{\rm P}^2}{V} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} \right|,$$

• Then (Sasaki & Stewart 1996; DHL & Riotto 1999)

$$n - 1 = 2\frac{\sum \eta_{ij} N_i N_j}{\sum N_n^2} - 2\epsilon_* - \frac{r_*}{4}$$

• If ϕ dominates, $n-1=2\eta_{\phi\phi}-6\epsilon_*$

$$\eta_{ij} \equiv \left. \frac{M_{\rm P}^2}{V} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} \right|_{,}$$

• Then (Sasaki & Stewart 1996; DHL & Riotto 1999)

$$n - 1 = 2\frac{\sum \eta_{ij} N_i N_j}{\sum N_n^2} - 2\epsilon_* - \frac{r_*}{4}$$

- If ϕ dominates, $n-1=2\eta_{\phi\phi}-6\epsilon_*$
- If one $\sigma_i \equiv \sigma$ dominates, $n-1 = 2\eta_{\sigma\sigma} 2\epsilon_*$.

 $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = \sum N_i N_j N_n \langle \delta \phi_{i\mathbf{k}_1} \delta \phi_{j\mathbf{k}_2} \delta \phi_{n\mathbf{k}_3} \rangle$

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = \sum N_i N_j N_n \langle \delta \phi_{i\mathbf{k}_1} \delta \phi_{j\mathbf{k}_2} \delta \phi_{n\mathbf{k}_3} \rangle$$

Quantized second-order cosmological perturbation theory gives field correlator

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = \sum N_i N_j N_n \langle \delta \phi_{i\mathbf{k}_1} \delta \phi_{j\mathbf{k}_2} \delta \phi_{n\mathbf{k}_3} \rangle$$

- Quantized second-order cosmological perturbation theory gives field correlator
- For slow-roll, correlator small (Seery & Lidsey 2005) leading to

$$\frac{3}{5}f_{\rm NL} = \frac{r}{32}f,$$
 $1 < f(k_1, k_2, k_3) < \frac{11}{6}$

making $f_{\rm NL}$ unmeasurable (DHL & Zaballa 2005, Vernizzi & Wands 2006).

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = \sum N_i N_j N_n \langle \delta \phi_{i\mathbf{k}_1} \delta \phi_{j\mathbf{k}_2} \delta \phi_{n\mathbf{k}_3} \rangle$$

- Quantized second-order cosmological perturbation theory gives field correlator
- For slow-roll, correlator small (Seery & Lidsey 2005) leading to

$$\frac{3}{5}f_{\rm NL} = \frac{r}{32}f,$$
 $1 < f(k_1, k_2, k_3) < \frac{11}{6}$

making $f_{\rm NL}$ unmeasurable (DHL & Zaballa 2005, Vernizzi & Wands 2006).

• SL (06) same result for trispectrum

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = \sum N_i N_j N_n \langle \delta \phi_{i\mathbf{k}_1} \delta \phi_{j\mathbf{k}_2} \delta \phi_{n\mathbf{k}_3} \rangle$$

- Quantized second-order cosmological perturbation theory gives field correlator
- For slow-roll, correlator small (Seery & Lidsey 2005) leading to

$$\frac{3}{5}f_{\rm NL} = \frac{r}{32}f,$$
 $1 < f(k_1, k_2, k_3) < \frac{11}{6}$

making $f_{\rm NL}$ unmeasurable (DHL & Zaballa 2005, Vernizzi & Wands 2006).

- SL (06) same result for trispectrum
- For k- and ghost inflation, $f_{\rm NL}$ probably measurable.

$$\zeta(\mathbf{x},t) = \sum N_i \,\delta\phi_i(\mathbf{x}) + \frac{1}{2} \sum N_{ij} \delta\phi_i \delta\phi_j$$

where $N_{ij} \equiv \partial^2 N(\phi_i, \rho) / \partial \phi_i \partial \phi_j$ (DHL & Rodriguez 05)

$$\zeta(\mathbf{x},t) = \sum N_i \,\delta\phi_i(\mathbf{x}) + \frac{1}{2} \sum N_{ij} \delta\phi_i \delta\phi_j$$

where $\overline{N_{ij}}\equiv\partial^2 N(\phi_i,\rho)/\partial\phi_i\partial\phi_j$ (DHL & Rodriguez 05)

• Slow-roll, flat spectra, box size L (DHL & Boubekeur 05)

$$\zeta(\mathbf{x},t) = \sum N_i \,\delta\phi_i(\mathbf{x}) + \frac{1}{2} \sum N_{ij} \delta\phi_i \delta\phi_j$$

where $N_{ij} \equiv \partial^2 N(\phi_i, \rho) / \partial \phi_i \partial \phi_j$ (DHL & Rodriguez 05)

- Slow-roll, flat spectra, box size *L* (DHL & Boubekeur 05)
- Ignore $\langle \delta \phi_i \delta \phi_j \delta \phi_n
 angle$ (DHL & Zaballa 05; Zaballa, Rodriguez & DHL 06)

$$\zeta(\mathbf{x},t) = \sum N_i \,\delta\phi_i(\mathbf{x}) + \frac{1}{2} \sum N_{ij} \delta\phi_i \delta\phi_j$$

where $N_{ij} \equiv \partial^2 N(\phi_i, \rho) / \partial \phi_i \partial \phi_j$ (DHL & Rodriguez 05)

- Slow-roll, flat spectra, box size L (DHL & Boubekeur 05)
- Ignore $\langle\delta\phi_i\delta\phi_j\delta\phi_n
 angle$ (DHL & Zaballa 05; Zaballa, Rodriguez & DHL 06)

$$\mathcal{P}_{\zeta} = \left(\frac{H_{*}}{2\pi}\right)^{2} \sum N_{i}^{2} + \ln(kL) \left(\frac{H_{*}}{2\pi}\right)^{4} \operatorname{Tr} N^{2}$$

$$\frac{3}{5} f_{\mathrm{NL}} = \frac{\sum N_{i} N_{j} N_{ij}}{2(\sum N_{i}^{2})^{2}} + \ln(kL) \mathcal{P}_{\zeta} \frac{\operatorname{Tr} N^{3}}{(\sum N_{i}^{2})^{3}}$$

$$\tau_{\mathrm{NL}} = 2 \frac{N_{i} N_{ij} N_{jk} N_{k}}{(\sum N_{i}^{2})^{3}} + \ln(kL) \mathcal{P}_{\zeta} \frac{\operatorname{Tr} N^{4}}{(\sum N_{i}^{2})^{4}}$$

Infrared running

$$\zeta = \delta \phi + b\delta \sigma + (\delta \sigma)^2 \quad \text{with } \overline{\delta \sigma} = 0$$

$$\mathcal{P}_{\zeta} = \mathcal{P}_{\delta \phi} + b^2 \mathcal{P}_{\delta \sigma} + \mathcal{P}_{(\delta \sigma)^2}$$

$$\mathcal{P}_{(\delta \sigma)^2}(k) = \frac{k^3}{2\pi} \mathcal{P}_{\delta \sigma}^2 \int_{L^{-1}} \frac{d^3 p}{p^3 |\mathbf{p} - \mathbf{k}|^3} = 4 \mathcal{P}_{\delta \sigma}^2 \ln(kL)$$

Infrared running

$$\zeta = \delta\phi + b\delta\sigma + (\delta\sigma)^2 \quad \text{with } \overline{\delta\sigma} = 0$$

$$\mathcal{P}_{\zeta} = \mathcal{P}_{\delta\phi} + b^2 \mathcal{P}_{\delta\sigma} + \mathcal{P}_{(\delta\sigma)^2}$$

$$\mathcal{P}_{(\delta\sigma)^2}(k) = \frac{k^3}{2\pi} \mathcal{P}_{\delta\sigma}^2 \int_{L^{-1}} \frac{d^3p}{p^3 |\mathbf{p} - \mathbf{k}|^3} = 4 \mathcal{P}_{\delta\sigma}^2 \ln(kL)$$

Now go to box size $M \ll L$

define

gives

 $\delta \sigma_M = \delta \sigma - \overline{\delta \sigma}_M \quad \text{and} \quad b_M = b + 2\overline{\delta \sigma}_M$ $\mathcal{P}_{\zeta} = \mathcal{P}_{\delta \phi} + b_M^2 \mathcal{P}_{\delta \sigma} + 4\mathcal{P}_{\delta \sigma}^2 \ln(kM)$

Infrared running

$$\zeta = \delta\phi + b\delta\sigma + (\delta\sigma)^2 \quad \text{with } \overline{\delta\sigma} = 0$$

$$\mathcal{P}_{\zeta} = \mathcal{P}_{\delta\phi} + b^2 \mathcal{P}_{\delta\sigma} + \mathcal{P}_{(\delta\sigma)^2}$$

$$\mathcal{P}_{(\delta\sigma)^2}(k) = \frac{k^3}{2\pi} \mathcal{P}_{\delta\sigma}^2 \int_{L^{-1}} \frac{d^3p}{p^3 |\mathbf{p} - \mathbf{k}|^3} = 4 \mathcal{P}_{\delta\sigma}^2 \ln(kL)$$

and

Now go to box size $M \ll L$

 $\delta\sigma_M = \delta\sigma - \overline{\delta\sigma}_M$

define

gives

 $\mathcal{P}_{\zeta} = \mathcal{P}_{\delta\phi} + b_M^2 \mathcal{P}_{\delta\sigma} + 4 \mathcal{P}_{\delta\sigma}^2 \ln(kM)$

But

 $\overline{b_M^2}|_L = b^2 + 4\mathcal{P}_{\delta\sigma}\ln(L/M) \qquad \text{making}$ $\mathcal{P}\zeta|_L = \mathcal{P}_{\delta\phi} + b_M^2|_L \mathcal{P}_{\delta\sigma} + 4\mathcal{P}_{\delta\sigma}^2\ln(kM)$

 $b_M = b + 2\overline{\delta\sigma}_M$

Assume slow-roll and minimal box size

Assume slow-roll and minimal box size FIRST CASE

 $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$

Assume slow-roll and minimal box size FIRST CASE

$$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

$$\frac{3}{5}f_{\rm NL} = \frac{1}{2}\frac{N_{\sigma\sigma}}{N_{\sigma}^2}$$

$$\tau_{\rm NL} = 36 f_{\rm NL}^2 / 25$$

Assume slow-roll and minimal box size FIRST CASE

$$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

$$\frac{3}{5}f_{\rm NL} = \frac{1}{2}\frac{N_{\sigma\sigma}}{N_{\sigma}^2}$$

$$\tau_{\rm NL} = 36 f_{\rm NL}^2 / 25$$

No dependence on the box size

Assume slow-roll and minimal box size FIRST CASE

$$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

$$\frac{3}{5}f_{\rm NL} = \frac{1}{2}\frac{N_{\sigma\sigma}}{N_{\sigma}^2}$$

$$\tau_{\rm NL} = 36 f_{\rm NL}^2 / 25$$

No dependence on the box size SECOND CASE

$$\zeta = N_{\phi}\delta\phi + N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

Assume slow-roll and minimal box size FIRST CASE

$$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

$$\frac{3}{5}f_{\rm NL} = \frac{1}{2}\frac{N_{\sigma\sigma}}{N_{\sigma}^2}$$

$$\tau_{\rm NL} = 36 f_{\rm NL}^2 / 25$$

No dependence on the box size SECOND CASE

$$\zeta = N_{\phi}\delta\phi + N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$$

If middle term negligible, non-gaussianity depends on the box size with $f_{\rm NL}$ and $\tau_{\rm NL} \propto \ln(kL)$.

 $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$

- $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$
 - Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$

$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$

- Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$
- Assume sudden decay

- $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$
 - Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$
 - Assume sudden decay

$$\frac{3}{5}f_{\rm NL} = \frac{3}{4\Omega_{\sigma}} \left(1 + \frac{\sigma_{\rm os}\sigma_{\rm os}''}{(\sigma_{\rm os}')^2}\right) - 1 - \frac{1}{2}\Omega_{\sigma}$$
Example: curvaton model

- $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$
 - Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$
 - Assume sudden decay

$$\frac{3}{5}f_{\rm NL} = \frac{3}{4\Omega_{\sigma}} \left(1 + \frac{\sigma_{\rm os}\sigma_{\rm os}''}{(\sigma_{\rm os}')^2}\right) - 1 - \frac{1}{2}\Omega_{\sigma}$$

 Second-order cosmological perturbation theory gives identical result Bartolo, Mataresse & Riotto

Example: curvaton model

- $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$
 - Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$
 - Assume sudden decay

$$\frac{3}{5}f_{\rm NL} = \frac{3}{4\Omega_{\sigma}} \left(1 + \frac{\sigma_{\rm os}\sigma_{\rm os}''}{(\sigma_{\rm os}')^2}\right) - 1 - \frac{1}{2}\Omega_{\sigma}$$

- Second-order cosmological perturbation theory gives
 identical result Bartolo, Mataresse & Riotto
- Correction to sudden decay small Malik, Ungarelli & Wands 03, Malik & DHL 06

Example: curvaton model

- $\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}\delta\sigma^2$
 - Allow evolution of curvaton, $\sigma_{\rm osc}(\sigma_*)$
 - Assume sudden decay

$$\frac{3}{5}f_{\rm NL} = \frac{3}{4\Omega_{\sigma}} \left(1 + \frac{\sigma_{\rm os}\sigma_{\rm os}''}{(\sigma_{\rm os}')^2}\right) - 1 - \frac{1}{2}\Omega_{\sigma}$$

- Second-order cosmological perturbation theory gives identical result Bartolo, Mataresse & Riotto
- Correction to sudden decay small Malik, Ungarelli & Wands 03, Malik & DHL 06
- Simplest case: $\frac{3}{5}f_{\rm NL} = -\frac{3}{4}$

• δN formalism convenient

- δN formalism convenient
- Second-order cosmological perturbation theory gives identical results Malik 05

- δN formalism convenient
- Second-order cosmological perturbation theory gives identical results Malik 05
- As apparantly does another formalism Rigopoulos/Shellard/Van Tent 05, 06

LANCASTER

- δN formalism convenient
- Second-order cosmological perturbation theory gives identical results Malik 05
- As apparantly does another formalism Rigopoulos/Shellard/Van Tent 05, 06

(i) N-component chaotic inflation $V = \sum m_i^2 \phi_i^2$

- δN formalism convenient
- Second-order cosmological perturbation theory gives identical results Malik 05
- As apparantly does another formalism Rigopoulos/Shellard/Van Tent 05, 06
- (i) N-component chaotic inflation $V = \sum m_i^2 \phi_i^2$
 - Typically $N \simeq (1/4) \sum (\phi_i/M_P)^2$ giving simple predictions DHL & Riotto 90; Alabidi & DHL 05 with small corrections Vernizzi & Wands 06, Rigopoulos, Shellard & Van Tent 06 Gives negligible non-gaussianity.

- δN formalism convenient
- Second-order cosmological perturbation theory gives identical results Malik 05
- As apparantly does another formalism Rigopoulos/Shellard/Van Tent 05, 06

(i) N-component chaotic inflation $V = \sum m_i^2 \phi_i^2$

- Typically $N \simeq (1/4) \sum (\phi_i/M_P)^2$ giving simple predictions DHL & Riotto 90; Alabidi & DHL 05 with small corrections Vernizzi & Wands 06, Rigopoulos, Shellard & Van Tent 06 Gives negligible non-gaussianity.
- (ii) Two-component modular inflation Kadota & Stewart 03
- $N \propto 1/\sigma$ gives negligible non-gaussianity DHL & Rodriguez 05

Final thoughts

LANCASTER

1. We have a practically complete understanding of primordial non-gaussianity.

Final thoughts

1. We have a practically complete understanding of primordial non-gaussianity.

2. To discuss *observed* stochastic properties should use a box just enclosing *observable* universe

Final thoughts

LANCASTER

1. We have a practically complete understanding of primordial non-gaussianity.

2. To discuss *observed* stochastic properties should use a box just enclosing *observable* universe

3. Calculation for a larger inflated region is a can of worms, which Weinberg (2005) shows us how to open perturbatively; but we should take into account running with the box size.

LANCASTER

1. We have a practically complete understanding of primordial non-gaussianity.

2. To discuss *observed* stochastic properties should use a box just enclosing *observable* universe

3. Calculation for a larger inflated region is a can of worms, which Weinberg (2005) shows us how to open perturbatively; but we should take into account running with the box size.

4. Is Starobinsky's stochastic formalism an approximation to a non-perturbative version of Weinberg's analysis?