RIGHT-HANDED NEUTRINOS AS THE SOURCE OF DENSITY PERTURBATIONS

> Lotfi Boubekeur ICTP - Trieste.

Based on:

• LB and P. Creminelli , hep-ph/0602052 – PRD 73 (2006) 103516.

Workshop on Cosmological Perturbations, GGI Firenze – 25 October, 2006.

EXPERIMENTS

Observations are getting more and more accurate \rightarrow "Precision Cosmology"

- Amplitude of fluctuations $\sim 10^{-5}$
- Scale dependence (tilt) $\lesssim .05$
- Nature of fluctuations

► Adiabatic?
$$\left| \frac{\delta(n_B/s)}{n_B/s} / \zeta \right| < 0.3 - 0.4$$
 @ 2σ Seljak etal.
► Gaussian? $\frac{\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle}{\langle \zeta_{\vec{k}} \zeta_{-\vec{k}} \rangle^{3/2}} \ll 10^{-5}$

► Tensors? $r \lesssim .22$

THEORY

• Single field slow-roll inflation $\dot{\phi}^2 \ll V(\phi)$.

$$\zeta \sim \frac{V^{3/2}}{M_P^3 V'}$$

Additional scalars

• The curvaton scenario

Lyth & Wands Enqvist & Sloth Moroi & Takahashi

$$\zeta \sim \frac{\delta\sigma}{\sigma_*}$$

• Inhomogeneous reheating

Dvali, Gruzinov & Zaldarriaga Kofman

 $\zeta \sim \frac{\delta \Gamma_{\phi}}{\Gamma_{\phi}}$

(i) e.g. In string theory, there exist a lot of scalars (string moduli) that could be relevant for cosmology.

(*ii*) They have distinctive experimental signatures in the CMB:

• Non-Gaussianity

- Correlated isocurvature perturbation
- Typically no tensors.

(i) e.g. In string theory, there exist a lot of scalars (string moduli) that could be relevant for cosmology.

(*ii*) They have distinctive experimental signatures in the CMB:

• Non-Gaussianity

- Correlated isocurvature perturbation
- Typically no tensors.

Departure from thermal equilibrium is required!

OUT-OF-EQUILIBRIUM

 $T_1 \to a(T_1) \qquad \qquad T_2 < T_1 \to a(T_2)$

In thermal equilibrium, due to adiabaticity, the scale factor $a \propto 1/T$ \downarrow NO temperature perturbation can be produced. \downarrow Departure from thermal equilibrium is required! \downarrow One can produce temperature fluctuations during baryogenesis. \bullet Produced baryon number is conserved after baryogenesis (out-of-equilibrium) \rightarrow Baryon isocurvature.

• In contrast with other types of isocurvature, e.g. CDM isocurvature, since CDM is a thermal relic \rightarrow CDM ISO is erased due to thermal equilibrium.

• Baryon isocurvature is correlated with curvature perturbation since produced during the same process.

• Present limits on isocurvature are becoming more and more stringent.

GENERATION OF THE BARYON ASYMMETRY

We consider the SM + 3 right-handed neutrinos (Type I seesaw + leptogenesis)

$$\mathcal{L} = \mathcal{L}_{\rm SM} + Y_{ij} \left(\frac{\chi}{M_P}\right) L_i H N_j + M_i \left(\frac{\chi}{M_P}\right) N_i N_i + (\partial \chi)^2$$

with $M_1 > M_2 > M_1 \equiv M$. Consider as usual the decay of the lightest N. The decay parameter

$$\frac{\Gamma(T=0)}{H(T=M)} = \frac{(Y^{\dagger}Y)_{11} \cdot M}{8\pi} \Big/ \left(g_*^{1/2} \frac{M^2}{M_P} \frac{2\pi^{3/2}}{\sqrt{45}} \right) \equiv \frac{\widetilde{m}_1}{1.1 \times 10^{-3} \text{eV}} \leq 1,$$

where $g_* \sim 100$, controls departure from thermal equilibrium. The baryon asymmetry is

$$\frac{n_B}{s} = -\frac{28}{79} \epsilon_{N_1} \eta(\widetilde{m}_1) \frac{n_{N_1}}{s} (T \gg M),$$

where η is the washout parameter and ϵ_{N_1} is the *CP* parameter $\propto \text{Im}\left[\left(Y^{\dagger}Y\right)_{i_1}^2\right]$.

GENERATION OF DENSITY PERTURBATIONS

We can parametrise curvature (temperature) fluctuations produced during RHN decay as

$$ds^{2} = -dt^{2} + e^{2\zeta(\vec{x})}a(t)^{2}d\vec{x}^{2}$$

up to subleading O(k/(aH)) terms. k is the comoving wavevector and H is the expansion rate. Salopek & Bond; Maldacena; Lyth etal.

Thus

$$e^{\zeta(\vec{x})} = \frac{a(T_{\text{low}})}{a(T_{\text{high}})}(M,\Gamma)$$

 $T_{\text{high}} \equiv \text{temperature before decay.}$ $T_{\text{low}} \equiv \text{temperature after decay.}$

In our scenario, the only relevant parameter is \widetilde{m}_1 , so

$$e^{\zeta(\vec{x})} = \frac{a(T_{\text{low}})}{a(T_{\text{high}})}(\widetilde{m}_1)$$

- At $T \gg M$, RHN are relativistic, they contribute $1/g_*$ of the plasma density $\rho \propto a^{-4}$. (RD1)
- At $T \sim M$, RHN decouples from the plasma.
- From $T \simeq M/g_*$ until decay $H \sim \Gamma$, the universe is dominated by RHN's

 $\rho \sim \rho_N \propto a^{-3}.$ (MD)

• After that RHNs decay into radiation. (RD2)

 \downarrow

$$\frac{a(T_{\text{low}})}{a(T_{\text{high}})} \propto M^{1/3} \Gamma^{-1/6} \propto \widetilde{m}_1^{-1/6} \qquad \text{for} \quad \widetilde{m}_1 \ll \widetilde{m}^*/g_*^2 \;.$$

We recover the standard result

$$\zeta = -\frac{1}{6} \frac{\delta \Gamma}{\Gamma}$$

DENSITY PERTURBATIONS: THE GENERAL CASE

In general, one has to solve

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma\rho_{N}$$

$$\dot{\rho}_{N} + 3(1 + w_{N}(T/M))H\rho_{N} = -\Gamma\rho_{N}$$

$$H^{2} = \frac{8\pi}{3M_{P}^{2}}(\rho_{N} + \rho_{\gamma}).$$

DENSITY PERTURBATIONS: THE GENERAL CASE

In general, one has to solve

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma\rho_{N}$$

$$\dot{\rho}_{N} + 3(1 + w_{N}(T/M))H\rho_{N} = -\Gamma\rho_{N}$$

$$H^{2} = \frac{8\pi}{3M_{P}^{2}}(\rho_{N} + \rho_{\gamma}).$$

Non-Gaussianity

The non-linearity parameter $f_{\rm NL}$ is defined as

$$\zeta(\vec{x}) = \zeta_g(\vec{x}) - \frac{3}{5} f_{\rm NL}(\zeta_g^2(\vec{x}) - \langle \zeta_g^2(\vec{x}) \rangle)$$

In our case $\zeta = f(\log \tilde{m}_1 / \tilde{m}^*)$.

$$\zeta(\vec{x}) = f' \frac{\delta \widetilde{m}_1}{\widetilde{m}_1}(\vec{x}) + \frac{1}{2} (f'' - f') \left(\frac{\delta \widetilde{m}_1}{\widetilde{m}_1}(\vec{x})\right)^2 ,$$

Non-Gaussianity

The non-linearity parameter $f_{\rm NL}$ is defined as

$$\zeta(\vec{x}) = \zeta_g(\vec{x}) - \frac{3}{5} f_{\rm NL}(\zeta_g^2(\vec{x}) - \langle \zeta_g^2(\vec{x}) \rangle)$$

In our case $\zeta = f(\log \tilde{m}_1 / \tilde{m}^*)$.

$$\zeta(\vec{x}) = f' \frac{\delta \widetilde{m}_1}{\widetilde{m}_1}(\vec{x}) + \frac{1}{2} (f'' - f') \left(\frac{\delta \widetilde{m}_1}{\widetilde{m}_1}(\vec{x})\right)^2 ,$$

CORRELATED BARYON ISOCURVATURE

Non-Gaussianity constraint the RHN to be very out-of-equilibrium. Wash-out can be neglected.

The simplest case, where ϵ_{N_1} is constant

$$\frac{\delta(n_B/s)}{n_B/s} = -\frac{\delta s}{s} = -3\frac{\delta T}{T} = -3\zeta \qquad \text{RULED OUT}$$

In general

$$\frac{\delta(n_B/s)}{n_B/s} / \zeta = -3 + \frac{\delta\epsilon_{N_1}/\epsilon_{N_1}}{\zeta}$$
 Can be $\lesssim .3$

• More generally, one can consider all the three RHN to produce both n_B/s and ζ . Baryon number is washed out by the lightest RHN decay (at least partially) but ζ is not.

• More flavor dependence in $\chi - N_i$ couplings.

Example: N_2 is way out-of-equilibrium $\rightarrow \zeta$ and N_1 is close to equilibrium and produces baryon isocurvature.

Dynamics of the scalar χ

So far, we assumed that the scalar is just frozen. However, its coupling to the plasma will produce a back-reaction.

•
$$M(\chi/M_P)NN \rightarrow \ddot{\phi} + 3H\dot{\chi} + \frac{M'}{M_P}T^3 = 0 \Rightarrow \Delta\chi \sim \frac{M'}{M}\frac{MT^3}{H^2M_P^2}M_P.$$

During RHN domination: $\Delta \chi > \frac{M}{M} M_P > M_P!$ given the constraints on GWs.

•
$$Y(\chi/M_P)LHN \rightarrow \ddot{\chi} + 3H\dot{\chi} + \frac{Y'Y}{M_P}T^4 = 0 \Rightarrow \Delta\chi \sim \frac{Y'}{Y}\frac{Y^2T^4}{H^2M_P^2}M_P$$

The displacement $\Delta\chi \ll M_P$ for small Yukawas.

• χ will start oscillating when $m_{\chi} > H$. It must decay before dominating (moduli problem): very model dependent.

Conclusions

- Modulated RHN decay as the source of density perturbations.
- Adiabatic perturbations related to $\delta \tilde{m}_1 / \tilde{m}_1$.
- Signatures: Non-Gaussianity + baryon isocurvature.
- Limits on NG requires N_1 to decay very out-of-equilibrium $\tilde{m}_1 < 10^{-6}$ eV.
- Baryon Isocurvature \sim adiabatic \rightarrow we must see something in the new data.
- Evolution of the scalar: under control if only Yukawas are modulated.
- Is it possible that χ is still around? (light) can it behave as a chameleon?

Khoury & Weltman