Schwinger-Dyson equations, nonlinear random processes and diagrammatic algorithms **Pavel Buividovich** (Regensburg University)

GGI Workshop "New Frontiers in Lattice Gauge Theory", 27.08.2012

Motivation: Lattice QCD at finite baryon density

Lattice QCD at finite baryon density: some approaches

 Taylor expansion in powers of µ Imaginary chemical potential SU(2) or G₂ gauge theories Solution of truncated Schwinger-Dyson equations in a fixed gauge **Complex Langevin dynamics Infinitely-strong coupling limit** Chiral Matrix models ... "Reasonable" approximations with unknown errors, BUT No systematically improvable methods!

Path integrals: sum over paths vs. sum over fields Quantum field theory:

Sum over fields

Sum over interacting paths

$$\mathcal{Z} = \operatorname{Tr} e^{-\hat{\mathcal{H}}/kT} =$$
$$= \int \mathcal{D}\phi \left(x^{\mu} \right) \, \exp \left(-S_E \left[\phi \left(x^{\mu} \right) \right] \right)$$

Euclidean action:

$$S_E = \int d^D x \, \left(\frac{1}{2} \,\partial_\mu \phi \partial_\mu \phi + \frac{m^2}{2} \,\phi^2 + V \left(\phi\right)\right)$$

Perturbative expansions

 $\mathcal{Z} = \sum_{k} \frac{\lambda^{k}}{k!} \exp\left(-L\left(\text{Paths connecting } k \text{ vertices}\right)\right)$

Worm Algorithm [Prokof'ev, Svistunov]

- Monte-Carlo sampling of closed vacuum diagrams: nonlocal updates, closure constraint
- Worm Algorithm: sample closed diagrams + open diagram
- Local updates: open graphs
 Local updates: open graphs
- Direct sampling of field correlators (dedicated simulations)

x, y – head and tail of the worm

$$\langle \sigma_{\mathbf{x}}\sigma_{\mathbf{y}} \rangle \sim \mathbf{p}(\mathbf{x},\mathbf{y})$$

Correlator = probability distribution of head and tail

 Applications: systems with "simple" and convergent perturbative expansions (Ising, Hubbard, 2d fermions ...)
 Very fast and efficient algorithm!!!

Worm algorithms for QCD?

- Attracted a lot of interest recently as a tool for QCD at finite density:
- Y. D. Mercado, H. G. Evertz, C. Gattringer, ArXiv:1102.3096 – Effective theory capturing center symmetry
- P. de Forcrand, M. Fromm, <u>ArXiv:0907.1915</u>
 Infinitely strong coupling
- W. Unger, P. de Forcrand, <u>ArXiv:1107.1553</u> – Infinitely strong coupling, continuos time
 <u>K. Miura et al.</u>, <u>ArXiv:0907.4245</u> – Explicit
 - strong-coupling series ...

Worm algorithms for QCD?

- Strong-coupling expansion for lattice gauge theory: confining strings [Wilson 1974]
- Intuitively: basic d.o.f.'s in gauge theories = confining strings (also AdS/CFT etc.)

something like "tube"

Worm

<u>Worm-like algorithms from Schwinger-</u> <u>Dyson equations</u>

<u>Basic idea:</u>

 Schwinger-Dyson (SD) equations: infinite hierarchy of linear equations for field correlators G(x₁, ..., x_n)

$$\int \mathcal{D}\phi \, \frac{\delta}{\delta\phi(x)} \, \left(\phi(x_1)\dots\phi(x_n) \, \exp\left(-S\left[\phi\right]\right)\right) = 0$$

 Solve SD equations: interpret them as steady-state equations for some random process

$$w(A) = \sum_{B} P(B \to A) w(B)$$

G(x₁, ..., x_n): ~ <u>probability</u> to obtain {x₁, ..., x_n}
 (Like in Worm algorithm, but for all correlators)

Example: Schwinger-Dyson equations in ϕ^4 theory

$$S\left[\phi\left(x\right)\right] = \int d^{D}x \left(\frac{1}{2}\phi\left(x\right)\left(m^{2}-\Delta\right)\phi\left(x\right) + \frac{\lambda}{4}\phi^{4}\left(x\right)\right)$$

$$G(x_1, x_2) = \delta(x_1, x_2) + \sum_{\pm \mu} \kappa G(x_1 \pm \hat{\mu}, x_2) - \lambda G(x_1, x_1, x_1, x_2)$$

$$G(x_1, x_2, \dots, x_n) = \sum_{A=2}^n \delta(x_1, x_A) G(x_1, \dots, x_{A-1}, x_{A+1}, \dots, x_n) + \sum_{\pm \mu} \kappa G(x_1 \pm \hat{\mu}, \dots, x_n) - \lambda G(x_1, x_1, x_1, x_2, \dots, x_n)$$

Schwinger-Dyson equations for φ⁴ theory: stochastic interpretation

• <u>Steady-state equations for Markov processes:</u>

$$w(A) = \sum_{B} P(B \to A) w(B)$$

 <u>Space of states:</u> sequences of coordinates {x₁, ..., x_n}

• <u>Possible transitions:</u>

- Add pair of points {x, x} at random position
 - 1 ... n + 1
- Random walk for topmost coordinate
- If three points meet merge
- Restart with two points {x, x}

No truncation of SD equations
No explicit form of perturbative series

Stochastic interpretation in momentum space

• <u>Steady-state equations for Markov processes:</u>

$$w(A) = \sum_{B} P(B \to A) w(B)$$

 <u>Space of states:</u> sequences of momenta {p₁, ..., p_n}

Possible transitions:

- Add pair of momenta {p, -p} at positions 1, A = 2 ... n + 1
- Add up three first momenta (merge)

• **Restart** with {p, -p}

• Probability for new momenta:

$$\sim \frac{1}{p^2 + m_0^2}$$

Diagrammatic interpretation

History of such a random process: <u>unique Feynman diagram</u> BUT: no need to remember intermediate states

Measurements of <u>connected</u>, <u>1PI</u>, <u>2PI</u> <u>correlators</u> are possible!!! In practice: <u>label connected legs</u> <u>Kinematical factor</u> for each diagram:

$$\int d^D q_1 \dots d^D q_{M_I} \prod_{i=1}^{M_I} \frac{1}{q_i^2 + m_0^2} \prod_{j=1}^{M_D} \frac{1}{Q_j^2 + m_0^2}$$

q_i are independent momenta, Q_i – depend on q_i

Monte-Carlo integration over independent momenta

Normalizing the transition probabilities

- <u>Problem</u>: probability of "Add momenta" grows as (n+1), rescaling G(p₁, ..., p_n) – does not help.
- Manifestation of series divergence!!!
- <u>Solution</u>: explicitly count diagram order m. Transition probabilities depend on m
- Extended state space: {p₁, ..., p_n} and m diagram order
- Field correlators:

$$G(p_1,...,p_n) = \sum_{m=0}^{+\infty} c_{n,m} (-\lambda)^m w_m (p_1,...,p_n)$$

 w_m(p₁, ..., p_n) – probability to encounter m-th order diagram with momenta {p₁, ..., p_n} on external legs

Normalizing the transition probabilities

Finite transition probabilities:

$$c_{n,m} = \Gamma\left(n/2 + m + 1/2\right) x^{-(n-2)} y^{-m}$$

 Factorial divergence of series is absorbed into the growth of C_{n,m} !!!

- Probabilities (for optimal x, y):
 - Add momenta:
 - <u>Sum up momenta +</u> <u>increase the order:</u>
 Otherwise restart

$$p_{A} = \frac{1}{2} \frac{n+1}{n+m+1}$$
$$p_{V} = \frac{1}{2}$$

Critical slowing down?

Transition probabilities do not depend on bare mass or coupling!!! (Unlike in the standard MC) No free lunch: kinematical suppression of small-p region (~ Λ_{IR}^{D})

Resummation

• Integral representation of $C_{n,m} = \Gamma(n/2 + m + 1/2) x^{(n-2)} y^m$:

$$G_n = x^{-n+2} \left(\frac{y}{\lambda_0}\right)^{\frac{n+1}{2}} \int_0^{+\infty} dz \exp\left(-\frac{yz}{\lambda_0}\right) z^{\frac{n-1}{2}} \left(\sum_{m=0}^{+\infty} (-z)^m w_{n,m}\right)$$

Pade-Borel resummation. Borel image of correlators!!!

Poles of Borel image: exponentials in w_{n,m}

$$w_{n,m} = \sum_k a_k \, b_k^m$$

Pade approximants are <u>unstable</u>

- Poles can be found by fitting
- Special fitting procedure using SVD of Hankel matrices

No need for resummation at large N!!!

Resummation: <u>fits by multiple</u> <u>exponents</u>

Resummation: positions of poles

Two-point function

Connected truncated four-point function

2-3 poles can be extracted with reasonable accuracy

Test: triviality of ϕ^4 theory in $D \ge 4$

Renormalized mass:

Renormalized coupling:

$$G(p) = \frac{Z_R}{m_R^2 + p^2 + O(p^4)}$$

$$A_R = -1/6 Z_R^2 \Gamma(0, 0, 0, 0)$$

CPU time: several hrs/point (2GHz core) [Buividovich, ArXiv:1104.3459]

Large-N gauge theory in the Veneziano limit

Gauge theory with the action

$$L = -\frac{N}{\lambda} \operatorname{Tr} F_{\mu\nu}^2 + \sum_{f=1}^{N_f} \bar{\psi}_f \left(D + m\right) \psi_f$$

 t-Hooft-Veneziano limit: N -> ∞, N_f -> ∞, λ fixed, N_f/N fixed

 Only planar diagrams contribute! → connection with strings
 Factorization of Wilson loops W(C) = 1/N tr P exp(i (dx^µ A_µ): (W[C₁] W[C₂]) = (W[C₁]) (W[C₂]) + O(1/N)

 Better approximation for real QCD than pure large-N gauge theory: meson decays, deconfinement phase etc.

Large-N gauge theory in the Veneziano limit

Lattice action:

$$S = -N\beta \sum_{p} \operatorname{Tr} g_{p} + \sum_{x} \bar{\psi}^{f} \psi^{f} -$$

W[C]

GICI

$$-\sum_{x}\sum_{\mu}\left(\kappa_{\mu}^{(+)}\bar{\psi}^{f}\left(x-\hat{\mu}\right)\left(\gamma_{+\mu}\right)g_{x-\hat{\mu},\mu}\psi^{f}\left(x\right)-\kappa_{\mu}^{(-)}\bar{\psi}^{f}\left(x+\hat{\mu}\right)\left(\gamma_{-\mu}\right)g_{x,\mu}^{\dagger}\psi^{f}\left(x\right)\right)$$

No EK reduction in the large-N limit! Center symmetry broken by fermions. Naive Dirac fermions: N_f is infinite, no need to care about doublers!!!.

Basic observables:

Wilson loops = closed string amplitudes

Wilson lines with quarks at the ends = open string amplitudes

$$W[l_1 \dots l_n] = \left\langle \frac{1}{N} \operatorname{Tr} \left(g_{l_1} \dots g_{l_n} \right) \right\rangle$$
$$G_{\alpha\beta}[l_1 \dots l_n] = \left\langle \frac{1}{NN_f} \bar{\psi}_{\beta}^f(s_1) g_{l_1} \dots g_{l_n} \psi_{\alpha}^f(s_n) \right\rangle$$

Zigzag symmetry for QCD strings!!!

Migdal-Makeenko loop equations

Loop equations in the closed string sector:

$$W [l_{1} \dots l_{n}] = \delta (l_{1}, -l_{2}) W [l_{3} \dots l_{n}] + \delta (l_{1}, -l_{n}) W [l_{2} \dots l_{n-1}] + \sum_{A=3}^{n-1} \delta (l_{1}, -l_{A}) W [l_{2} \dots l_{A-1}] W [l_{A+1} \dots l_{n}] - \sum_{A=2}^{n} \delta (l_{1}, -l_{A}) W [l_{1} \dots l_{A-1}] W [l_{A} \dots l_{n}] + \beta \sum_{staple(l_{1})} W [st \, l_{2} \dots l_{n}] - \beta \sum_{staple(l_{1})} W [l_{1} (-st) \, l_{1} \, l_{2} \dots l_{n}] + \frac{N_{f}}{N} \kappa_{\mu(l_{1})}^{(-)} \left(\gamma_{-\mu(l_{1})}^{\beta \alpha}\right) G_{\alpha \beta} (l_{2} \dots l_{n}) - \frac{N_{f}}{N} \kappa_{\mu(l_{1})}^{(+)} \left(\gamma_{+\mu(l_{1})}^{\beta \alpha}\right) G_{\alpha \beta} (l_{1} \, l_{2} \dots l_{n} \, l_{1})$$

Loop equations in the open string sector:

$$G_{\alpha\beta}\left[l_{1}\ldots l_{n}\right] = -\delta_{\alpha\beta}\,\delta\left(s_{1},s_{n}\right)\,W\left[l_{1}\ldots l_{n}\right] + \sum_{\mu}\kappa_{\mu}^{(+)}\left(\gamma_{+\mu}^{\alpha\delta}\right)G_{\delta\beta}\left(\mu l_{1}\ldots l_{n}\right) + \sum_{\mu}\kappa_{\mu}^{(-)}\left(\gamma_{-\mu}^{\alpha\delta}\right)G_{\delta\beta}\left(\left(-\mu\right)l_{1}\ldots l_{n}\right)$$

Infinite hierarchy of quadratic equations! Markov-chain interpretation?

Loop equations illustrated

Nonlinear Random Processes

Тор

Top

Top

Тор

Top

Top

Top-1

Let X be some discrete set
Consider stack of the elements of X

At each process step: \succ <u>Create</u>: with probability P_c(x) create new x and push it to stack \succ **Evolve:** with probability $P_{e}(x|y)$ replace y on the top of the stack with x \rightarrow Merge: with probability $P_m(x|y_1,y_2)$ pop two elements y₁, y₂ from the stack and push x into the stack **Otherwise restart**

Nonlinear Random Processes: Steady State and Propagation of Chaos

Probability to find n elements x₁ ... x_n in the stack:

W(x₁, ..., x_n)

Propagation of chaos [McKean, 1966]
 (= factorization at large-N [tHooft, Witten, 197x]):

 $W(x_1, ..., x_n) = W_0(x_1) W(x_2) ... W(x_n)$

Steady-state equation (sum over y, z):

 $w(x) = P_{c}(x) + P_{e}(x|y) w(y) + P_{m}(x|y,z) w(y) w(z)$

Loop equations: stochastic interpretation Stack of strings (= open or closed loops)! Wilson loop W[C] ~ Probabilty of generating loop C Possible transitions (closed string sector):

Loop equations: stochastic interpretation Stack of strings (= open or closed loops)! Possible transitions (open string sector):

Hopping expansion for fermions (<u>~20 orders</u>)
 Strong-coupling expansion (series in β) for gauge fields (<u>~ 5 orders</u>)

Disclaimer: this work is in progress, so the algorithm is far from optimal...

Sign problem revisited

 Different terms in loop equations have different signs Configurations should be additionally reweighted

 Each loop comes with a complex-valued phase $(+/-1 \text{ in pure gauge, exp(i } \pi \text{ k/4}) \text{ with Dirac fermions})$

• Sign problem is very mild (strong-coupling only)?

 $\frac{P_+ - P_-}{P_+ + P_-} \sim 0.7$ for 1x1 Wilson loops

• For large β (close to the continuum): sign problem should be important

Large terms ~β sum up to ~1

Chemical potential: $\kappa \rightarrow \kappa \exp(\pm \mu)$ No additional phases

Sign problem revisited

Interacting fermions:

• Extremely severe sign problem in configuration space [U. Wolff, ArXiv:0812.0677]

- BUT: most time is spent on generating "free" random walks
- All worldlines can be summed up analytically
- Manageable sign in momentum space [Prokof'ev,

Svistunov]

Momentum space loops for QCD?

Easy to construct in the continuum [Migdal, Makeenko, 198x]

$$W\left[p_{\mu}\left(s\right)\right] = \int \mathcal{D}C \exp\left(i \int_{C} \frac{dx^{\mu}p_{\mu}}{D}\right) W\left[C\right]$$

BUT no obvious discretization suitable for numerics

Measurement procedure

 Measurement of string tension: probability to get a rectangular R x T Wilson loop - almost ZERO

 Physical observables = Mesonic correlators = sums over all loops

 Mesonic correlators = Loops in momentum space [Makeenko, Olesen, ArXiv:0810.4778]

Temperature and chemical potential

No signs

or phases!

Veneziano limit: open strings wrap and close
Chemical potential:

 Strings oriented in the time direction are favoured

κ -> κ exp(+/- μ)

Phase diagram of the theory: a sketch

High temperature (small cylinder radius) OR Large chemical potential Numerous winding strings Nonzero Polyakov loop Deconfinement phase

0.1

ĸ

0.12

0.0001 $LT = 2, \beta = 0.0, \mu = 0.00$ $LT = 2, \beta = 0.8, \mu = 0.00$ 9e-005 $\begin{array}{l} \mathsf{LT}=2,\ \beta=0.0,\ \mu=0.10\\ \mathsf{LT}=2,\ \beta=0.0,\ \mu=0.50\end{array}$ 8e-005 deconfinement $LT = 2, \beta = 0.0, \mu = 1.00$ 7e-005 <P> ≠ 0 Polyakov loop < P > = 06e-005 confinement 5e-005 4e-005 0.14 $\begin{array}{c} LT = 2, \ \beta = 0.0, \ \mu = 0.00 \\ LT = 2, \ \beta = 0.8, \ \mu = 0.00 \\ LT = 2, \ \beta = 0.0, \ \mu = 5.00 \\ LT = 3, \ \beta = 0.0, \ \mu = 1.00 \end{array}$ • ¥ 3e-005 0.12 0.1 Chiral condensate 2e-005 0.08 1e-005 0.06 0.04 0 0.08 0.1 0.12 0.02 0.02 0.04 0.06 к 0.02 0.04 0.06 0.08

Summary and outlook

Diagrammatic Monte-Carlo and Worm algorithm: useful strategies complimentary to standard Monte-Carlo
Stochastic interpretation of Schwinger-Dyson equations: a novel way to stochastically sum up perturbative series

<u>Advantages:</u>

- Implicit construction of perturbation theory
- No truncation of SD eq-s
- Large-N limit is very easy
- Naturally treats divergent series
- No sign problem at $\mu \neq 0$

Disadvantages:

Limited to the "very strongcoupling" expansion (so far?)
Requires large statistics in IR region

QCD in terms of <u>strings</u> without explicit "stringy" action!!!

Summary and outlook

Possible extensions: Weak-coupling theory: Wilson loops in momentum space? Relation to meson scattering amplitudes Possible reduction of the sign problem Introduction of condensates? Long perturbative series ~ Short perturbative series + Condensates [Vainshtein, Zakharov] Combination with Renormalization-Group techniques?

Thank you for your attention!!!

References:

- ArXiv:1104.3459 (φ⁴ theory)
- ArXiv:1009.4033, 1011.2664 (large-N theories)

Some sample codes are available at:

http://www.lattice.itep.ru/~pbaivid/codes.html

This work was supported by the S. Kowalewskaja award from the Alexander von Humboldt Foundation

Back-up slides

Some historical remarks "Genetic" algorithm vs. branching random process "Extinction probability" obeys **Probability to find** nonlinear equation some configuration of branches obeys nonlinear [Galton, Watson, 1974] **Extinction of peerage**" equation Steady state due to creation Attempts to solve QCD loop and merging equations [Migdal, Marchesini, 1981] **Recursive Markov Chains** [Etessami, Yannakakis, 2005] "Loop extinction": No importance sampling Also some modification of McKean-Vlasov-Kac models [McKean, Vlasov, Kac, 196x]