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SU(2,3,4) gauge theories with Nf = 2 fermions in the SYM2 rep

1. Confining or conformal? And what lies in between

2. The running coupling at m = 0: Schrödinger Functional (= background field method)

3. Phase diagrams on a finite lattice (m, “T” 6= 0)

4. Mass anomalous dimension γ(g2)



POSSIBILITIES for IR PHYSICS

• Confinement & χSB =⇒ RUNNING [QCD]

– or WALKING [ETC — extended technicolor]

• IRFP — conformal theory =⇒ STANDING STILL [unparticles?]

WALKING and IRFP [the conformal window ] are HARD CASES:

• Running is slow — so strong coupling in IR is also strong coupling in UV (i.e., at lattice cutoff)

i.e., we require L >>>>>> a for a weak-coupling continuum limit

OTHERWISE you are looking at a narrow range of scales!

• Scale invariance (approximate for WALKING) means all particle masses ∼ m
1/ym

q with the same ym. Hard to

tell the two apart.

• Gauge coupling is irrelevant; mq and 1/L are relevant couplings.

mq → 0: really, really BAD finite-size effects.

Schrödinger functional turns finite volume from a hindrance to a method.



GAUGE GROUPS, REPs, and Nf (Dietrich & Sannino, PRD 2007)
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Our work: N = 2, 3, 4; REP=SYM=3,6,10; Nf = 2 Is there an IRFP? Ladder approx says NO



THE β FUNCTION in the MASSLESS THEORY: the Schrödinger Functional

Continuum SF definition of g(L): (Lüscher et al., ALPHA collaboration)

• Hypercubical Euclidean box, volume L4, massless limit

• Fix the gauge field on the two time boundaries

⇒ background field — unique classical minimum of Scl
Y M =

∫

d4xF 2

µν . Make sure L is the only scale.

• Calculate (if you can)

Γ ≡ − logZ = tree-level + one-loop + · · ·

=

(

1

g2(1/µ)
+

b1
32π2

log(µL) + · · ·

)

Scl
Y M

≡
1

g2(L)
Scl
Y M nonperturbatively!
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LATTICE THEORY:

• Wilson fermions

+ clover term + fat links (nHYP = normalized HYPercubic)

• SF: fix spatial links Ui on time boundaries t = 0, L

+ give fermions a spatial twist



A PROPOS CHIRAL SYMMETRY:

• Define mq via AWI

∂µA
aµ = 2mqP

a =⇒ mq ≡
1

2

∂4
〈

Ab
4(t) O

b(t′ = 0, ~p = 0)
〉

〈P b(t) Ob(t′ = 0, ~p = 0)〉

∣

∣

∣

∣

t=L/2

• Find κc(β) by setting mq = 0. Work directly at κc: stabilized by SF BC’s!

EXTRACTING PHYSICS

1. Fix lattice size L, bare couplings β = 6/g2
0
, κ ≡ (8 + 2m0a)

−1 = κc(β)

2. Calculate 1/g2(L) and 1/g2(2L). Use common lattice spacing (= UV cutoff) a.

3. Result: Discrete Beta Function

B(u, 2) =
1

g2(2L)
−

1

g2(L)
,

a function of u ≡ 1/g2(L).



The DISCRETE BETA FUNCTION — SU(2)/triplet
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=⇒ IRFP
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SLOW RUNNING IS ALMOST NO RUNNING

Let u(s) ≡ 1/g2(s), and β̃(u) ≡ du/d log s = 2β(g2)/g4. [We have been plotting B(u, 2) = u(2)− u(1).]

Slow running: β̃(u(s)) ≃ β̃(u(1)) — quasi-conformal!

Then
u(s)− u(1)

log s
≃ β̃(u(1))
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=⇒ linear fit to 1/g2(logL)

(improved action is crucial)

681216
L/a

0

0.1

0.2

0.3

0.4

0.5

1/g
2



SLOW RUNNING IS ALMOST NO RUNNING

Let u(s) ≡ 1/g2(s), and β̃(u) ≡ du/d log s = 2β(g2)/g4. [We have been plotting B(u, 2) = u(2)− u(1).]

Slow running: β̃(u(s)) ≃ β̃(u(1)) — quasi-conformal!

Then
u(s)− u(1)

log s
≃ β̃(u(1))

=⇒ collapse data for different s.

⇒ Reduced DBF R(g2) ≃ β̃(g2)



NOW FOR SU(3)/sextet
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Fits from L = 6, 8, 12, 16

S L O W running . . .

but does it cross zero?

Why did we stop?



PHASE DIAGRAM: (SU(3)/sextet)
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THE WALL

in strong coupling:

mq discontinuous in κ, never zero

cf. SU(3) with large Nf fund rep

(Iwasaki, Kanaya, Kaya, Sakai, and

Yoshie 1992, 2003)

[cf. SU(2)/triplet: critical point at

intersection]
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MOVING THE WALL:

Change the gauge action —

Sg =
β

2Nc

∑

TrUp +
βf

2df

∑

TrVp

where Vp is made of fat links in the

fermion rep (e.g. βf = +0.5)



=⇒ pushes the wall to stronger coupling:
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An IRFP in the SU(3)/sextet theory*

*at low significance



MASS ANOMALOUS DIMENSION

Expected: γ(g2∗) → 1 at sill of conformal window (Cohen & Georgi 1988; Kaplan, Lee, Son, Stephanov 2010)

Work with correlation functions on lattice:

〈

P b(t) Ob(t′ = 0)
〉
∣

∣

t=L/2
= ZP ZO e−mπL/2

〈

Ob(t = L) Ob(t′ = 0)
〉

= Z2

O e−mπL

Take ratio, extract ZP (L), whence

ZP (L)

ZP (L0)
=

(

L

L0

)−γ

assuming γ ≃ const as L0 → L,

since the running is S L O W



MASS ANOMALOUS DIMENSION — SU(2)/triplet

slope = −γm(g2)

=⇒

Cf. one loop: γ =
6C2(R)
16π2

g2



MASS ANOMALOUS DIMENSION — SU(3)/sextet
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FINALLY, SU(4)/decuplet — compare all 3 theories
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γ −→ ∼ 0.45 — new universality?



SUMMARY

1. SU(2) gauge theory with Nf = 2 fermions in the SYM2 rep has an IRFP. SU(3), SU(4) might — at least, they

run very slowly.

2. In each case, the mass anomalous dimension γ flattens out well short of 1.

THEORETICAL POINTS

Schwinger–Dyson eqns say these theories have no IRFP.

• Our fixed point(s) contradict the Schwinger–Dyson analysis.

SDEs also predict γ ≃ 1 near the sill of the conformal window (walking technicolor ).

• For each N = 2, 3, 4 — γ . 0.5 means:

1. We are deep in the conformal phase, or

2. S–D eqns, model calculations are inapplicable here, too.
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FOR THE FUTURE

γ is much easier to calculate than β. More anomalous dimensions are waiting . . . (=⇒ “spectrum” of conformal

theories)

. . . and also more gauge theories.


