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Histogram method 
 Problem of Complex Determinant at µ≠0

 Boltzmann weight: complex at µ≠0
 Monte-Carlo method is not applicable.

 Distribution function in Density of state method (Histogram method)
X: order parameters, total quark number, average plaquette etc.

histogram in phase-quenched simulations
 Expectation values
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(β, m, µ)-dependence of the Distribution function
• Distributions of plaquette  P (1x1 Wilson loop for the standard action)
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Overlap problem

• W is computed from the histogram.
• Distribution function around X where

is minimized: important.
• Veff must be computed in a wide range.
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Distribution function in quenched simulations
Effective potential in a wide range of P: required.

Plaquette histogram at K=1/mq=0.        Derivative of Veff at β=5.69 

dVeff/dP is adjusted to β=5.69, using

These data are combined by taking the average.
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Distribution function in the heavy quark region

• We study the properties of W(X) in the 
heavy quark region.

• Performing quenched simulations + 
Reweighting.

• We find the critical surface.
• Standard Wilson quark action + 

plaquette gauge action,
• lattice size:
• 5 simulation points; β=5.68-5.70.

(WHOT-QCD, Phys.Rev.D84, 054502(2011))
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Distribution function for P and ΩR

• Effective potential
• Hopping parameter expansion

• 2 parameters in V0:
– V0 is the same as Veff (µ=0) when

• 1 parameter in θ: 
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Distribution function for P and ΩR

• If W(P,Ω) is a Gaussian distribution,
– The peak position of W(P,Ω)            (<P>,<Ω>)
– The width of W(P,Ω)              susceptibilities χP, χΩ

• If W(P,Ω) have two peaks,             first order transition

4κ 4κ
4

f
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Expectation value of Polyakov loop and its susceptibility by the 
reweightuing method at µ=0.
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Effective potential near the quenched limit(µ=0)
WHOT-QCD, Phys.Rev.D84, 054502(2011)

• detM: Hopping parameter expansion,
• First order transition at K = 0 changes to crossover at K > 0.

Quenched Simulation
(mq=∞, K=0)

Quark mass
smaller

crossover

first order

K~1/mq for large mq

dP
dVeff

lattice, 4243 × 5 β points,   Nf=2

Nf=2:  Kcp=0.0658(3)(8)
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Order of the phase transition
Polyakov loop distribution

54 100.2 :point  Critical −×≈κ

Effective potential of |Ω| 
on the pseudo-critical line at µ=0

Ωχ

• The pseudo-critical line is 
determined by χΩ peak.

• Double-well at small K
– First order transition

• Single-well at large K
– Crossover



Polyakov loop distribution in the complex plane

• on βpc measured by the Polyakov loop susceptibility.
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• Sign problem: If        changes its sign,

• Cumulant expansion

– Odd terms vanish from a symmetry under µ ↔ −µ (θ ↔ −θ)
Source of the complex phase

If the cumulant expansion converges,   No sign problem.
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Avoiding the sign problem
(SE, Phys.Rev.D77,014508(2008), WHOT-QCD, Phys.Rev.D82, 014508(2010))
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Convergence in the large volume (V) limit
The cumulant expansion is good in the following situations.
• If the phase is given by 

– No correlation between θx.

– Ratios of cumulants do not change in the large V limit.
– Convergence property is independent of V,

although the phase fluctuation becomes larger as V increases.
– The application range of µ can be measured on a small lattice.

• When the distribution function of θ is perfectly Gaussian, the 
average of the phase is give by the second order,
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Cumulant expansion

• The effect from higher order terms is small 
near the critical point.

• Phase fluctuations
– large in the  confinement phase
– small in  the deconfinement phase
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Effect from the complex phase factor
• Polyakov loop effective potential for each 

at the pseudo-critical (β, K).
– Solid lines: complex phase omitted, i.e.,
– Dashed lines: complex phase is estimated from

with 
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phase factor is very small except 
near ΩR=0.
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Critical line in 2+1-flavor finite density QCD
• The effect from the complex phase is very small for the determination of Kcp.

( ) ( ) ( )TKK tt NN µµ= cosh0 cpcp

Critical line for µu=µd=µ, µs=0Critical line for µu=µd=µs=µ

The critical line is described by
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Nf=2 at µ=0:  Kcp=0.0658(3)(8)

Nf=2+1

(WHOT-QCD, Phys.Rev.D84, 054502(2011))



Distribution function in the light quark region
WHOT-QCD Collaboration, in preparation, 

(Nakagawa et al., arXiv:1111.2116)

• Perform phase quenched simulations
• Add the effect of the complex phase by the reweighting.
• Calculate the probability distribution function.

• Goal
– The critical point
– The equation of state

Pressure, Energy density, Quark number density, Quark number 
susceptibility, Speed of sound, etc.



Probability distribution function 
by phase quenched simulation

• We perform phase quenched simulations with the weight:
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µ-dependence of the effective potential
Curvature of the effective potential
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1st order phase transition

( )[ ] ,ln 0 β− PW

Critical point

[ ] ln θ− ie( )[ ] ,ln 0 β− PW( )[ ] ,ln β− PW

+ =

Crossover

phase  effect

phase effect

Curvature: Zero

Curvature: Negative

[ ] ln θ− ie

T

µ

hadron

QGP

CSC



Curvature of the effective potential
• If the distribution is Gaussian, 
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Complex phase distribution 
• We should not define the complex phase in the range from -π to π.
• When the distribution of q is perfectly Gaussian, the average of the 

complex phase is give by the second order (variance),

• Gaussian distribution  → The cumulant expansion is good.
• We define the phase

– The range of q is from -∞ to ∞.
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Distribution of the complex phase

• Well approximated by a Gaussian function.
• Convergence of the cumulant expansion: good.
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Simulations

• Simulation point in the (β, µ0/T) 

• Peak of W0(P,F) for each µ

lattice 483 × 8.0≈ρπ mm

2-flavor QCD Iwasaki gauge 
+ clover Wilson quark action
Random noise method is used.



Curvature of the effective potential -lnW0

• The curvature for F decreases as µ increases.



Effect from the complex phase

• Rapidly changes around the pseudo-critical point.



Critical point at finite µ

• zero curvature: expected at a large µ.



Curvature of the effective potential
• Without the complex phase effect  
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Phase average
• 2nd order cumulant  
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Curvature of the effective potential
• The effect of the phase incruded.



QCD phase diagram

phase-quenched QCD                   finite-density QCD

pion condensed 
phase 
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Summary
• We studied the quark mass and chemical potential dependence 

of the nature of QCD phase transition.

• The shape of the probability distribution function changes as a 
function of the quark mass and chemical potential.

• To avoid the sign problem, the method based on the cumulant 
expansion of θ is useful. 

• To find the critical point at finite density, further studies in light 
quark region are important applying this method.



Backup



Peak position of W(P,F)
• The slopes are zero at 

the peak of W(P,F).
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Complex phase 
• Gaussian distribution  → The cumulant expansion is good.
• We define the phase

– The range of θ is from -∞ to ∞.

• At the same time, we calculate F as a function of µ,

• The reweighting factor is also computed,
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Order of phase transitions and Distribution function

• Peak position of W: 0effeff =
Ω

=
Rd

dV
dP

dV

crossover
1 intersection

first order transition
3 intersections

Lines of zero derivatives
for first order
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Derivatives of Veff in terms of P and ΩR

• Contour lines of           and          at (β,κ) = (β0,0) correspond to 

the lines of the zero derivatives at (β,κ).
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lines of            and            in the (P,Ω) plane

• Small K: lines of : S-shape          first order  
• Large K: lines of : straight line       crossover
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