
New Frontiers in 
Lattice Gauge Theory

Julius Kuti
University of California, San Diego

New Frontiers in Lattice Gauge Theory
Galileo Institute, Florence, September 17, 2012 

Can the sextet gauge model hide 
the Higgs impostor ?

Lattice Higgs Collaboration  (LHC)

with Zoltan Fodor, Kieran Holland, Daniel Nogradi, 
Chris Schroeder, Chik Him Wong



Outline

  
Two necessary conditions to hide the Higgs impostor
focus on SU(3) sextet fermion representation with two flavors

Dilaton as Higgs impostor?  (broken scale invariance) 

Chiral and conformal tests of the sextet model

Running (walking) coupling   

Summary and outlook



arXiv:1209.0391 [pdf, other]
Can the nearly conformal sextet gauge model hide the Higgs impostor?
Zoltán Fodor, Kieran Holland, Julius Kuti, Dániel Nógrádi, Chris Schroeder, Chik Him Wong
Comments: 10 pages, 8 figures
Subjects: High Energy Physics - Lattice (hep-lat); High Energy Physics - Phenomenology (hep-ph)

arXiv:1208.1051 [pdf, ps, other]
The Yang-Mills gradient flow in finite volume
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chik Him Wong
Comments: 16 pages, 8 figures, minor corrections, references added
Subjects: High Energy Physics - Lattice (hep-lat)

focus of talk

running coupling

for more details of the discussions:

http://arxiv.org/abs/1209.0391
http://arxiv.org/abs/1209.0391
http://arxiv.org/pdf/1209.0391
http://arxiv.org/pdf/1209.0391
http://arxiv.org/format/1209.0391
http://arxiv.org/format/1209.0391
http://arxiv.org/find/hep-lat/1/au:+Fodor_Z/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Fodor_Z/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Holland_K/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Holland_K/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Kuti_J/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Kuti_J/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Nogradi_D/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Nogradi_D/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Schroeder_C/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Schroeder_C/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Wong_C/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Wong_C/0/1/0/all/0/1
http://arxiv.org/abs/1208.1051
http://arxiv.org/abs/1208.1051
http://arxiv.org/pdf/1208.1051
http://arxiv.org/pdf/1208.1051
http://arxiv.org/ps/1208.1051
http://arxiv.org/ps/1208.1051
http://arxiv.org/format/1208.1051
http://arxiv.org/format/1208.1051
http://arxiv.org/find/hep-lat/1/au:+Fodor_Z/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Fodor_Z/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Holland_K/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Holland_K/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Kuti_J/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Kuti_J/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Nogradi_D/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Nogradi_D/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Wong_C/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Wong_C/0/1/0/all/0/1


why the sextet model?



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector
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dilaton as Higgs impostor?



0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

 m

 e
ffe

ct
iv

e 
m

as
s 

  M
co

n
f0

m fit range:  0.003  0.010

input from volumes  243! 48, 323! 64 

Mcon
f0  = M0 + c1 m      =3.2  

 f0 meson mass requires missing disconnected part

M0=  0.1555 " 0.0070

c1=  25.3 " 1.3

2/dof= 1.21

 effective mass  Mcon
f0     from 0++ connected correlator  

Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold effects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing β-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (χSB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and χSB are not
sufficient to guarantee a light dilaton state if scale symmetry
breaking and χSB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = Θµνxν can be
defined from the symmetric energy-momentum tensor Θµν. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

∂µD
µ = Θ

µ
µ =
β(α)
4α

G
a

µνG
aµν . (4)

Although α(µ) and G
a

µνG
aµν depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with G

a

µν, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator G

a

µνG
aµν and

Θ
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling fσ is defined by the matrix element

�0|Θµν(x)|σ(p)� = fσ

3
(p
µ
p
ν − g

µν
p

2)e−ipx (5)

with p
2 = m

2
σ for the on-shell dilaton state σ(p). From the

divergence of the dilatation current in Eq. (4) we get

�0|∂µDµ(x)|σ(p)� = fσm
2
σe
−ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

Θ
µ
µ

�
NP
=
β(α)
4α

�
G

a

µνG
aµν
�

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
Θ
µ
µ

�
NP
=
β(α)
4α

G
a

µνG
aµν − �0|β(α)

4α
G

a

µνG
aµν
|0�PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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The dilaton: pseudo-Goldstone particle of broken scale invariance
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold effects.
This complication is present in the f0 correlator masked by the
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold effects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing β-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (χSB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and χSB are not
sufficient to guarantee a light dilaton state if scale symmetry
breaking and χSB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = Θµνxν can be
defined from the symmetric energy-momentum tensor Θµν. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

∂µD
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Although α(µ) and G
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aµν depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with G

a

µν, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator G

a
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aµν and
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µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling fσ is defined by the matrix element
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with p
2 = m

2
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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tet simulations, these two types of state will mix with an ob-
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This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.
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rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold effects.
This complication is present in the f0 correlator masked by the
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold effects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing β-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (χSB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and χSB are not
sufficient to guarantee a light dilaton state if scale symmetry
breaking and χSB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = Θµνxν can be
defined from the symmetric energy-momentum tensor Θµν. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
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µν, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator G
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aµν and
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infrared part will be considered in what follows.
The dilaton coupling fσ is defined by the matrix element
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there are two different expectations on limit of right-hand side ratio when conformal window is approached:
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

�σ(p = 0)|
�
Θ
µ
µ(0)
�

NP
|0� � 4

fσ
�0|
�
Θ
µ
µ(0)
�

NP
|0� . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m
2
σ � −

4
f 2
σ

�0|
�
Θ
µ
µ(0)
�

NP
|0� . (10)

Predictions for mσ close to the conformal window depend on
the behavior of fσ and the gluon condensate

�
G

a

µνG
aµν
�

NP
of

Eq. (7). There are two different expectations about the limit
of the gluon condensate to fσ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m

2
σ � (Nc

f
− Nf ) · Λ2 would parametrically van-

ish when the conformal limit is reached. The Λ scale is defined
where the running coupling becomes strong to trigger χSB. The
formal parameter N

c

f
− Nf with the non-physical (fractional)

critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with fσ � Λ [73, 74].

It is important to note that there is no guarantee, even with
a very small β-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice

The lattice determination of the non-perturbative gluon con-
densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator αG

a

µνG
aµν has

quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima→0

�
1
a4 �1 −

1
3

tr UP�
�
=
π2

36
�α
π

GG�lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

�
1− 1

3
tr UP

�
=
�

n

cn ·g2n

0 +a
4 π

2

36

�
b0

β(g0)

� �α
π

GG

�
lattice
+ O(a6) ,

(12)
where b0 is the leading β-function coefficient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a

2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coefficents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coefficients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet β-function [3], if the
model is close to the conformal window with a very small non-
vanishing β-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the χSB hypothesis [98].
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light Higgs-like state could emerge as the pseudo-Goldstone
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ance. Even without association with the dilaton, the scalar
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for mσ close to the conformal window depend on
the behavior of fσ and the gluon condensate
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Eq. (7). There are two different expectations about the limit
of the gluon condensate to fσ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m

2
σ � (Nc

f
− Nf ) · Λ2 would parametrically van-

ish when the conformal limit is reached. The Λ scale is defined
where the running coupling becomes strong to trigger χSB. The
formal parameter N

c

f
− Nf with the non-physical (fractional)

critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with fσ � Λ [73, 74].

It is important to note that there is no guarantee, even with
a very small β-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice

The lattice determination of the non-perturbative gluon con-
densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator αG

a

µνG
aµν has

quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima→0
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading β-function coefficient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a

2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coefficents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coefficients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet β-function [3], if the
model is close to the conformal window with a very small non-
vanishing β-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the χSB hypothesis [98].
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It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet β-function [3], if the
model is close to the conformal window with a very small non-
vanishing β-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the χSB hypothesis [98].
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is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with fσ � Λ [73, 74].

It is important to note that there is no guarantee, even with
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.
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The lattice determination of the non-perturbative gluon con-
densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator αG
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coefficents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coefficients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet β-function [3], if the
model is close to the conformal window with a very small non-
vanishing β-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the χSB hypothesis [98].
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scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,

11

mq = 0
mq ≠ 0

tilted condensate

Not to misidentify rotator gaps
as evidence of chirally symmetric 
phase !

Our sextet simulations are in the p-regime   β=3.2 and β=3.25



simulation details:

tree level improved Symanzik gauge action;  β=6/g2 normalization

smearing in staggered fermions: 2 stout steps 

rooting with two flavors (follow-up work without rooting if model will pass first tests)

RHMC 

multiple time scales and Omelyan integrator

β=3.20  m=0.003-0.010 mass range  243x48, 283x56, 323x64, 483x96 lattices

β=3.25  m=0.004-0.008 mass range  243x48, 283x56, 323x64 lattices

error analysis: mass fits with double Jackknife procedure on covariance matrices
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linear fit range: m= 0.004  0.008
inputs from 323! 64

M2 = c0 + c1 m         linear fit of non Goldstone pions

M2 = c1 m + c2 m2   quadratic fit of Goldstone pion

scPion fit:
c0 =  0.00304 " 0.00079
c1 =  6.47 " 0.12

2/dof= 0.29

=3.25    Goldstone and non Goldstone pion spectra

 

 

non Goldstone scPion
Goldstone Pion
non Goldstone ijPion
non Goldstone i5Pion

Nf=2 sextet bulk phase structure ?
are we sitting in the weak coupling phase at β=3.2 ?  
(most of the results)

new data: β=3.2 ➜ β=3.25
(non)Goldstone splittings and spectroscopy respond like in weak coupling QCD
full scan of bulk phase to reconfirm chiSB phase

β=3.2 ➜ β=3.25
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inputs from 243! 48, 323! 64, 483! 96 

M2 = c0 + c1 m         linear fit of non Goldstone pions

M2 = c1 m + c2 m2   quadratic fit of Goldstone pion

scPion fit:
c0 =  0.00409 " 0.00059
c1 =  8.397 " 0.072

2/dof= 0.24

=3.20    Goldstone and non Goldstone pion spectra
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Goldstone Pion
non Goldstone ijPion
non Goldstone i5Pion

β=3.2
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F (L) = F  + cF g1(M  L)

cF(1 loop) = M2/16 2 F2 

F =  0.03727 ! 0.00018

cF=  0.0237 ! 0.0034

2/dof= 0.44

M  = 0.1350  input

fitted volumes:  243" 48, 323" 64, 483" 96 

F     = 3.2    m=0.003    
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M (L) = M  + cM g1(M  L)

cM(1 loop) = M2/64 2 F2 

M =  0.1350 ! 0.0012

cM=  0.070 ! 0.014

2/dof= 0.86

fitted volumes:  243" 48, 323" 64, 483" 96 

M     = 3.2    m=0.003    

strategy: L→∞ extrapolation first
mass-deformed theory 
close to m=0 critical surface
L→∞ extrapolated chiral and conformal 
scaling tests in sextet model

for L·Mπ > 5    less than one percent 
L correction left

CM and CF signs correct, numerically off

β=3.2
β=3.2
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Ψ
〉

〈Ψ̄Ψ〉L, T = c0 + c1 · g1(MπL, η) fitted η = T /L

〈Ψ̄Ψ〉L, T = 〈Ψ̄Ψ〉(1 − N 2−1
NF 2 · g1(MπL, η)) one − loop

c0=  0.03241 ! 0.00021

c1=  0.0108 ! 0.0031

2/dof= 2.5
M  = 0.1350  input

fitted volumes:  243" 48, 323" 64, 483" 96 

〈Ψ̄Ψ〉 m=0.003 finite volume fit

β=3.2



(Mπ
2 )LO = 2B ⋅m + a2ΔB

(Mπ
2 )NLO = (Mπ

2 )LO + (δMπ
2 )1− loop + (δMπ

2 )
m2

+ (δMπ
2 )

a2m
+ (δMπ

2 )
a4

 would require more data

(δMπ
2 )1− loop = [(Mπ

2 )LO + a2 ]2 ln(Mπ
2 )LO

  a2m

chiral logs not resolved yet for Nf=8, or Nf=12 ! 
 Nf=2 sextet easier to reach chiral log regime

  m2

kept   cutoff term in B  see  LO a2 term
  a4

Mπ
2 = c1m + c2m

2   + logs fitted function for all Goldstones 

nucleon states, rho, a1, higgs, ...Mnuc = c0 + c1m +  logs 

(Fπ )LO = F,    (δFπ )1− loop = [(Mπ
2 )LO + a2 ]ln(Mπ

2 )LO    

Fπ = F + c1m + logs fitted function  

 (δFπ )
m2  m,    (δFπ )

a2m
= a2    

kept     cutoff term in F

ψψ = ψψ 0 + c1m + c2m
2+logs chiral condensate 

        Chiral hypothesis         (in)complete analysis on both sides      Conformal hypothesis

Mπ = cπ ⋅m
1/ym ,      ym = 1+ γ

leading conformal scaling 
functional form for all hadron masses 

Fπ = cF ⋅m
1/ym ,       ym = 1+ γ

chiral log regime was not reached in fermion mass range

same critical exponent 

ψψ = cγ ⋅m
(3−γ )/ym + c1m

infinite volume conformal scaling violation analysis ?

conformal finite size scaling analysis and its scaling 
violations ? 

related criticisms did not change our conclusions

Del Debbio and Zwicky

Asymptotic infinite volume limit has not been reached 
yet in important candidate models for conformal window

Strategy I:  L=∞ extrapolation first and then scaling tests in m

recent improvements (Patella) from Dirac spectrum
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〈 ψ̄ψ 〉 = c0 + c1 · m

 = 3.20

d0=  0.00982 ! 0.00010

d2=  209.95 ! 5.95

2/dof= 3.63

[
1 − m v

d
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]
〈 ψ̄ψ 〉 pq

∣
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mv=m
= d 0 + d2 · m 2

subtracted chiral condensate
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c0=  0.01037 ! 0.00030

c1=  7.278 ! 0.048

2/dof= 1.47  = 3.20

m range in fit:  0.003  0.008

〈 ψ̄ψ 〉 − χcon = d 0 + d2 · m 2

chiral condensate and its subtracted form

two independent determinations of the chiral condensate
consistently non-vanishing in chiral limit
all sextet results are treated as inf volume (only m=0.003 is truly extrapolated)
new run set will have full finite volume analysis without relying on  L·Mπ > 5 less 
than one percent L correction
spectral density analysis in the works  (Giusti and Luscher)

Nf=2 SU(3) sextet chiral condensate
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linear fit  =3.2

F  = c0 + c1 m    

c0 =  0.0279 " 0.0004

c1 =  3.1 " 0.1

2/dof = 0.923

 sextet model      F  from PCAC channel
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linear fit
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quadratic fit  =3.2

M2 = c1 m  + c2 m2   

c1 =  6.35 " 0.21

c2 =  30.9 " 45.3
2/dof = 2.05

 sextet model    Goldstone pion in PCAC channel

 

 

fitted
not fitted
linear part only
quadratic fit

β=3.2β=3.2

Nf=2 SU(3) sextet chiral fits of Mπ and Fπ

χSB
the Goldstone boson of TC

setting the EW scale F=c0

m=0.003-0.006 range close to chiral log regime?     Nf=2 helps, more QCD-like
log detection will require even more precise data

consistency with partially quenched staggered chiral perturbation theory?
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M0=  0.264 " 0.01
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sextet model   A1 and Rho mesons split      linear chiral fit  

 

 

A1
A1 fit
Rho
Rho fit
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c1=  23.1 " 1.4

2/dof= 2.1

sextet model   Rho meson     linear chiral fit  

β=3.2 β=3.2

Nf=2 SU(3) sextet chiral fits Mρ and M(A1)

Mrho/F ~ 7

Mρ remains heavy in massless fermion limit

parity partners remain split in massless fermion limit
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input from volumes  243! 48, 323! 64 
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f0  = M0 + c1 m      =3.2  

 f0 meson mass requires missing disconnected part

M0=  0.1555 " 0.0070

c1=  25.3 " 1.3

2/dof= 1.21

 effective mass  Mcon
f0     from 0++ connected correlator  

β=3.2

Nf=2 SU(3) sextet chiral fits: f0 state with 0++ quantum numbers:

M(f0)/F ~ 6
without disconnected diagram

to include disconnected diagram with good signal/noise: major undertaking

staggered fermions with rooting presents further complication   Bernard et al.

mixed action is being considered

x x

Higgs impostor in this channel?
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 sextet model       F  from PCAC channel
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 sextet model    Goldstone pion in PCAC channel
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 conformal hypothesis breaks down in global fits:

β=3.2 β=3.2

large anomalous dimension?
inconsistent and large anomalous 
dimension is fake!γ (µ)

inconsistent large critical exponents     forced by chiral behavior 
in far infrared

it is not the running          at scale μ!

γ

γ (µ)



large and inconsistent critical exponents γ
are we close enough to the critical surface?
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 F  fit residuals in combined fit 

 conformal hypothesis breaks down in global fits:

fix with scaling violation terms? don’t think so



further Nf=2 SU(3) sextet model tests ? 

L=∞ conformal scaling tests  ✓

conformal FSS tests                illustrated by Nf=12 model

confining force in chiral limit ?    Kieran Holland’s talk next week

Electroweak phase transition   (and dark matter from third flavor)

running (walking?) gauge coupling
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conformal scaling test with FSS - physical model fit  (spline fit similar)



further Nf=2 SU(3) sextet model tests ? 

L=∞ conformal scaling tests  ✓

conformal FSS tests                illustrated by Nf=12 model

confining force in chiral limit ?    Kieran Holland’s talk next week

Electroweak phase transition   (and dark matter from third flavor)

running (walking?) gauge coupling



EW phase transition in sextet model  -  early universe

Kogut-Sinclair consistent with χSB phase at T=0
relevance in early cosmology
We are planning to run sextet thermodynamics
Third massive fermion flavor (electroweak singlet) dark matter?

finite temperature 
EW phase transition?

SU(3) gauge theory with sextet fermions

Figure 4: The chiral susceptibility on Nt = 8 and Nt = 12 lattices from [6] and [7] respectively.

to a given Nt = 1/(aT ), β is used to change the temperature and the continuum limit is achieved

via Nt →∞. A thermal phase transition corresponds to a critical βc(Nt) coupling for each Nt which

for large Nt scales according to the continuum β -function; in particular βc → ∞. A bulk phase

transition on the other hand is characterized by critical βc(Nt) couplings which do not scale and for

large Nt approach a fixed value.

As always with any thermodynamics study finite volume effects needs to be under control and

the quark mass needs to be small enough. Since staggered fermions are used the lattice spacing

also needs to be small enough in order to avoid dangerous taste violation effects especially because

the low energy dynamics is very sensitive to the number of massless flavors.

The critical coupling βc was determined in [5] from the peak of the chiral susceptibility on

Nt = 4 lattices for two values of the quark mass. The location of the peaks appear to be mass

independent and is around βc ≈ 6.3, see left panel of figure 3. The Nt = 6 result at the same two

quark masses also from [5] is shown on the right panel of figure 3. The critical coupling moved

to βc ≈ 6.6. On even finer lattices [6], at Nt = 8, the critical coupling moved further, to around

βc = 6.7 with additional small quark masses added, see left panel of figure 4. Again the quark

mass dependence is quite small. Finally the Nt = 12 lattices are preliminary [7] at the moment but

seem to indicate further increase in βc, see the right panel of figure 4. If indeed βc scales with Nt

correctly the located phase transitions would correspond to a continuum phase transition indicating

chirally broken symmetry at zero temperature.

A priori it is not clear how large Nt needs to be in order to be in the scaling regime. Most

importantly the thin link action suffers from possible large taste violation. Unfortunately, these

effects are not quantified yet. One could in principle reduce them by using smeared actions. In any

case a continuum extrapolation is necessary.
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finite temperature 
EW phase transition?

Kogut-Sinclair Kogut-Sinclair



running (walking?) gauge coupling



χSB

DeGrand et al. find: Nf=2 sextet beta function may have an IRFP zero or walks? 
model has small anomalous dimension ?
γ(μ) < 0.45   controversy, if conformal;    if       what is γ(μ) ? 

SU(3) gauge theory with sextet fermions
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Figure 1: The step scaling function calculated in [2] (left) with thin links indicating an infrared fixed point.

Using fat links for the fermion action (right) the fixed point disappears [3]. See the text for more details.

The calculatation of the running coupling in the Schroedinger functional scheme using Wilson

fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson

action a zero of the step scaling function was measured at one lattice spacing corresponding to

4
4 → 8

4
, see left panel of figure 1. Two more lattice spacings corresponding to 6

4 → 12
4

and

8
4→ 16

4
were then added [3] using an improved (fat link) Wilson action, see right panel of figure

1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result

was an artifact. The gauge action was the same in the two calculations. However changing not only

the fermion action but the gauge action as well to use fat links resulted in a step scaling function

with a zero for the lattice spacing corresponding to 6
4→ 12

4
, see figure 2. A possible interpretation

is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-

tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given

action in order to decide which finite lattice spacing result is the one prevailing all the way to the

continuum. A good check of the procedure would be the reproduction of the 2-loop β -function for

small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different

non-perturbatively well-defined scheme. Reproducing the 2-loop β -function for small coupling is

always a good test for any scheme. For larger coupling two schemes can disagree on the value of

the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme

too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-

ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature

Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there

is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are

complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4

IRFP disappearing? 

SU(3) gauge theory with sextet fermions
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Figure 2: The step scaling function from [4] using fat links for the fermion action only (blue) and fat links
for both the fermion and gauge actions (black). The fixed point is visible again; see the text for more details.

Figure 3: The chiral susceptibility on Nt = 4 and Nt = 6 lattices from [5].

structure with various types of phase transitions and phase boundaries most of which however hap-
pens to be regularization specific and as such an artifact with no consequence to the continuum.
Bulk phase transitions are an example. A careful continuum extrapolation of the findings is hence
again essential.

The thermodynamic study of the Nf = 2 sextet model was initiated in [5]. Using unimproved
rooted staggered fermions in the fixed−Nt approach the Polyakov loop and the chiral condensate
was measured at various quark masses. In the fixed−Nt approach one lattice spacing corresponds

5

(DeGrand et al.)
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
α(q) of the MS scheme [205],

�E(t)� = 3

4πt2
α(q)

�
1 + k1α(q) +O(α2)

�
, q =

1√
8t
, k1 = 1.0978 + 0.0075×Nf .
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the β-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

√
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

αc(L) =
4π

3

�t2E(t)�
1 + δ(c)

.

This volume dependent coupling includes the
normalization factor δ(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

δ(c) = ϑ4
3(e

−1/c2)− 1− c4π2

3
,

where ϑ3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the β-function) at weak cou-
pling.
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defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:
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.

This volume dependent coupling includes the
normalization factor δ(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

δ(c) = ϑ4
3(e
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3
,

where ϑ3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the β-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

√
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

αc(L) =
4π

3
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1 + δ(c)

.

This volume dependent coupling includes the
normalization factor δ(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

δ(c) = ϑ4
3(e

−1/c2)− 1− c4π2

3
,

where ϑ3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the β-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

√
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

αc(L) =
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This volume dependent coupling includes the
normalization factor δ(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

δ(c) = ϑ4
3(e
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3
,

where ϑ3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

t is the gradient flow time  
Running coupling definition (range is (8t)1/2) :

 Running coupling definition from gauge field gradient flow

 3rd Jacobi function

Nf=4  c=0.3

Nf=4
c=0.3

 run production now in sextet model

massless fermions; antiperiodic all directions  s=1.5 step
Nf=4 staggered fermions; 4-stout;  L=12-18; 16-24; 24-36

two-loop beta-function 
non-universal correction?



                          Summary and Outlook

Consistency with        in Nf=2 SU(3) sextet model 

Inconsistency with conformal symmetry and IRFP in all L=∞ like tests 

Results of DeGrand et al. reconciled if walking coupling

Scalar spectrum from disconnected correlator is highest priority

S-parameter and size of anomalous dimension remain unresolved 
(“effective” γ in 1-2 range) 

Electroweak phase transition?

χSB

χSB




