Kaon mixing beyond the SM from $N_f = 2 \text{ tmQCD}$

R. Frezzotti (on behalf of ETM Collaboration)

Univ. and INFN of Rome - Tor Vergata

GGI workshop "New Frontiers in Lattice Gauge Theory" Florence, September 19, 2012 $K^0 - \bar{K}^0$ oscillations and constraints on new physics (NP)

Flavour physics processes vanishing at tree level in the SM (possibly also CKM- or chirality-suppressed) are a key tool to search for NP virtual particle effects. FCNC $\Delta F = 2$ transitions provided most stringent constraints on NP (e.g. technicolor) models.

Here: parameters describing $K^0 - \bar{K}^0$ mixing in the framework of $\mathcal{H}_{\text{off}}^{\Delta S=2} = \sum_{i=1}^{5} c_i (\Lambda/\mu) \mathcal{O}_i(x\mu) + \sum_{i=1}^{3} \tilde{c}_i (\Lambda/\mu) \tilde{\mathcal{O}}_i(x\mu),$ $\mathcal{O}_1 = [\bar{s}^{\alpha} \gamma_{\mu} (1 - \gamma_5) d^{\alpha}] [\bar{s}^{\beta} \gamma_{\mu} (1 - \gamma_5) d^{\beta}]$ $\mathcal{O}_2 = [\bar{s}^{\alpha}(1-\gamma_5)d^{\alpha}][\bar{s}^{\beta}(1-\gamma_5)d^{\beta}]$ $\mathcal{O}_3 = [\bar{s}^{\alpha}(1-\gamma_5)d^{\beta}][\bar{s}^{\beta}(1-\gamma_5)d^{\alpha}]$ $\mathcal{O}_{4} = [\bar{s}^{\alpha}(1-\gamma_{5})d^{\alpha}][\bar{s}^{\beta}(1+\gamma_{5})d^{\beta}]$ $\mathcal{O}_5 = [\bar{s}^{\alpha}(1-\gamma_5)d^{\beta}][\bar{s}^{\beta}(1+\gamma_5)d^{\alpha}]$ $\tilde{\mathcal{O}}_1 = [\bar{s}^{\alpha} \gamma_{\mu} (1 + \gamma_5) d^{\alpha}] [\bar{s}^{\beta} \gamma_{\mu} (1 + \gamma_5) d^{\beta}]$ $\tilde{\mathcal{O}}_2 = [\bar{s}^{\alpha}(1+\gamma_5)d^{\alpha}][\bar{s}^{\beta}(1+\gamma_5)d^{\beta}]$ $\tilde{\mathcal{O}}_3 = [\bar{s}^{\alpha}(1+\gamma_5)d^{\beta}][\bar{s}^{\beta}(1+\gamma_5)d^{\alpha}]$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → 釣ぬ()?

Bag parameters and ratios thereof relevant for $\mathcal{K}^0 - \overline{\mathcal{K}}^0$ oscillations Only the parity-even part of \mathcal{O}_i ($\tilde{\mathcal{O}}_i$), i = 1, 2, 3, 4, 5, matters i.e.

$$\begin{array}{lll} O_1 &=& [\bar{s}^{\alpha}\gamma_{\mu}d^{\alpha}][\bar{s}^{\beta}\gamma_{\mu}d^{\beta}] + [\bar{s}^{\alpha}\gamma_{\mu}\gamma_{5}d^{\alpha}][\bar{s}^{\beta}\gamma_{\mu}\gamma_{5}d^{\beta}] \\ O_2 &=& [\bar{s}^{\alpha}d^{\alpha}][\bar{s}^{\beta}d^{\beta}] + [\bar{s}^{\alpha}\gamma_{5}d^{\alpha}][\bar{s}^{\beta}\gamma_{5}d^{\beta}] \\ O_3 &=& [\bar{s}^{\alpha}d^{\beta}][\bar{s}^{\beta}d^{\alpha}] + [\bar{s}^{\alpha}\gamma_{5}d^{\beta}][\bar{s}^{\beta}\gamma_{5}d^{\alpha}] \\ O_4 &=& [\bar{s}^{\alpha}d^{\alpha}][\bar{s}^{\beta}d^{\beta}] - [\bar{s}^{\alpha}\gamma_{5}d^{\alpha}][\bar{s}^{\beta}\gamma_{5}d^{\beta}] \\ O_5 &=& [\bar{s}^{\alpha}d^{\beta}][\bar{s}^{\beta}d^{\alpha}] - [\bar{s}^{\alpha}\gamma_{5}d^{\beta}][\bar{s}^{\beta}\gamma_{5}d^{\alpha}] \end{array}$$

$$\begin{split} & \mathcal{K} \cdot \bar{\mathcal{K}} \text{ matrix elements in units of vacuum saturation approximation} \\ & \langle \bar{\mathcal{K}}^0 | O_1(\mu) | \mathcal{K}^0 \rangle = \xi_1 \, B_1(\mu) \, m_{\mathcal{K}}^2 f_{\mathcal{K}}^2 \\ & \langle \bar{\mathcal{K}}^0 | O_i(\mu) | \mathcal{K}^0 \rangle = \xi_i \, B_i(\mu) \, \left[\frac{m_{\mathcal{K}}^2 f_{\mathcal{K}}}{m_s(\mu) + m_d(\mu)} \right]^2 \quad i = 2, 3, 4, 5 , \\ & \xi_i = (8/3, \, -5/3, \, 1/3, \, 2, \, 2/3). \text{ For accurate determinations define} \\ & R_i = \langle \bar{\mathcal{K}}^0 | O_i | \mathcal{K}^0 \rangle / \langle \bar{\mathcal{K}}^0 | O_1 | \mathcal{K}^0 \rangle \quad i = 2, 3, 4, 5 \end{split}$$

Pioneering quenched lattice QCD studies (with two a's each):
* Donini et al., Phys.Lett. B470 (1999) 233 (clover Wilson fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)
* Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions)

ETMC (arXiv:1207.1287) continuum $N_f = 2$ results for B_i , R_i

i	1	2	3	4	5			
MS (3 GeV)								
Bi	0.51(02)	0.51(02)	0.85(07)	0.82(04)	0.66(07)			
R _i	1	-16.3(06)	5.5(04)	30.6(13)	8.2(05)			
RI-MOM (3 GeV)								
Bi	0.50(02)	0.63(03)	1.07(09)	0.95(06)	0.75(09)			
R _i	1	-15.4(06)	5.3(03)	26.9(12)	7.1(05)			

[$\overline{\text{MS}}$ -scheme as in Buras, Misiak, Urban, Nucl.Phys. B586 (2000) 397] Quenching of *s*-quark: from comparison with $N_f = 2 + 1$ results

for B_1 ($a \rightarrow 0$) \Rightarrow systematic quenching error $\lesssim 1 - 2\%$.

Lattice artifacts are typically 5-10 times larger - depending on O_i and action details \Rightarrow <u>continuum limit crucial</u>

At one a (\sim 0.086 fm): $\mathit{N_f}$ = 2 + 1 results from RBC+UKQCD, arXiv:1206.5737

Update of the SM+NP UTfit-'08 analysis [JHEP 0803 (2008) 049] ...

... in arXiv:1207.1287 – triggered by our unquenched B_i -estimates

• Input: experimental and/or phenomenological determinations of heavy meson masses, decay widths and leptonic decay constants, CKM parameters, heavy quark masses, $B_{K,D,B}$ -parameters, ...

• NP in $\Delta F = 2$ processes via $N_f = 3$ effective weak Hamiltonian

$$\mathcal{H}_{\text{eff;LO}}^{\Delta F=2} = \sum_{f=s,c,b} \left[\sum_{i=1}^{5} c_{i} \mathcal{O}_{i}^{fd} + \sum_{i=1}^{3} \tilde{c}_{i} \tilde{\mathcal{O}}_{i}^{fd} \right]$$

neglecting non-local contributions and subleading local ones.

- SM+NP UTfit results provide bounds on C_i (of *P*-even O_i) $C_i \sim F_i L_i / \Lambda^2$, with F_i the (complex) NP coupling and
- L_i a loop factor specific to the interaction that generates O_i .

•
$$|\epsilon_{\mathcal{K}}| \propto \operatorname{Im}[\langle \mathcal{K}^{0} | \mathcal{H}_{\mathrm{eff;LO}}^{\Delta F=2; P-even} | \bar{\mathcal{K}}^{0} \rangle] \Rightarrow \text{bounds on } \operatorname{Im}[\mathcal{C}_{i}]$$

Switching on one C_i at the time (with $L_i = F_i = 1$) yields ...

	95% allowed	same from	lower bound	same from
	range (GeV $^{-2}$)	UTfit-2008	on Λ (TeV)	UTfit-2008
$\operatorname{Im} C_1^K$	$[-2.8, 2.6] \cdot 10^{-15}$	$[-4.4, 2.8] \cdot 10^{-15}$	$1.9\cdot 10^4$	$1.5\cdot 10^4$
$\operatorname{Im} C_2^{\overline{K}}$	$[-1.6, 1.8] \cdot 10^{-17}$	$[-5.1, 9.3] \cdot 10^{-17}$	$24\cdot 10^4$	$10\cdot 10^4$
$\operatorname{Im} C_3^{\overline{K}}$	$[-6.7, 5.9] \cdot 10^{-17}$	$[-3.1, 1.7] \cdot 10^{-16}$	$12\cdot10^4$	$5.7\cdot10^4$
$\operatorname{Im} C_4^K$	$[-4.1, 3.6] \cdot 10^{-18}$	$[-1.8, 0.9] \cdot 10^{-17}$	$49\cdot 10^4$	$24\cdot 10^4$
$\operatorname{Im} C_5^K$	$[-1.2, 1.1] \cdot 10^{-17}$	$[-5.2, 2.8] \cdot 10^{-17}$	$29\cdot 10^4$	$14\cdot 10^4$

* models with tree-level FCNC from NP excluded up to 10^5 TeV * gluinos exchange in MSSM $\Rightarrow L_{i>1} \sim \alpha_s^2(\Lambda) \sim 0.01$ ($\Lambda_{min} = \Lambda_{min}^{tab}/10$) * loop-mediated weak FCNC $\Rightarrow L_{i>1} \sim \alpha_w^2(\Lambda) \sim 10^{-3}$ ($\Lambda_{min} = \Lambda_{min}^{tab}/30$) * warped 5dim model with flavour hierarchy (RS scenario) $F_4 = \frac{2m_d m_s}{Y_{2}^2 v^2}$, $L_4 = (g_{KKs}^*)^2$, $\Lambda = M_{KKG} \Rightarrow F_4 L_4 \sim 10^{-8}$ ($\Lambda_{min} = \Lambda_{min}^{tab}/10^4$) ETMC lattice computation of (renormalized) $\langle K | O_i | \bar{K} \rangle$...

... based on a lattice regularization of the correlator

 $\sum_{\vec{y},\vec{z}} \langle \mathcal{P}_{\mathcal{K}}(y) O_i(x) \mathcal{P}_{\vec{\mathcal{K}}}(z) \rangle$ that guarantees

- continuum-like renormalization pattern of O_i 's
- O(a) improvement of physical quantities (no artefacts $\sim a^{2k+1}$)
- numerical efficiency (\Rightarrow data at several *a*'s, $a^2 \rightarrow 0$ feasible)

Mixed Action setup of maximally twisted mass (Mtm) lattice QCD $S = S_{sea}^{\text{Mtm}} + S_{val}^{OS} + S_{ghost}^{OS}, \qquad \psi = (u_{sea}, d_{sea}) \text{ & valence } q_f\text{'s}$ $S_{sea}^{\text{Mtm}} = a^4 \sum_x \bar{\psi}(x) \Big\{ \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - i\gamma_5 \tau^3 r_{sea} W_{cr} + \mu_{sea} \Big\} \psi(x)$ $S_{val}^{OS} = a^4 \sum_{x,f} \bar{q}_f(x) \Big\{ \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - i\gamma_5 r_f W_{cr} + \mu_f \Big\} q_f(x)$ $W_{cr} \equiv M_{cr} - \frac{a}{2} \nabla^*_\mu \nabla_\mu \qquad M_{cr} \equiv \text{ optimal critical } m_0$ MA setup of MtmLQCD (R.F., G.C. Rossi, JHEP10 (2004) 070) Two degenerate sea quarks with $\mu_{sea} = \mu_{\ell}$ & four valence quarks: q_1 , q_3 with $\mu_1 = \mu_3 \equiv \mu_{"s"}$, q_2 , q_4 with $\mu_2 = \mu_4 \equiv \mu_{\ell}$

and valence Wilson parameters $r_1=r_2=r_3=-r_4$, $|r_f|=1$

Evaluate two- and three-point correlators involving the fields

$$\begin{split} P^{12} &= \bar{q}_1 \gamma_5 q_2 \,, \quad P^{34} = \dots \,, \qquad A^{12}_{\mu} = \bar{q}_1 \gamma_{\mu} \gamma_5 q_2 \,, A^{34}_{\mu} = \dots \\ O^{MA}_{1[\pm]} &= 2 \left\{ \left(\left[\bar{q}_1^{\alpha} \gamma_{\mu} q_2^{\alpha} \right] \left[\bar{q}_3^{\beta} \gamma_{\mu} q_4^{\beta} \right] + \left[\bar{q}_1^{\alpha} \gamma_{\mu} \gamma_5 q_2^{\alpha} \right] \left[\bar{q}_3^{\beta} \gamma_{\mu} \gamma_5 q_4^{\beta} \right] \right) \pm \left(2 \leftrightarrow 4 \right) \right\} \\ O^{MA}_{2[\pm]} &= 2 \left\{ \left(\left[\bar{q}_1^{\alpha} q_2^{\alpha} \right] \left[\bar{q}_3^{\beta} q_4^{\beta} \right] + \left[\bar{q}_1^{\alpha} \gamma_5 q_2^{\alpha} \right] \left[\bar{q}_3^{\beta} \gamma_5 q_4^{\beta} \right] \right) \pm \left(2 \leftrightarrow 4 \right) \right\} \\ O^{MA}_{3[\pm]} &= 2 \left\{ \left(\left[\bar{q}_1^{\alpha} q_2^{\beta} \right] \left[\bar{q}_3^{\beta} q_4^{\alpha} \right] + \left[\bar{q}_1^{\alpha} \gamma_5 q_2^{\beta} \right] \left[\bar{q}_3^{\beta} \gamma_5 q_4^{\alpha} \right] \right) \pm \left(2 \leftrightarrow 4 \right) \right\} \\ O^{MA}_{4[\pm]} &= 2 \left\{ \left(\left[\bar{q}_1^{\alpha} q_2^{\beta} \right] \left[\bar{q}_3^{\beta} q_4^{\beta} \right] - \left[\bar{q}_1^{\alpha} \gamma_5 q_2^{\beta} \right] \left[\bar{q}_3^{\beta} \gamma_5 q_4^{\beta} \right] \right) \pm \left(2 \leftrightarrow 4 \right) \right\} \\ O^{MA}_{5[\pm]} &= 2 \left\{ \left(\left[\bar{q}_1^{\alpha} q_2^{\beta} \right] \left[\bar{q}_3^{\beta} q_4^{\alpha} \right] - \left[\bar{q}_1^{\alpha} \gamma_5 q_2^{\beta} \right] \left[\bar{q}_3^{\beta} \gamma_5 q_4^{\alpha} \right] \right) \pm \left(2 \leftrightarrow 4 \right) \right\} \end{split}$$

in particular

$$C_{i}(x_{0}) = \left(\frac{a}{L}\right)^{3} \sum_{\vec{x}} \langle \mathcal{P}_{y_{0}+\frac{T}{2}}^{43} O_{i[+]}^{MA}(\vec{x}, x_{0}) \mathcal{P}_{y_{0}}^{21} \rangle, \quad i = 1, \dots, 5$$

In such a MA setup one finds (JHEP10 (2004) 070, arXiv:1207.1287)

• the op.s $O_{i[+1]}^{MA}$ renormalize as in the formal QCD:

$$\begin{pmatrix} O_{1[+1]}^{MA} \\ O_{2[+1]}^{MA} \\ O_{3[+1]}^{MA} \\ O_{4[+1]}^{MA} \\ O_{5[+1]}^{MA} \end{pmatrix} = \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & Z_{32} & Z_{33} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{45} \\ 0 & 0 & 0 & Z_{54} & Z_{55} \end{pmatrix} \begin{pmatrix} O_{1A}^{MA} \\ O_{2[+1]}^{MA} \\ O_{3[+1]}^{MA} \\ O_{4[+1]}^{MA} \\ O_{4[+1]}^{MA} \\ O_{5[+1]}^{MA} \end{pmatrix}^{(b)}$$

[mass-independent Z_{ij} related to plain Wilson 4-fermion op. RC's]

• the relevant quark bilinear operators renormalize according to $[P^{12/34}] = Z_{S/P}[P^{12/34}]^{(b)}, \qquad [A_{\mu}^{12/34}] = Z_{A/V}[A_{\mu}^{12/34}]^{(b)}$

• if $\mu_{1,3} = \mu_s$ and $\mu_{2,4} = \mu_{u/d}$ the m.e. $\langle P^{43} | O_{i[+]}^{MA} | P^{12} \rangle$ extracted from the correlators with insertion of $O_{i[+]}^{MA}$ as $a \to 0$ approaches (with rate a^2) the continuum QCD m.e. $\langle \overline{K}^0 | O_i | \overline{K}^0 \rangle$

$eta=$ 3.80, a \sim 0.10 fm							
$a\mu_\ell=a\mu_{sea}$	$a^{-4}(L^3 imes T)$	а μ "s"	N _{stat}				
0.0080	$24^{3} \times 48$	0.0165, 0.0200, 0.0250	170				
0.0110	**	"	180				
$eta=$ 3.90, $a\sim$ 0.09 fm							
0.0040	$24^3 imes 48$	0.0150, 0.0220, 0.0270	400				
0.0064	**	"	200				
0.0085	**		200				
0.0100	"	"	160				
0.0030	$32^{3} \times 64$	"	300				
0.0040	**	11	160				
$eta=$ 4.05, $a\sim$ 0.07 fm							
0.0030	$32^{3} \times 64$	0.0120, 0.0150, 0.0180	190				
0.0060	**	"	150				
0.0080	**	"	220				

Lattice parameters for correlators at $\beta = 3.80$, 3.90 and 4.05.

To improve signal-to-noise ratio: stochastic spatial-wall sources used for $\mathcal{P}_{y_0}^{21}$, $\mathcal{P}_{y_0+T/2}^{43}$ and sum over spatial location of O_i .

Time-plateaux for bare estimators of B_1 at $\beta = 3.90$, L/a = 24&32

Bare bag-parameter estimators vs. $2\tau/T \equiv 2(x_0 - y_0)/T$, T = 2L. Time-plateaux for bare estimators of $B_{2,...,5}$ at $\beta = 3.90$, L/a = 24&32

Renormalization constants (RC) of 4– & 2—quark operators evaluated in the RI-MOm scheme (Martinelli et al. Nucl.Phys. B445 (1995) 81)

following the implementation in JHEP 1008 (2010) 068 , with details specific to O_i given in Phys.Rev. D83 (2011) 014505, arXiv:1207.1287

A convenient basis for RC of the relevant 4-quark operators is

$$\begin{split} & Q_{1[\pm]}^{MA} = 2 \big\{ \left([\bar{q}_1 \gamma_\mu q_2] [\bar{q}_3 \gamma_\mu q_4] + [\bar{q}_1 \gamma_\mu \gamma_5 q_2] [\bar{q}_3 \gamma_\mu \gamma_5 q_4] \right) \pm \left(2 \leftrightarrow 4 \right) \big\} \\ & Q_{2[\pm]}^{MA} = 2 \big\{ \left([\bar{q}_1 \gamma_\mu q_2] [\bar{q}_3 \gamma_\mu q_4] - [\bar{q}_1 \gamma_\mu \gamma_5 q_2] [\bar{q}_3 \gamma_\mu \gamma_5 q_4] \right) \pm \left(2 \leftrightarrow 4 \right) \big\} \\ & Q_{3[\pm]}^{MA} = 2 \big\{ \left([\bar{q}_1 q_2] [\bar{q}_3 q_4] - [\bar{q}_1 \gamma_5 q_2] [\bar{q}_3 \gamma_5 q_4] \right) \pm \left(2 \leftrightarrow 4 \right) \big\} \\ & Q_{4[\pm]}^{MA} = 2 \big\{ \left([\bar{q}_1 q_2] [\bar{q}_3 q_4] + [\bar{q}_1 \gamma_5 q_2] [\bar{q}_3 \gamma_5 q_4] \right) \pm \left(2 \leftrightarrow 4 \right) \big\} \\ & Q_{5[\pm]}^{MA} = 2 \big\{ \left([\bar{q}_1 \sigma_{\mu\nu} q_2] [\bar{q}_3 \sigma_{\mu\nu} q_4] \right) \pm \left(2 \leftrightarrow 4 \right) \big\} \\ & (\text{for } \mu > \nu), \end{split}$$

with q_f the valence quarks in our MA setup and $\sigma_{\mu\nu} = [\gamma_{\mu}, \gamma_{\nu}]/2$

In fact the following renormalization formulae hold

$$O_{i[+]}^{MA}\Big|^{\mathrm{ren}} = Z_{ij}O_{j[+]}^{MA}\Big|^{(b)},$$

 $Z = \Lambda^{[+]}Z_Q(\Lambda^{[+]})^{-1},$

$$Z_Q = \begin{pmatrix} \mathcal{Z}_{11}^{[+]} & 0 & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{22}^{[-]} & -\mathcal{Z}_{23}^{[-]} & 0 & 0 \\ 0 & -\mathcal{Z}_{32}^{[-]} & \mathcal{Z}_{33}^{[-]} & 0 & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{44}^{[+]} & \mathcal{Z}_{45}^{[+]} \\ 0 & 0 & 0 & \mathcal{Z}_{54}^{[+]} & \mathcal{Z}_{55}^{[+]} \end{pmatrix}$$

To extract RC compute quark propagators $S_{q_f}(p)$ and correlators

$$\begin{split} & G_{i}(p, \, p, \, p, \, p)_{\alpha \, \beta \, \gamma \, \delta}^{a \, b \, c \, d} = \\ & a^{16} \sum_{x_{1}, x_{2}, x_{3}, x_{4}} e^{-ip(x_{1}-x_{2}+x_{3}-x_{4})} \langle \left[q_{1}(x_{1})\right]_{\alpha}^{a} \left[\bar{q}_{2}(x_{2})\right]_{\beta}^{b} \, Q_{i}(0) \, \left[q_{3}(x_{3})\right]_{\gamma}^{c} \left[\bar{q}_{4}(x_{4})\right]_{\delta}^{d} \rangle \,. \end{split}$$

... impose the standard RI-MOM renormalization conditions at finite quark mass and for a suitable set of p's and proceed to the analysis of the resulting RC-estimators along the following steps:

- \star valence and sea chiral extrapolation
- \star removal of O($a^2 \tilde{g}^2)$ artefacts
- \star NLO evolution of $Z^{\rm RI'}_{ij}(\tilde{p}^2;a^2\tilde{p}^2;0;0)$ to a reference scale μ_0^2
- \star from $Z_{ii}^{\mathrm{RI'}}(\mu_0^2; a^2 \tilde{p}^2; 0; 0)$ RC are evaluated
- either extrapolating to $\tilde{p}^2 = 0$ (M1-method)
- or taking \tilde{p}^2 fixed in physical units (M2: here $\tilde{p}^2 = 9 \text{ GeV}^2$)

I refer to arXiv:1207.1287 (app.s A and B) for technical details see backup slides for typical results (RI-MOM, 2 GeV scheme) Extraction of B_i with partial cutoff effect cancellation

$$\begin{split} \xi_1 B_1 &= \frac{Z_{11}}{Z_A Z_V} \frac{\langle K^{34} | O_1 | K^{21} \rangle}{\langle K^{34} | A_0^{34} | 0 \rangle \langle 0 | A_0^{21} | K^{21} \rangle} \\ \xi_i B_i &= \frac{Z_{ij}}{Z_A Z_V} \frac{\langle K^{34} | O_j | K^{21} \rangle}{\langle K^{34} | P^{34} | 0 \rangle \langle 0 | P^{21} | K^{21} \rangle} , \quad i = 2, 3, 4, 5 \end{split}$$

 ${\cal B}_{{\cal K},{
m lat}}^{
m RGI}$ vs. $({\it af_0})^2$ at fixed quark masses $\hat{\mu}_\ell^*\sim$ 40 MeV, $\hat{\mu}_h^*\sim$ 90 MeV

... this suggested an estimator of R_i with reduced lattice artefacts

$$\tilde{R}_{i} = \left(\frac{f_{K}}{m_{K}}\right)_{\text{expt.}}^{2} \left[\frac{M^{12}M^{34}}{F^{12}F^{34}} \frac{Z_{ij}\langle K^{34}|O_{j}|K^{21}\rangle}{Z_{11}\langle K^{34}|O_{1}|K^{21}\rangle}\right]_{\text{Lat.}}, \quad i, j = 2, 3, 4, 5$$

Continuum and chiral extrapolation (at fixed $\hat{\mu}_s = 95(6)$ MeV) [Symbol^ denotes renormalization in the (\overline{MS} , 2*GeV*)-scheme; $f_0 = 121.0(1)$ MeV, $\hat{B}_0 = 2.84(11)$ GeV]

- O(a^2) artefacts happen to have negligible μ_ℓ -dependence
- ullet choose a (standard) fit ansatz based on SU(2) $\chi \mathsf{PT}$

 $\hat{B}_{i} = B_{i}^{\chi}(r_{0}\hat{\mu}_{s}) \left[1 + b_{i}(r_{0}\hat{\mu}_{s}) \mp \frac{2\hat{B}_{0}\hat{\mu}_{\ell}}{2(4\pi f_{0})^{2}} \log \frac{2\hat{B}_{0}\hat{\mu}_{\ell}}{(4\pi f_{0})^{2}}\right] + D_{Bi}^{\chi}(r_{0}\hat{\mu}_{s}) \left[\frac{a}{r_{0}}\right]^{2}$ with sign ± being - for i = 1, 2, 3 and + for i = 4, 5and fit formulae with 1st & 2nd order polynomial μ_{ℓ} -dependence $\hat{B}_{i} = B_{i}^{\chi}(r_{0}\hat{\mu}_{s}) \left[1 + P_{1}((r_{0}\hat{\mu}_{s})[r_{0}\hat{\mu}_{\ell}] + P_{2}(r_{0}\hat{\mu}_{s})[r_{0}\hat{\mu}_{\ell}]^{2}\right] + D_{Bi}^{pol}(r_{0}\hat{\mu}_{s}) \left[\frac{a}{r_{0}}\right]^{2}$ fit ansatz for R_{i} 's follow from those for B_{i} (taking $M_{si}^{2}/(\hat{\mu}_{s} + \hat{\mu}_{\ell}) \sim \hat{B}_{0}$)

 spread of results from different ansatz included in the systematic error [for B₁^{RGI} = 0.729(25)(17), with 0.017 from 0.014(chiral-fit), 0.009(latt. artefacts), 0.004(ren.)] $B_1 = B_K$: combined chiral and continuum extrapolation (χ PT ansatz)

M1 or M2 refer to the RI-MOM evaluation method for Z_{VA+AV}^{RGI} and Z_A .

3

RC from M1-method. The dashed black line represents the continuum limit in case of linear fit in $\hat{\mu}_{\ell}$

RC from M1-method. The dashed black line represents the continuum limit in case of linear fit in $\hat{\mu}_{\ell}$

R. Frezzotti (on behalf of ETM Collaboration)

Thanks for your attention!

æ

Results for RC-matrix Z_Q above: RI-MOM (M1-def), 2 GeV scale

$$\begin{split} Z_Q^{\mathrm{M1}}|_{\beta=3.80} = \begin{pmatrix} 0.415(12) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.503(13) & 0.237(08) & 0 & 0 & 0 \\ 0 & 0.016(01) & 0.190(08) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.236(08) & -0.013(02) \\ 0 & 0 & 0 & 0 & -0.239(08) & 0.572(14) \end{pmatrix} \\ \\ Z_Q^{\mathrm{M1}}|_{\beta=3.90} = \begin{pmatrix} 0.432(07) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.517(07) & 0.237(05) & 0 & 0 & 0 \\ 0 & 0.018(01) & 0.212(05) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.259(05) & -0.014(01) \\ 0 & 0 & 0 & 0 & -0.241(05) & 0.591(08) \end{pmatrix} \\ \\ Z_Q^{\mathrm{M1}}|_{\beta=4.05} = \begin{pmatrix} 0.486(06) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.566(08) & 0.256(07) & 0 & 0 & 0 \\ 0 & 0.019(01) & 0.241(06) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.294(05) & -0.012(01) \\ 0 & 0 & 0 & 0 & -0.256(07) & 0.659(10) \end{pmatrix} \\ \\ \end{array}$$

Results for RC-matrix Z_Q above: RI-MOM (M2-def), 2 GeV scale