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Overview

• Supersymmetry on the lattice: The problem

• Topological twisting of supersymmetric gauge theories

• The most supersymmetric gauge theory in (3+1)-dimensions

• Conformal symmetry of the continuum theory

• Is the lattice theory conformal at large distances?

• Numerical results
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Supersymmetry

Forget the lattice for a moment

Supersymmetry is invariance under transformations that take bosons φ to
fermions ψ and vice versa

Simple example: supersymmetric quantum mechanics

S =

∫
dt

[
1

2
(∂tφ)2 + ψ̄∂tψ +

1

2
W ′(φ)2 + ψ̄W ′′(φ)ψ

]

Invariant under

δφ = ψ̄ǫ
δψ = (∂tφ−W ′(φ))ǫ
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”Topological twisting”

Supersymmetric invariance of the action can be made trivial by a Q with
Q2 = 0:

Qφ = ψ
Qψ = 0
Qψ̄ = B
QB = 0

and

S = Q

{∫
dtψ̄

[
−(∂tφ+W ′(φ)) −

1

2
B

]}
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Supersymmetry on a space-time lattice

Two supersymmetry transformations generate a time translation: δ1δ2 ∼ ∂t

In quantum field theory this becomes a space-time translation: δ1δ2 ∼ P̂

Here is the basic problem: A space-time lattice is only invariant under
discrete translations – will obviously break supersymmetry!

Can we cure the problem by defining a kind of ”discrete supersymmetry”?
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There is not even discrete supersymmetry

There is no unique definition of a derivative on a lattice

Examples:

Backward derivative: a∆−f(x) ≡ f(x) − f(x− a)

Forward derivative: a∆+f(x) ≡ f(x+ a) − f(x)

Perhaps a translation should be either a forward or backward lattice
translation?

But lattice derivatives do not not satisfy the Leibniz rule, a crucial ingredient
in proving supersymmetry invariance
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Topological field theory

Is there a way out?

Supersymmetric quantum mechanics holds the clue

Recall:

S =

∫
dt

[
1

2
(∂tφ)2 + ψ̄∂tψ +

1

2
W ′(φ)2 + ψ̄W”(φ)ψ

]

can be written

S = Q

{∫
dtψ̄

[
−(∂tφ+W ′(φ)) −

1

2
B

]}

with Q2 = 0.
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Let us replace (for example) ∂t → ∆−:

S = Q
∑

t

ψ̄

[
−(∆−φ+W ′(φ)) −

1

2
B

]

This is clearly supersymmetric: QS = Q2[. . .] = 0
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Lattice Supersymmetry

Remarkably, the same trick works for a very special supersymmetric gauge
theory in (3+1)-dimensions: the N = 4 theory

Now it gets a bit technical

We work on a four-dimensional Euclidean lattice with Lorentz symmetry
SO(4)

We combine (”twist”) the fermions according to a combination of Lorentz
symmetry and an SO(4) subgroup of a global rotation – R symmetry.

This mixes up Lorentz indices with fermion indices.

– Typeset by FoilTEX – 8



There are four four-spinors (Majorana). Think of them as a 4× 4 matrix Ψ
and then expand i Dirac’s γ-matrices:

Ψ = ηI + ψµγµ + χµνγµγν + ψµγ5γµ + ηγ5

Four of the scalars get twisted too: they combine into a 4-vector Bµ

Convenient combination is the complex Aµ = Aµ + iBµ
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The lattice no-go Theorem

One massless fermion on a four-dimensional lattice becomes sixteen fermions

For supersymmetry we need a perfect match (bosons) ↔ (fermions)

This is yet one more obstacle against lattice supersymmetry

Here the theory cures itself: we precisely need sixteen massless fermions!
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A beautiful formalism

Beautiful for topological field theory experts, but I will skip most details
here

Just this: the natural language is in terms of ”five dimensions” where
all bosons are lumped into complex gauge variables Aa and the fermions
combine into (η, ψa, χab)

Don’t worry about this ’five-dimensional’ language: we’re in four dimensions

The five complex gauge fields are easy to understand from dimensional
reduction of 10-dimensional N = 1 super Yang-Mills theory
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Let us first look at the continuum N = 4 theory

One can now do as for supersymmetric quantum mechanics: find a Q with
Q2 = 0 so that the action is essentially

S =
1

g2
Q

∫
Tr

(
χabFab + η[Da,Db] −

1

2
ηd

)

where Fab is the complexified field strength:

Fab = [Da,Db], Fab = [Da,Db]

and the complex covariant derivatives are

Da = ∂a + Aa, Da = ∂a + Aa
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The supersymmetry transformation is

Q Aa = ψa

Q ψa = 0
Q Aa = 0
Q χab = −Fab

Q η = d
Q d = 0

(1)

The action is identical to the continuum N = 4 theory

Invariance under the remaining 15 supercharges is not manifest but it is
there
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I am not being totally honest

Even in the continuum we need one tiny extra piece added to the action:

Sclosed = −
1

8

∫
Tr ǫmnpqrχqrDpχmn

This is not Q-exact, but it is Q-invariant on account of the Bianchi identity

ǫmnpqrDpFqr = 0

The extra term is still topological
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Can we transcribe this to the lattice?

It works out precisely as one could have dreamt it would

We introduce complexified Wilson links that live in the algebra of the gauge
group:

Aa(x) → Ua(n) =
N2∑

C=1

TCUC
a (n)

We need five links in four dimensions. Introduce an additional body diagonal

µ̂1 = (1, 0, 0, 0)
µ̂2 = (0, 1, 0, 0)
µ̂3 = (0, 0, 1, 0)
µ̂4 = (0, 0, 0, 1)
µ̂5 = (−1,−1,−1,−1)
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The fields all transform under ordinary non-complexified U(N)
transformations

Ua(n) → G(n)Ua(n)G†(n + µ̂a)

Supersymmetry then dictates that ψa(n) lives on a link and transforms
accordingly

The local fermion η(n) lives on a site and transforms as such

The fermions χab live on corner variables (or new links leading from the
origin out to µ̂a + µ̂b) and transform as

χab(n) → G(n + µ̂a + µ̂b)χab(n)G†(n)

Covariant derivatives are

D(+)
a fb(n) = Ua(n)fb(n + µ̂a) − fb(n)Ua(n + µ̂b) ,
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D
(−)

a fa(n) = fa(n)Ua(n) − Ua(n − µ̂a)fa(n − µ̂a) (2)

Now we can define the invariant action!

We copy the procedure from the continuum:

S =
∑

n

Tr Q
(
χab(n)D(+)

a Ub(n) + η(n)D
(−)

a Ua(n) −
1

2
η(n)d(n)

)
.

This is manifestly Q-symmetric
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I’m cheating slightly again

Just like in the continuum theory, there is an extra term

Sclosed =
1

2
ǫabcdeχde(n + µ̂a + µ̂b + µ̂c)D

(−)

c χab(n + µ̂c)

An exact lattice analog of the Bianchi identity

ǫabcdeD
(−)

c Fab(n + µ̂c) = 0

makes this additional term Q-invariant on the lattice
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The exactly preserved lattice supersymmetry

Q Ua = ψa

Q ψa = 0

Q Ua = 0

Q χab = −Fab

Q η = d

Q d = 0

This is just like in the continuum theory

However, on the lattice this is the only exactly preserved supersymmetry
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Why is this theory so interesting?

Probably the only four-dimensional gauge theory that is ultraviolet finite

Its β-function vanishes to all orders in perturbation theory: β(g) = 0

The theory is related to deep structures in mathematics (’The Geometric
Langlands Program’)

The theory is conformal even at the quantum level

The AdS/CFT correspondence gives exact predictions at strong coupling

Plus much more....!
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To simulate we must (slightly) break supersymmetry

In ordinary lattice gauge theory the continuum limit is reached through the
Renormalization Group

The lattice spacing (ultraviolet cut-off) a is replaced by a physical scale

Here the continuum limit is reached in a much more peculiar way

We add to the action a term

SM = µ2
L

∑

n

(
1

N
Tr(U†

a(n)Ua(n)) − 1

)2

This breaks supersymmetry, but we can live with it (all counterterms under
control)

Eventually we will take µL → 0; this restores supersymmetry
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By keeping µL finite we decouple the trace mode of the scalars while the
traceless scalar modes feel only a quartic potential

In this way we retain the flat directions of the scalars – an important aspect
of the supersymmetric gauge theory

The additional term has another remarkable effect: it defines for us a
continuum limit
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How continuum gauge fields arise

To get the correct naive continuum limit we must expand

Ua(n) = 1 + aAa(n)

This restores continum Yang-Mills theory and continuum Yang-Mills gauge
invariance

The additional mass term precisely achieves this!

It can happen because we have complexified gauge links Ua = eAa+iBa

This is the naive continuum limit – what about the quantum theory?

Only numerical simulations can tell

My next slides will show some of our results so far
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Supersymmetry is apparently well preserved

This theory has a potential sign problem: When we integrate out the
fermionic fields we get Pfaffian which is not real

Impossible to simulate by Monte Carlo methods except by reweighting

We first check what happens if we phase quench: simply ignore the phase

This breaks supersymmetry, but by how much? We compute the bosonic
part of the action and compare with the exact answer SB/V = 9N2/2 = 18
for gauge group U(2)
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Let’s measure the phase of the Pfaffian

On very small lattices we can compute the phase we’re discarding!
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Is there a string tension?

Essentially all other strongly coupled lattice gauge theories have a region
with confinement where the static potential grows linearly at large distances:

V (r) = −
C

r
+A+ σr

In a conformal theory there is no scale and hence the potential is trivial at
all couplings:

V (r) = −
C

r

We measure the static potential from the supersymmetric Wilson loop:
the gauge-invariant product of links around a rectangular loop of spatial
distance R (and large time T )
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Using the ansatz on the top we extract the coefficient σ – the string tension

We find no string tension at all – consistent with conformal symmetry
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The Polyakov line also indicates deconfinement

The product of links along the time-axis

Pt[U ] =
∏

[U(1) · · · U(nmax)]

Note: this becomes the usual path-ordered exponential in the continuum
limit

Since 〈Pt[U ]〉〉 = exp[−F/T ] a non-vanishing value indicates deconfined
fundamental charges in this theory

Let us project onto the SU(2) sector in order to disentangle the scalar trace
mode
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A conformal theory has no scale

Recall: We found V (r) = −C
r

– what is C?

Fits well with C = λ/(4π) = g2N/(4π) – as at weak coupling
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Chiral symmetry appears unbroken

Consider the eigenvalues of the Dirac operator

Attraction of eigenvalues towards the origin is required for a chiral
condensate to form

We can measure the eigenvalues on small lattices just to get a feel for it

Naively we might expect close to free field behavior λ ∼ 1/L (also a gap

cannot occur in a conformal theory at infinite volume)
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The continuum limit in the quantum theory

We seem to be able to define a scale-free and conformal lattice gauge theory

The only scale in our simulations will then eventually be the lenght of the
box L

At all couplings we have ’criticality’: like a line of critical points

The continuum limit is then taken at any bare coupling by going to large
distances

– Typeset by FoilTEX – 35



Conclusions

• We now know which supersymmetric gauge theories can be formulated
on a space-time lattice

• A (super)conformal gauge theory in (3+1)-dimensions can be studied
numerically

• Evidence that the theory is ’critical’ on the whole coupling constant line

• First example of a strongly interacting lattice gauge theory that retains
conformal symmetry
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