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it’s the SM Higgs, stupid

Kieran Holland GGI 2012

ancient history (pre-2007): Lattice Higgs Collaboration

fundamental Higgs-Yukawa theories on the lattice

* Heavy Higgs/non-perturbative sector 

* Triviality, vacuum (in)stability and Higgs bounds

* Limitations of non-asymptotically free theory

switched to near-conformal gauge theories (technicolor revised)

* Electroweak symmetry broken dynamically, new strong interaction

* asymptotically free, natural

* folklore: Higgs-free? post July 4: now what?



how dead is dead?
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last Friday, we heard from Guido Altarelli about the
death of technicolor models

3 days later: back from the grave?

Agnolo Bronzini, Resurrection, 
Santissima Annunziata, Firenze 



context
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(Walking) technicolor

(Sannino)

Fundamental: gray
2 antisym: blue
2 sym: red
adjoint: green

* space of 4d non-abelian gauge theories: Nf, Nc, representation
  

* keep asymptotic freedom
  

* which theories are conformal and do not break
chiral symmetry spontaneously?
  

* could an almost-conformal theory play in role in Electroweak
symmetry breaking?
  

* non-pertubative property: lattice essential,
but which lattice observables to use?

* different theories, actions, observables, people, ...

Dietrich, Sannino, Tuominen, 
Appelquist, Shrock, ...



running coupling
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2-loop univ.

3-loop SF
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FIG. 6: Continuum running for Nf = 12. Results shown for running from below the infrared fixed

point (purple triangles) are based on g2(L0) ≡ 1.6. Also shown is continuum backwards running

from above the fixed point (light blue squares), based on g2(L0) ≡ 9.0. Error bars are again purely

statistical, although strongly correlated due to the underlying interpolating functions. Two-loop

and three-loop perturbation theory curves are shown for comparison.

small enough not to trigger a bulk phase transition. Since we use a constant extrapolation,

this procedure can be taken to define, within our errors, a g2(L) at a small but finite a/L.

The step-scaling procedure then leads to the continuum running from above to the fixed

point, also shown in Fig. 6. The statistical-error band is derived as in the approach from

below.

Finally we note that the exponent γ governing the approach to the infrared fixed point

in the SF scheme can also be extracted from the simulation data. Taking the log of Eq. (6),

we see that the quantity log [g2
� − g2(L)] should have a linear dependence on L with slope

−γ near the fixed point. Computing this quantity from our data, running from either above

or below the fixed point, we find γ = 0.13± 0.03, somewhat smaller than the three-loop SF

perturbative estimate of 0.286.

21

early work: Appelquist, Fleming, Neil ‘07

Schroedinger functional renormalized coupling

SU(3) gauge theory
12 massless flavors
fundamental representation

evidence via simulations that renormalized
coupling flows to infrared fixed point - conformal

12 flavors expected to be conformal? n-loop beta function
thermal degrees of freedom
Schwinger-Dyson



other renormalized coupling schemes
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FIG. 1: TPL coupling for each β and L/a

purpose of β-interpolation, we use the following form of
fitting function:

g2TPL(β, a/L) = 6/β +
∑N

i=1 Ci(a/L)/βi+1, (6)

where N is the degree of the polynomial and Ci(a/L) are
the fitting parameters. In order to obtain the best fit
functions in which the χ2/d.o.f. ∼ 1, we take N = 3− 5
depending on the lattice size.
To investigate the evolution of the renormalized run-

ning coupling, we employ step-scaling function with two
lattice sizes scaled by a step-scaling parameter s. For
each L/a in the set of smaller lattices, we find the
value of β which produces a given value of the renor-
malized coupling, u=g2TPL(β, a/L). Then, we measure
the renormalized gauge coupling at that β on the larger
lattice, Σ(u, a/L; s)=g2TPL(β, a/sL)|g2

TPL
(β,a/L)=u. The

step-scaling function, σ(s, u), is obtained by taking the
continuum limit of Σ(u, a/L; s):

σ(s, u) = lim
a→0

Σ(u, a/L; s)|g2

TPL
(β,a/L)=u. (7)

In this study, we take s = 1.5, and denote σ(u) ≡
σ(s=1.5, u) in the rest of this letter for simplicity. The
set of smaller lattice is taken to be L/a = 6, 8, 10, 12, and
therefore, we need values of g2TPL for L/a = 9, 12, 15, 18
to take the continuum limit in Eq. (7). For L/a = 9, 15
and 18, we estimate values of g2TPL for a given β by
the linear interpolation in (a/L)2 with using the data
on the lattices L/a = {8, 10}, {12, 16} and {16, 20}, re-
spectively. To estimate the systematic error of this in-
terpolations, we also performed the linear interpolation
in a/L, and found that the difference between a/L and
(a/L)2 interpolations is negligible.
In Fig. 2, we show an example of the continuum ex-

trapolation for obtaining σ(u) in the strong coupling
region (u = 2.054). The procedure we use to derive
the central value of σ(u) is the linear extrapolation in
(a/L)2 with four points; L/a = 6, 8, 10, 12→ 9, 12, 15, 18.
Note that, in this example, though each lattice data
Σ(u, a/L; s = 1.5) is larger than u, in the continuum
limit, σ(u) is consistent with u. This indicates that it is
very important to take the continuum limit carefully.
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FIG. 2: Continuum extrapolation for the case of input cou-
pling u = 2.054. Several kinds of extrapolation using all or
various subsets of the data points are plotted.
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FIG. 3: The growth ratio σ(u)/u as a function of u with statis-
tical (solid) and total (dashed) errors. Two-loop perturbative
value (dashed line) is also plotted for comparison.

We perform the step-scaling procedure explained above
in a wide range of u. As mentioned in the beginning of
this article, the growth rate σ(u)/u is a suitable quan-
tity for the search of the IRFP. This growth rate be-
comes one when there is a zero in the beta function.
Figure 3 shows σ(u)/u as a function of u with statis-
tical (solid) and total (dashed) errors. The total error
includes both the statistical and systematic errors. The
statistical error is estimated by Jackknife method. We
will explain our estimation of the systematic error in de-
tail later. In the weak coupling regime, the result is con-
sistent with perturbation theory. At u = 2.05, the central
value of σ(u)/u touches 1, demonstrating the existence of
an IRFP. Though several data points are also shown for
u > 2.05 in Fig. 3, we note that the continuum extrap-
olation cannot be performed reliably since the theory is
not asymptotically free in this region.
We also study the running behavior of the renormal-

ized coupling obtained from each 100 Jackknife ensem-
bles. They all converge in the IR energy region, confirm-
ing the existence of the IRFP at

u∗ = 2.05± 0.47 (stat.)+0.20
−0.03 (syst.). (8)

Here, the Jackknife error of the running coupling at IR
is used as a statistical error. We will discuss our esti-
mation of the systematic error in more detail later. The

Twisted Polyakov loop scheme

Aoyama et al 2012
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By requiring the gauge and translational invariance,
the Polyakov loops in a twisted direction can be defined
as

Px(y, z, t) = Tr
(

[
∏

j

Ux(x = j, y, z, t)]Ωxe
i2πy/3L

)

. (2)

Then the renormalized coupling in the TPL scheme is
defined by taking the ratio of Polyakov loop correlators
in the twisted (Px) and the untwisted (Pz) directions:

g2TPL =
1

k

〈
∑

y,z Px(y, z, L/2a)Px(0, 0, 0)†〉

〈
∑

x,y Pz(x, y, L/2a)Pz(0, 0, 0)†〉
. (3)

The leading discretization error is O(a2) in this scheme.
At tree level, this ratio of the Polyakov loops is propor-
tional to the square of the bare coupling. The propor-
tionality factor k is obtained by analytically calculating
the one-gluon-exchange diagram. In the case of SU(3)
gauge group, the value of k with Wilson plaquette gauge
action is

klatt.(a/L) ∼ 0.03184 + 0.00453(a/L)2 +O(a4). (4)

The discretization effects in k are of O(a2) instead of
O(a), as expected.
To include fermions in the fundamental representa-

tion with twisted boundary condition, we introduce the
“smell” degrees of freedom [12] to avoid inconsistency
with translational invariance. The smell quantum num-
ber is a copy of color, and its non-trivial effects only ap-
pear at the boundary. It is incorporated by identifying
the fermion field as a Nc × Ns matrix, ψa

α(x), where a
is the color index and α is the smell index. The twisted
boundary condition for the fermion field is then imposed
as

ψa
α(x+ ν̂L/a) = eiπ/3Ωab

ν ψb
β(Ων)

†
βα, (5)

for ν = x, y directions. The smell degrees of freedom
introduced here can be considered as extra flavors. This
means that the number of flavors we can study on the
lattice is a multiple of Ns(= Nc = 3). Furthermore, since
we use staggered fermions in our simulation, we have
four tastes for each flavor. This enables us to perform
the computation with Nf = 3 × 4 = 12 in SU(3) gauge
theory with twisted boundary condition.
First, we discuss the vacuum structure and the exis-

tence of the true vacua in an SU(3) gauge theory in-
volving massless fermions in the deconfining phase. The
free energy of the pure-gauge sector contains 34-fold de-
generate classical minima at Uµ = exp(2πiθµ/3)I, where
θµ = 0, 1, 2 for each space-time direction. We investi-
gated the semi-classical free energy in SU(3) gauge the-
ory with Nf = 12 up to one loop level, and found that the
vacuum energy is independent of θ1,2, and the vacua with
both θ3,4 being 1 or 2 have the lowest free energy, indicat-
ing that those are the true vacua. For these “non-trivial

vacua”, all the classical link variables in z and t directions
contain non-trivial phases U3,4 ∼ exp(±2πi/3L), giving
rise to factors exp(±2πi/3) in the Polyakov loops.
In this work, we generate gauge configurations around

the true vacua where the vacuum expectation values of
the Polyakov loops in untwisted directions have non-
trivial phases. We observe that the vacuum stays having
the nontrivial phases after thermalization and no transi-
tion to trivial vacuum occurs. On the other hand, there
is transition between nontrivial vacua in the low β region.
We monitored the value of the renormalized coupling dur-
ing the transition and found that the contribution is neg-
ligible.
Our numerical simulation and analysis are conducted

by the following guiding principles:

1. We generate data in a broad range of β, with in-
tervals that g2TPL grows almost constantly in each
interval. Thus the interval of β is large in high β
region while small in the low β region. Each data
have similar accuracy (2 − 3%).

2. We employ fit functions for β interpolation which
reproduce the tree level result g2TPL & g20 on each
lattice size in extremely high β region.

3. We include only the data which ensure that sys-
tematic errors in all the interpolations and extrap-
olations are under control.

These guiding principles ensures the stability of our fit
results under the change of fit functions. This is because
the fit functions do not favor any special region of the
data when we interpolate our data in β or extrapolate
to in (a/L)2 from the point 1, and the effect of statisti-
cal fluctuation in high β region where the growth of the
coupling is small is reduced from the point 2, and the
data L/a = 4 data, having the largest discretization ef-
fect, which was used in our previous report [13] is now
dropped.
Our numerical simulation is performed in the following

setup. The gauge configurations are generated by the Hy-
brid Monte Carlo algorithm, and we use the Wilson gauge
and the staggered fermion actions. The simulations are
carried out with lattice sizes L/a = 6, 8, 10, 12, 16 and 20
at around twenty β values (β ≡ 6/g20 where g0 is the bare
coupling) in the range of 4.0 ≤ β ≤ 100. To reduce sta-
tistical fluctuations, we generate 8,000–897,000 trajecto-
ries for each (β, L/a) combination, measure the Polyakov
loops at every trajectory and bin the data by taking the
autocorrelation into account. The integrated autocorre-
lation time is about 400 trajectories on the largest lat-
tices, while as small as 3–5 trajectories on the smallest
lattices. Using the Jackknife method, typical statistical
errors of correlators are 2 − 3%. The bootstrap analysis
produces consistent results.
In Fig. 1, we show simulation results for the renormal-

ized coupling as a function of 1/β for each L/a. For the

SU(3) gauge theory
12 massless flavors
fundamental representation

also find evidence for infrared fixed point

de Divitiis et al ’94

u = g2TPL(L), σ(u) = g2TPL(1.5L)
other schemes: 
ratios of square Wilson loops
quark potential V(r), force F(r) 

Campostrini et al 94



12 flavors difficult
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* Fodor et al: mass spectrum - spontaneous chiral symmetry breaking
 

* Jin & Mawhinney: finite-temperature chiral phase transition, not conformal
 

* Deuzeman et al: chiral symmetry not spontaneously broken
 

* Hasenfratz et al: Wilson RG flow shows fixed point
 

* Y.Aoki et al: mass spectrum - looks conformal 

these inconsistencies prevent firm conclusion on phase of theory



being economic
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* running coupling simulations, a la Schroedinger Functional
- massless fermions, many lattice spacings to extrapolate to continuum, 
moderate lattice sizes 

* mass spectrum simulations
- several fermion masses, few lattice spacings, large lattice sizes for p-regime

each is expensive; doing both is prohibitive
 

recycle our mass spectrum runs
 

measure static quark potential V(r) and force F(r)



two theories
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both SU(3)

* 12 flavor fundamental
- proven to be a difficult testbed
- many studies, plenty to compare

* 2-flavor 2-index symmetric (sextet)
- exact match of GB’s to W+/-, Z if chiSSB
- fewer new d.o.f., less constrained
- 3-flavor almost certainly conformal, 2-flavor only interesting #

will discuss both - not deja vu!



phase diagram
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Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder

The extended data base now spans the m = 0.002−0.035 range. The new lowest fermion mass

runs at m = 0.002,0.004,0.006,0.008 can be used in the conformal FSS analysis which over the

full set would correspond to a variation of the pion correlation length in the 2.5 to 20 range in the

infinite volume limit. Results from the two lowest masses at m = 0.002,0.004 are not included in

the current analysis and will be reported later. For further control on finite volume dependence,

large 48
3 ×96 runs were continued to two thousand trajectories at m = 0.01 and m = 0.015. Four

runs were further added at 40
3 ×80 with m = 0.01,0.15,0.02,0.025. The new and refreshed data

set was subjected to conformal FSS analysis and χSB tests of the �ψψ� chiral condensate.

2.1 The phase diagram in the β −m plane

The phase structure of the model remains controversial, particularly the critically important

weak coupling phase. In addition to our spectroscopy and conformal FSS runs, we ran extensive

scans at various fixed volumes and fixed fermion masses to explore the bulk phase structure. The

bare coupling β was varied over a large range starting from very small β values deep in the strong

coupling regime to the weak coupling phase at β = 2.2 where the conformal and χSB analyses

were done. Fermion masses m = 0.007,0.01,0.02 were used in the scans with spatial lattice sizes

L = 8,12,16,20,24,32 running a large densely spaced set in the important and much discussed

intermediate region in transit from strong coupling to weak coupling. These scans were also ex-

tended to Nf = 2,4,6,8,10,12,14,16 flavors. We will briefly summarize next what is known about

the bulk lattice phase structure.

Finite Temperature

Our location in phase space
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We find two jumps, too, in small volumes ...

Chris Schroeder Three Colors and Twelve Flavors at Finite Temperature

we are here

intermediate 
phase 

m

β

intermediate 
phase 

our simulations here

Figure 1: On the left, scans of the phase diagram by monitoring the chiral condensate are plotted as a function of β at

two different fermion masses. The schematic bulk phase diagram is sketched on the right.

Two representative scans of the bulk behavior of the chiral condensate �ψψ� are shown in Fig-

ure 1 as we vary β from strong to weak coupling. Three distinct regions emerge at fixed volume and

fixed fermion mass showing strong coupling behavior for β < 1.4 with a large chiral condensate,

an intermediate phase for 1.4 < β < 1.8 with sudden drop in �ψψ�, and a weak coupling phase

for β > 1.8 with further drop in �ψψ�. A similar structure of three regimes was also seen in scans

at Nf = 8. Our physics simulations were done well inside the weak coupling phase at β = 2.2 as

indicated in Figure 1. A similar structure has been observed independently by Deuzemen et al. [28]

and Cheng et al. [31]. The newfound order parameter of broken shift symmetry in the intermediate

phase is the most interesting development in the study of the esoteric intermediate phase [31]. It

only exists in a finite interval of the lattice gauge coupling for small enough fermion masses, as

3

simulate at 1 bare coupling far away from bulk phase transitions, unusual phases

Nf=12 fundamental

bulk transitions observed in other studies also

GGI 2012



simulation details
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4dim HYP-smeared time links

3dim APE-smeared space links

* tree-level Symanzik-improved gauge action, stout-smeared staggered fermion

* relatively long runs: 1-2 thousand trajectories

* quark potential measurements:

* lightest pion mass

48
3
× 96, 40

3
× 80, 32

3
× 64

improve quark potential signal:

* HYP smear time-like links: reduce quark pair self-energy

* APE smear space-like links: build correlation matrix
for Generalized Eigenvalue method

this talk: one diagonal of correlation matrix

* use Double Jackknife to estimate Covariance Matrix
for chi-squared fitting of effective “mass”

1/(mπa) ≈ 6− 7

GGI 2012



effective “mass” example
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fit: 0.22737(57)

 48
3
x96, m = 0.01, r = 5

 fundamental Nf = 12, β = 2.2

covariance matrix included in fitting, inner & outer jackknife

fit effective “mass” to constant V(r) Del Debbio et al ’07



volume dependence 12-flavor
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compare two large volumes at lightest pion mass at m=0.01 and 0.015

no volume dependence seen between  

for larger masses m=0.02 and 0.025, sufficient to extract potential from  

40
3
× 80

GGI 2012
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fit potential (light)
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V (r) = V0 −

α

r
+ σr

V (r) = V0 + σr

Two V(r) parametrizations 1. small and large r

2. larger r only

data at larger r do not show much curvature - linear fit better?

χ2/N = 3.8/13

χ2/N = 32.8/19

GGI 2012
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V0 - α/r + σr, fit r:3-24
V0 + σr, fit r:10-24
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3
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 fundamental Nf = 12, β = 2.2

magnify



fit potential (heavy)
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two parametrizations

similar behavior at heaviest mass m =0.025 - little curvature in data at larger r

V (r) = V0 −

α

r
+ σr

V (r) = V0 + σr

χ2/N = 16.2/15

χ2/N = 2.1/9
GGI 2012
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m = 0.025

10 12 14 16 18 20
r

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

V
(
r
)

V0 - α/r + σr, fit r:3-20
V0 + σr, fit r:10-20

40
3
x80, m = 0.025
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magnify



fit string tension
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σ
1/2

= c0m
1/ym , ym = 1 + γσ

1/2
= σ

1/2
0

+ a1mnon-conformal conformal

gamma exponent values inconsistent with spectroscopy

* fit V(r) with 1/r : neither form describes all 4 mass data 

* fit V(r) without 1/r : both forms can fit all 4 mass data  

non-conformal linear fits: clear non-zero chiral limit GGI 2012
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include 1/r in V(r)
omit 1/r in V(r)

γ = 0.92(12)
γ = 1.17(11)

γ ∼ 0.2− 0.4



12-flavor mass spectrum
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Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 4: Conformal FSS fits in four different quantum number channels. The fits are performed in each
channel separately. Since the γ values vary considerably from channel to channel, a simultaneous global fit
to the combined channels with the same γ exponent, as required by conformal FSS theory, is bound to fail.

ansatz f (x) = c0 + cαxα for x < xcut (a more general polynomial function in the small x region
is not expected to change the conclusions from the fits). From the fit to the PCAC Goldstone
pion channel the parameter cπ = c1 was determined and used as input in the exponential terms of
the other channels with exp(−cπL). The critical exponent γ was included among the five fitting
parameters, in addition to c0, c1, cexp, and xcut .

The composite particle masses in several quantum number channels can be reasonably fitted
with conformal scaling functions f (x) as shown in Figure 4 but the values of the critical exponent
γ are incompatible across different channels. The required global conformal FSS fit will fail with
a single exponent γ across all quantum numbers. In the fits for Fπ in the PCAC pion channel
we only kept four parameters because the asymptotic form with exponentially small correction
was zero within error. Actually, the data of Fπ did not allow a successful conformal fit with any
shape chosen for its scaling function f (x) which looks very different from the scaling functions of
composite particle masses. The unexpectedly curious behavior of the Fπ data set against conformal
FSS remains unresolved.

7

conformal fits of mass spectrum data, many states

include volume-dependence: finite-size scaling (FSS)

states do not yield universal value gamma conformal failure
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independent V(r) fit, σ = 0.00639(17)
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 1-loop running αqq(r')

 fundamental Nf = 12, β = 2.2

F (r) =
dV

dr
= CF

αqq(r)

r2

is linear fit of potential justified?

extract directly from effective “force”

F (r′, t) = V (r + 1)− V (r, t)

improve force: r′ != r + 1/2

if confining, force should flow to string 
tension at large distance - confirmed

covariance matrix in t and r

coupling does not show IR fixed point
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direct measurement from V(r):
αqq(r = 4.457...) = 0.393(11)

V (r)− V (r0) = CF
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αqq(r′)

r′2
dr

′F (r) =
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= CF

αqq(r)
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Nf=12 fundamental

Nf=12 fundamental

simulation here

pert thy prediction:

V(r) data increase fast with r - no sign of IRFP GGI 2012
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GGI 2012
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Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 9: The left side plot and the middle plot represent separate conformal fits. The right side plot display the Mπ
residuals from the global fit. It is unacceptable for Fπ as well. The global fit is trying to choose a γ value between γ ∼ 1
in the Goldstone pion channel and γ ∼ 2 in the Fπ fit resulting in a very high χ2 value. All fits are at β = 3.2.

prehensive conformal FSS tests which do not rely on infinite volume extrapolation in the scaling
fits. This is at a preliminary stage requiring new runs and systematic analysis.

If χSB of the sextet model is further confirmed in the massless fermion limit, its relevance for
the realization of the composite Higgs mechanism is transparent. The large anomalous exponent
γ of our conformal fits will be interpreted in this case as an important ingredient of the model in
the χSB phase. Importantly, the model has the perfect match of three Goldstone pions to provide
the longitudinal components of the W± and Z bosons. To understand the slowly changing gauge
coupling close to the conformal window without infrared fixed point will require high precision
methods to calculate the renormalized gauge coupling and its beta function. This will demand
extended and more reliable Schrödinger functional analysis or alternate methods which are being
developed. The difference between the large exponent γ reported here and the low value of γ
published earlier [46] is significant and will require clarifications. Conformal FSS tests very close
to the critical surface will provide further independent checks of our results.
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conformal fits already have strong tension

states do not agree on universal gamma value

string tension adds to conformal failure



force

Kieran Holland GGI 2012

4 6 8 10 12 14 16 18 20
r'

0

0.02

0.04

0.06

0.08

F
(
r
'
)

independent V(r) fit, σ = 0.0239(11)
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 1-loop running αqq(r')
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independent measurement of force F(r)

again, flows to string tension

consistent with independent V(r) fit
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* 12-flavor fundamental

   - conformal fit gamma inconsistent with spectroscopy

   - linear extrapolation to chiral limit gives non-zero string tension

   - potential runs faster that pert theory, do not see IR fixed point

   - theory looks non-conformal

* 2-flavor sextet

  - ditto

  - even stronger inconsistency in conformal fits

  - theory looks even more non-conformal

GGI 2012

* highest priority: light composite scalar?
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FIG. 7. Discrete beta function (21) for scale factor s = 2.
Thin link data are from Ref. [15]. The bracketed points at
left were measured in the metastable state at β = 4.3.
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FIG. 8. Lattice approximants (22) to the beta function for
many scale factors, derived by comparing lattices as shown in
the legend. The one-loop perturbative result −13/(24π2) "

−0.054 is plotted as a dashed line.

TABLE III. Pseudoscalar renormalization factor ZP evalu-
ated at the couplings (β,κc), for the lattice sizes L used in
this study.

β ZP

L = 6a L = 8a L = 12a L = 16a
5.8 0.2696(16) 0.2509(12) 0.2248(18) –
5.4 0.2606(19) 0.2333(14) 0.2102(17) –
5.0 0.2398(19) 0.2318(15) 0.1839(14) –
4.8 0.2246(23) 0.1981(15) 0.1716(10) –
4.6 0.2127(14) 0.1808(16) 0.1518(14) 0.1340(6)
4.4 0.1888(18) 0.1631(16) 0.1311(13) 0.1163(13)
4.3 0.1777(17) 0.1516(17) 0.1247(15) 0.1063(10)

• The SF coupling runs slowly over its observed
range. This slow running permits an easy and un-
ambiguous measurement of the mass anomalous di-
mension as a function of the bare parameters or,
equivalently, of the SF coupling g2. This is the
subject of the next section.

V. MASS ANOMALOUS DIMENSION

After the discussion of the running gauge coupling, our
result for the mass anomalous dimension is more definite:
γm is never larger in magnitude than about 0.6. This con-
firms the previous, noisy results of Ref. [17]. It suggests
that, regardless of the existence of a zero of the beta func-
tion, this theory may not furnish a phenomenologically
interesting model of walking technicolor.
We extract the anomalous dimension of ψ̄ψ from the

scaling of ZP [Eq. (14)] between systems rescaled as
L → sL. We define the (continuum) mass step scaling
function [35–38] as

σP (u, s) =
ZP (sL)

ZP (L)

∣

∣

∣

∣

g2(L)=u

. (23)

It is related to the mass anomalous dimension via

σP (u, s) = exp

[

−
∫ s

1

dt

t
γm

(

g2(tL)
)

]

. (24)

Equation (24) is actually too complicated for our needs.
For any bare coupling β, the SF coupling g2(L) runs so
slowly that we can replace Eq. (24) by

σP (u, s) = s−γm(g2). (25)

Our results for ZP (L) are listed in Table III and dis-
played in Fig. 9. As can be seen in the figure, the
L-dependence of ZP is very close to linear on a log–log
plot at all values of β. This is a consequence of the slow
running of the coupling constant. The theory is “con-
formal for all practical purposes” over the range of L’s
that are accessible at any single value of β. The slopes of

DeGrand, Shamir & Svetitsky

Schroedinger Functional scheme

infrared fixed point or near-zero of beta-fn?

how close to conformality is the model?


