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General motivation and this talk

A non-perturbative formulation of a field theory with a (global) symmetry. . .

not only provides the definition of correlation functions. . .

but also a renormalized Noether current Jµ(x) that generates a
correctly-normalized symmetry transformation on renormalized fields

Ward–Takahashi (WT) relation

〈∂µJµ(x)O〉 =

fi
δ

δε(x)
δεO

fl
The conservation law is a special case:

〈∂µJµ(x)O〉 = 0, for x ! supp(O)

Then, one can say that the symmetry is really realized in quantum theory

Generally speaking, however, it is very difficult to conclude the above, when an
invariant regularization does not come to hand

I address an issue of the above kind, in the context of the lattice formulation of 4D
N = 1 SYM (lattice breaks SUSY!)
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4D N = 1 SYM

classical continuum action

S =

Z
d4x

»
1
2

tr (FµνFµν) + tr
`
ψ̄ /Dψ

´–
, ψ̄ = ψT (−C−1)

local gauge symmetry

δζAµ(x) = Dµζ(x), δζψ(x) = −ig{ζ(x), ψ(x)}

global U(1)A (R-symmetry)

δ̄θψ(x) = iθγ5ψ(x), δ̄θψ̄(x) = iθψ̄(x)γ5

global SUSY

δ̄ξAµ(x) = ξ̄γµψ(x), δ̄ξψ(x) = −1
2
σµνξFµν(x), ξ̄ = ξT (−C−1)

translational invariance (and the rotational invariance)

notation
global: δ̄ local: δ
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Noether currents in the classical continuum theory

U(1)A current
̆5µ(x) = tr

ˆ
ψ̄(x)γµγ5ψ(x)

˜
SUSY current

S̆µ(x) = −σρσγµ tr [ψ(x)Fρσ(x)]

(symmetric) energy-momentum tensor

T̆µν(x) = 2 tr [Fµρ(x)Fνρ(x)]− 1
2
δµν tr [Fρσ(x)Fρσ(x)]

+
1
4

tr
h
ψ̄(x)

“
γµ
←→
D ν + γν

←→
D µ

”
ψ(x)

i
− 1

2
δµν tr

h
ψ̄(x)

←→
/D ψ(x)

i
Ferrara–Zumino (FZ) supermultiplet (δ̄ξ: global SUSY, ξ: parameter)

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

δ̄ξT̆µν(x) = · · ·

This is a sort of the “current algebra” in SUSY theory

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 4 / 17



Noether currents in the classical continuum theory

U(1)A current
̆5µ(x) = tr

ˆ
ψ̄(x)γµγ5ψ(x)

˜

SUSY current
S̆µ(x) = −σρσγµ tr [ψ(x)Fρσ(x)]

(symmetric) energy-momentum tensor

T̆µν(x) = 2 tr [Fµρ(x)Fνρ(x)]− 1
2
δµν tr [Fρσ(x)Fρσ(x)]

+
1
4

tr
h
ψ̄(x)

“
γµ
←→
D ν + γν

←→
D µ

”
ψ(x)

i
− 1

2
δµν tr

h
ψ̄(x)

←→
/D ψ(x)

i
Ferrara–Zumino (FZ) supermultiplet (δ̄ξ: global SUSY, ξ: parameter)

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

δ̄ξT̆µν(x) = · · ·

This is a sort of the “current algebra” in SUSY theory

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 4 / 17



Noether currents in the classical continuum theory

U(1)A current
̆5µ(x) = tr

ˆ
ψ̄(x)γµγ5ψ(x)

˜
SUSY current

S̆µ(x) = −σρσγµ tr [ψ(x)Fρσ(x)]

(symmetric) energy-momentum tensor

T̆µν(x) = 2 tr [Fµρ(x)Fνρ(x)]− 1
2
δµν tr [Fρσ(x)Fρσ(x)]

+
1
4

tr
h
ψ̄(x)

“
γµ
←→
D ν + γν

←→
D µ

”
ψ(x)

i
− 1

2
δµν tr

h
ψ̄(x)

←→
/D ψ(x)

i
Ferrara–Zumino (FZ) supermultiplet (δ̄ξ: global SUSY, ξ: parameter)

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

δ̄ξT̆µν(x) = · · ·

This is a sort of the “current algebra” in SUSY theory

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 4 / 17



Noether currents in the classical continuum theory

U(1)A current
̆5µ(x) = tr

ˆ
ψ̄(x)γµγ5ψ(x)

˜
SUSY current

S̆µ(x) = −σρσγµ tr [ψ(x)Fρσ(x)]

(symmetric) energy-momentum tensor

T̆µν(x) = 2 tr [Fµρ(x)Fνρ(x)]− 1
2
δµν tr [Fρσ(x)Fρσ(x)]

+
1
4

tr
h
ψ̄(x)

“
γµ
←→
D ν + γν

←→
D µ

”
ψ(x)

i
− 1

2
δµν tr

h
ψ̄(x)

←→
/D ψ(x)

i

Ferrara–Zumino (FZ) supermultiplet (δ̄ξ: global SUSY, ξ: parameter)

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

δ̄ξT̆µν(x) = · · ·

This is a sort of the “current algebra” in SUSY theory

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 4 / 17



Noether currents in the classical continuum theory

U(1)A current
̆5µ(x) = tr

ˆ
ψ̄(x)γµγ5ψ(x)

˜
SUSY current

S̆µ(x) = −σρσγµ tr [ψ(x)Fρσ(x)]

(symmetric) energy-momentum tensor

T̆µν(x) = 2 tr [Fµρ(x)Fνρ(x)]− 1
2
δµν tr [Fρσ(x)Fρσ(x)]

+
1
4

tr
h
ψ̄(x)

“
γµ
←→
D ν + γν

←→
D µ

”
ψ(x)

i
− 1

2
δµν tr

h
ψ̄(x)

←→
/D ψ(x)

i
Ferrara–Zumino (FZ) supermultiplet (δ̄ξ: global SUSY, ξ: parameter)

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

δ̄ξT̆µν(x) = · · ·

This is a sort of the “current algebra” in SUSY theory

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 4 / 17



SUSY WT relation on the lattice

Under the localized SUSY transformation

δξUµ(x) = iag
1
2
ˆ
ξ̄(x)γµψ(x)Uµ(x) + ξ̄(x + aµ̂)γµUµ(x)ψ(x + aµ̂)

˜
δξψ(x) = −1

2
σµνξ(x) [Fµν ]L (x) [Fµν ]L (x): lattice field strength

We have an identity (∂S
µ f (x) ≡ (1/2a)[f (x + aµ̂)− f (x − aµ̂)])D

∂S
µSµ(x)O

E
= 〈[Mχ(x) + XS(x)]O〉 −

fi
1
a4

∂

∂ξ̄(x)
δξO

fl
where

Sµ(x) ≡ −σρσγµ tr
n
ψ(x) [Fρσ]L (x)

o
, χ(x) ≡ σµν tr

n
ψ(x) [Fµν ]L (x)

o
XS(x) is an O(a) symmetry breaking attributed to the lattice regularization
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Renormalization of XS(x) (Curci–Veneziano (1987), Taniguchi (1999),
Farchioni–Feo–Galla–Gebert–Kirchner–Montvay–Münster–Vladikas
(2001), H.S. (2012))

Assuming the locality and the hypercubic symmetry of the lattice action,

XS(x) = (1−ZS)∂S
µSµ(x)−ZT∂

S
µTµ(x)

− 1
a
Zχχ(x)

−Z3F tr
ˆ
ψ(x)ψ̄(x)ψ(x)

˜
−ZEOMσµν tr{[Fµν ]L(x)(D + M)ψ(x)}
+ aE(x),

where
Tµ(x) = 2γν tr

n
ψ(x) [Fµν ]L (x)

o
and the dimension 11/2 operator E(x) is a linear combination of renormalized
operators with logarithmically divergent coefficients

Plugging this XS(x) into the original identity,. . .
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and the dimension 11/2 operator E(x) is a linear combination of renormalized
operators with logarithmically divergent coefficients

Plugging this XS(x) into the original identity,. . .
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SUSY WT relation on the lattice

we haveD
∂S

µ [ZSSµ(x) + ZT Tµ(x)]O
E

=

„
M − 1

a
Zχ

«
〈χ(x)O〉

←− additive mass renormalization

−Z3F
˙
tr
ˆ
ψ(x)ψ̄(x)ψ(x)

˜
O
¸

←− exotic SUSY anomaly

−
fi

1
a4

∂

∂ξ̄(x)
δξO

fl
−ZEOM

D
σµν tr{[Fµν ]L(x)(D + M)ψ(x)}O

E

←− modification of super transformation

+ 〈aE(x)O〉
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Renormalized SUSY WT relation

We tune M so that (Donini–Guagnelli–Hernandez–Vladikas (1997))

M − 1
a
Zχ = 0

and we assume the absence of the exotic SUSY anomaly:

Z3F = 0

This is the case, at least to all orders of the perturbation theory (H.S. (2012))

The renormalized SUSY current:

Sµ(x) ≡ Z [ZSSµ(x) + ZT Tµ(x)] ,

In terms of this, D
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

where
∆ξ ≡ δξ + ZEOMδFξ

and
δFξUµ(x) = 0, δFξψ(x) = δξψ(x), δFξψ̄(x) = δξψ̄(x)
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Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O
x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O
x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O
x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O

x
DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O
x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O
x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Implication of the renormalized SUSY WT relation

From the relationD
∂S

µSµ(x)O
E

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl
,

for a renormalized operator O, we have the conservation lawD
∂S

µSµ(x)O
E

a→0−−−→ 0, for x ! supp(O)

x O

Moreover, we see that the operation

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O, for x ∈ supp(O)

should define another renormalized operator

O

x

DO

Hiroshi Suzuki (RIKEN) FZ supermultiplet. . . Sept. 27, 2012 @ GGI 9 / 17



Lattice energy-momentum tensor Tµν(x)

Now we try to define the energy-momentum tensor in this system

The structure of the FZ supermultiplet is quite suggestive:

δ̄ξS̆µ(x) = 2γνξ


T̆µν(x) +

3
4
δµν tr

ˆ
ψ̄(x) /Dψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)

Thus, we make an ansatz (∆̄ξ is the global version of ∆ξ):

Z∆̄ξSµ(x) ≡ 2γνξ
˘
Tµν(x) + cδµν tr

ˆ
ψ̄(x)(D + M)ψ(x)

˜
+ (terms anti-symmetric in µ and ν)

¯
+ (terms proportional to γ5γνξ, ξ, γ5ξ, σνρξ)
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Lattice energy-momentum tensor Tµν(x)

Or, equivalently,

Tµν(x) =
1
2

[Θµν(x) +Θνµ(x)]− cδµν tr
ˆ
ψ̄(x)(D + M)ψ(x)

˜
,

where

Θµν(x) ≡ 1
8

(γν)βα
∂

∂ξβ

ˆ
Z∆̄ξSµ(x)

˜
α

= Z2ZS
1
8

(γν)βα
∂

∂ξβ

`
δ̄ξ + ZEOMδ̄Fξ

´ »
Sµ(x) +

ZT

ZS
Tµ(x)

–ff
α

,

Quite interestingly, the SUSY WT relation shows that the above symmetric
energy-momentum tensor conserves:D

∂S
µTµν(x)O

E
a→0−−−→ 0, for x ! supp(O),

for any renormalized operator O
According to (Caracciolo–Curci–Menotti–Pelissetto (1989)), such a conserved
symmetric energy-momentum tensor is, if it exists, unique, up to the overall
normalization and the constant c
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Non-perturbative construction of Tµν(x)

We know that the ratio ZT/ZS has actually been measured (DESY-Münster-Rome
Collaboration (2000–present)) byD

∂S
µSµ(x)O

E
+
ZT

ZS

D
∂S

µTµ(x)O
E
− 1
ZS

„
M − 1

a
Zχ

«
〈χ(x)O〉 = O(a)

The constant ZEOM may be determined by the conservation law itself:D
∂S

µΘµν(x)O
E

= O(a)

The overall normalization Z2ZS may be determined from

〈one particle| a3
X

~x

Θ00(x) |one particle〉 − (VEV) = physical mass

Although c is just a choice of the origin of the energy, there exists a natural choice
in the present SUSY theory, that is

〈T00(x)〉periodic boundary conditions = 0

(cf. Kanamori–Sugino–H.S. (2007)). This fixes

c = − a4

2(N2
c − 1)

〈Θ00(x)〉
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Summary

When a symmetry-preserving regularization does not come to hand, it is generally
difficult to find a Noether current that generates a correctly-normalized symmetry
transformation on renormalized fields

One encounters such a situation in the lattice formulation of supersymmetric
theories. Here, important symmetries that define the system, chiral, SUSY and
translation and rotation are broken

In this talk on 4D N = 1 SYM, I defined an energy-momentum tensor Tµν(x) by a
(renormalized modified) SUSY transformation of a (renormalized) lattice SUSY
current, as the classical FZ supermultiplet indicates

Then, it can be shown that Tµν(x) conserves in the quantum continuum limit

A remaining issue: Does Tµν(x) really generates a correctly-normalized
transformation on renormalized fields? (' the existence of the SYM)

Applications? Viscosity? Vacuum energy?

How the another classical relation:

δ̄ξ ̆5µ(x) = ξ̄γ5S̆µ(x)

is realized on the lattice? Understanding of the anomaly puzzle?
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Proof of the conservation law of Tµν(x)

Definition:

Tµν(x) =
1
2

[Θµν(x) +Θνµ(x)]−

 
cδµν tr

ˆ
ψ̄(x)(D + M)ψ(x)

˜!

Step 1: Conservation of Θµν(x)

We set O → ∂S
νSν(y)O in the SUSY WT relation,D

∂S
µSµ(x)O

E
=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
O
fl

After some rearrangements (α, β: spinor indices),fi
1
a4

∂

∂ξ̄β(y)

h
Z∆ξ∂

S
µSµ(x)

i
α
O
fl

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
α

h
∂S

νSν(y)
i

β
O
fl

−

*
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
α

Z
»
− 1

a4

∂

∂ξ̄(y)
∆ξ + aE(y)

–
β

O

+
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Conservation of Θµν(x)

Setting x ! supp(O) and y ! supp(O)fi
1
a4

∂

∂ξ̄β(y)

h
Z∆ξ∂

S
µSµ(x)

i
α
O
fl

=

fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
α

h
∂S

νSν(y)
i

β
O
fl

−
fi
Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
α

Z [aE(y)]β O
fl

We then sum this relation over y within a finite region Dx , that contains the
operator ∂S

µSµ(x), but Dx ∩ supp(O) = ∅

x

Dx

O
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Conservation of Θµν(x)

Then, we haveD
∂S

µΘµν(x)O
E

a→0−−−→ 0

=
1
8

(C−1γν)αβ

*
Z [aE(x)]α a4

X
y∈Dx

h
∂S

νSν(y)
i

β
O

+

a→0−−−→ 0

− 1
8

(C−1γν)αβ

*
a4
X

y∈Dx

Z
»
− 1

a4

∂

∂ξ̄(x)
∆ξ + aE(x)

–
α

Z [aE(y)]β O

+

a→0−−−→ 0

x

Dx

O

The first term of r.h.s. is a correlation function of renormalized operators with no
mutual overlap with an overall factor a
The second term is, according to our argument, also a correlation function of
renormalized operators with no mutual overlap with an overall factor a
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Conservation of the anti-symmetric part of Θµν(x)

Step 2: Conservation of the anti-symmetric part of Θµν(x):

Aµν(x) ≡ 1
2

[Θµν(x)−Θνµ(x)]

It turns out that (using the constraint ψ̄(x) = ψT (x)(−C−1)),

Aµν(x) = A1εµνρσ∂
S
ρ tr
ˆ
ψ̄(x)γσγ5ψ(x)

˜
+ A2 tr

ˆ
ψ̄(x)σµν(D + M)ψ(x)

˜
+ aG(x)

Then, we have trivially,D
∂S

µAµν(x)O
E

a→0−−−→ 0, for x ! supp(O)

In conclusion, we haveD
∂S

µTµν(x)O
E

a→0−−−→ 0, for x ! supp(O)
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