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➡ (relativistic) four fermion theory

➡ asymptotic freedom

➡ dynamical mass generation via spontaneous 

breaking of chiral symmetry

➡ similarities with QCD

➡ application to Quark-Gluon plasma
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Gross-Neveu

Description of the model 19

Transformation Conserved Current

U(1)
V

ψ → eiθψ Jµ ≡ ψ̄γµψ baryonic

SU(2)
V

ψ → e
i
2θV ·τ ψ Jµα

V

≡ 1
2 ψ̄γµταψ isospin

− ψ → e
i
2γ

5θA·τ ψ Jµα

A

≡ 1
2 ψ̄γµγ5ταψ axial

Tab. 3.1: Symmetry groups and conserved currents for L
chiral

in Eq. (3.6). Notice that

the axial transformations do not form a group, since [Qi

A

, Qj

A

] = i�
ijk

Qk

V

. Nevertheless the

axial and isospin transformations put together form the group SU(2)
V +A

× SU(2)
V−A

.

Anyway, due to the presence of non vanishing current quark masses, chiral sym-

metry is only approximate6 (on the contrary, the baryonic charge is always con-

served). Actually the level of violation of chiral symmetry is measured by the small-

ness of the pion mass (m2
π

/m2
N

� 1/50), since the pion is the (pseudo) Goldstone

boson associated with the spontaneous breaking of chiral symmetry (m
π

= 0 in the

chiral limit).

In order to describe the u− and d−quark sector of QCD by means of an effective

model, one can consider a simpler lagrangian which has the same symmetries as

L
chiral

(in the massless limit), but where the interaction between quarks and gluons

is approximated by an effective quark-antiquark interaction. A possible model is the

Nambu-Jona Lasinio (NJL) model, originally introduced to describe the interaction

between nucleons [9].

The model contains an attractive fermion-antifermion interaction which is re-

sponsible for the condensation of ψ̄ψ in the vacuum (in analogy to what happens

in the BCS theory of superconductivity). Unfortunately the theory is non renor-

malizable in D = 3 + 1 dimensions, and therefore has to be regularized by suitable

prescriptions [11]. In lower dimensions, the model is usually referred to as the Gross-

Neveu model, since its formulation in D = 1 + 1 - where it is renormalizable and

asymptotically free - was first considered by Gross and Neveu [10]. The model is

renormalizable also in D = 2 + 1 (in the 1/N expansion).

In the following we will therefore consider the class of four fermion theories, in

D = d + 1 dimensions, defined by the Lagrangian

L = ψ̄(iγµ∂
µ

−M)ψ +
λ

2N
(ψ̄ψ)2 − λ5

2N
(ψ̄γ5τψ)2 (3.7)

6SU(2)V is still an exact symmetry for mu = md.
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Thermodynamics of the massive Gross-Neveu model
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(Received 13 3une 1994)

We study the thermodynamics of massive Gross-Neveu models with explicitly broken discrete
or continuous chiral symmetries for 6nite temperature and fermion densities. The large N limit is
discussed, paying attention to the no-go theorems for symmetry breaking in two dimensions which
apply to the massless cases. The main purpose of the study is to serve as an analytical orientation
for the more complex problem of the chiral transition in four-dimensional QCD with quarks. For
any nonvanishing fermion mass, we find, at finite densities, lines of 6rst-order phase transitions. For
small mass values, traces of would-be second-order transitions and a tricritical point are recognizable.
We study the thermodynamics of these models, and in the model with broken continuous chiral
symmetry we examine the properties of the pionlike state.

PACS number(s): 11.30.Rd, 12.38.Aw

I. INTRODUCTION

We have examined the massive Gross-Neveu model [1]
at finite temperature and density within the mean field
approximation. In spite of the problems related to the
low dimensionality of the model, this may represent in
our opinion a guide to the thermodynamics of chiral sym-
metry restoration in QCD. We have studied the model
with a bare mass term included, always kept nonvanish-
ing. Because of such a choice, no chiral phase transi-
tion is present, since chiral symmetry is explicitly bro-
ken &om the beginning and thus, strictly speaking, the
Mermiii-Wagner-Coleman theorem [2,3] does not apply.
Although the symmetry is explicitly broken, we find, as
in our previous study for a QCD model [4], that some
first-order phase transition still survives. The critical
line obviously moves in the phase of temperature and
chemical potential for growing masses, but it survives
even for large mass values. We derive the equation of
state apd study the phase diagram for different choices
of thermodynamical variables. We discuss the isotherms
in the pressure-inverse density plane, which resemble the
van der Waals isotherms for the vapor-liquid transition
in water. The construction is made through the study
of the effective potential, which contains all the physical
information about the stable and metastable phases of a
given model. We can define a critical point as the ending
point of the coexistence region. There are, below this
point, two regions of very low and very high compress-
ibility, separated by the coexistence region, which ends
at the critical point.
We have also considered the explicit (small) breaking of

a continuous symmetry in order to implement the study
of soft-pion-type properties in the model. It is evident
that (differently &om four-dimensional QCD) in two di-
mensions the pionlike particle cannot be considered as a
Goldstone particle as a result of the Coleman theorem.

Thus one principal difference between previous studies
[4] and the present work is that here the zero mass limit
cannot be taken without a complete change of the pic-
ture.
To further comment on how no-go theorems work in

a finite-temperature field theory and to better motivate
our presentation, we start by summarizing in a very
schematic way known results in Sec. II.
Section III is devoted to the results for the phase dia-

gram and the equation of state of the model with a bro-
ken discrete symmetry. Here also naive zero-mass-limit
results will be presented to better clarify those for the
massive case in which we are indeed interested and at
the same time to show what would be reasonable to ex-
pect in analogous studies in 3+1 dimensions. In Sec. IV
we attempt a description of pion properties in the model
with a broken continuous symmetry. As the effective po-
tential in the mean field approximation can be put in the
same form as that of Sec. III, the results concerning the
equation of state and the phase diagram are the same.
Finally, some useful calculations are summarized in the
Appendix.

II. GENERAL REVIEW

The Gross-Neveu model [1] is a well known two-
dimensional theory with four-fermion interactions which
is asymptotically &ee. The fermion field has N compo-
nents. The model was originally considered in the 1/N
expansion. The massless formulations, with discrete or
continuous symmetry, have been extensively studied for
zero or finite temperatures and densities [5—12], giving
rise to several discussions related to the low dimension-
ality of the model, with its implications for symmetry
breaking and phase transitions, and to the validity of
the 1/N expansion (many aspects have been already dis-
cussed in Ref. [12]).

0556-2821/95/51{6)/3042{19)/$06. 00 51 3042 1995 The American Physical Society



7

from Gross-Neveu to Gross-Pitaevskii

(HOT!!)

Gross-Neveu

Gross-Pitaevskii

teraction V(r82r), this replacement is, in general, a
poor approximation when short distances (r82r) are in-
volved. In a dilute and cold gas, one can nevertheless
obtain a proper expression for the interaction term by
observing that, in this case, only binary collisions at low
energy are relevant and these collisions are character-
ized by a single parameter, the s-wave scattering length,
independently of the details of the two-body potential.
This allows one to replace V(r82r) in Eq. (32) with an
effective interaction

V
~

r82r
!

5gd

~

r82r
!

, (33)

where the coupling constant g is related to the scattering
length a through

g5
4p\

2a
m

. (34)

The use of the effective potential (33) in Eq. (32) is
compatible with the replacement of Ĉ with F and yields
the following closed equation for the order parameter:

i\
]

]t
F

~

r,t
!

5S 2
\

2
π

2

2m
1Vext~r

!

1guF
~

r,t
!

u2DF

~

r,t
!

.

(35)

This equation, known as Gross-Pitaevskii (GP) equa-
tion, was derived independently by Gross (1961, 1963)
and Pitaevskii (1961). Its validity is based on the condi-
tion that the s-wave scattering length be much smaller
than the average distance between atoms and that the
number of atoms in the condensate be much larger than
1. The GP equation can be used, at low temperature, to
explore the macroscopic behavior of the system, charac-
terized by variations of the order parameter over dis-
tances larger than the mean distance between atoms.

The Gross-Pitaevskii equation (35) can also be ob-
tained using a variational procedure:

i\
]

]t
F5

dE
dF

* , (36)

where the energy functional E is given by

E
@

F

#

5E drF \

2

2m
uπFu21Vext~r

!

uFu21
g
2

uFu4G . (37)

The first term in the integral (37) is the kinetic energy of
the condensate Ekin , the second is the harmonic-
oscillator energy Eho , while the last one is the mean-
field interaction energy E int . Notice that the mean-field
term E int corresponds to the first correction in the virial
expansion for the energy of the gas. In the case of non-
negative and finite-range interatomic potentials, rigor-
ous bounds for this term have been obtained by Dyson
(1967), and Lieb and Yngvason (1998).

The dimensionless parameter controlling the validity
of the dilute-gas approximation, required for the deriva-
tion of Eq. (35), is the number of particles in a ‘‘scatter-
ing volume’’ uau3. This can be written as n uau3, where n 
is the average density of the gas. Recent determinations
of the scattering length for the atomic species used in
the experiments on BEC give: a52.75 nm for 23Na

(Tiesinga et al., 1996), a55.77 nm for 87Rb (Boesten
et al., 1997), and a521.45 nm for 7Li (Abraham et al.,
1995). Typical values of density range instead from 1013

to 1015 cm23, so that n uau3 is always less than 1023.
When n uau3!1 the system is said to be dilute or

weakly interacting. However, one should better clarify
the meaning of the words ‘‘weakly interacting,’’ since
the smallness of the parameter n uau3 does not imply nec-
essarily that the interaction effects are small. These ef-
fects, in fact, have to be compared with the kinetic en-
ergy of the atoms in the trap. A first estimate can be
obtained by calculating the interaction energy, E int , on
the ground state of the harmonic oscillator. This energy
is given by gNn , where the average density is of the
order of N/aho

3 , so that E int}N2uau/aho
3 . On the other

hand, the kinetic energy is of the order of N\vho and
thus Ekin}Naho

22. One finally finds

E int

Ekin
}

Nuau
aho

. (38)

This is the parameter expressing the importance of the
atom-atom interaction compared to the kinetic energy.
It can be easily larger than 1 even if n uau3!1, so that
also very dilute gases can exhibit an important nonideal
behavior, as we will discuss in the following sections. In
the first experiments with rubidium atoms at JILA
(Anderson et al., 1995) the ratio uau/aho was about 7
31023, with N of the order of a few thousands. Thus
Na/aho is larger than 1. In the experiments with 7Li at
Rice University (Bradley et al., 1997; Sackett et al., 1997)
the same parameter is smaller than 1, since the number
of particles is of the order of 1000 and uau/aho'0.5
31023. Finally, in the experiments with sodium at MIT
(Davis et al., 1995) the number of atoms in the conden-
sate is very large (106–107) and Nuau/aho;103–104.

Due to the assumption Ĉ8[0, the above formalism is
strictly valid only in the limit of zero temperature, when
all the particles are in the condensate. The dynamic be-
havior and the generalization to finite temperatures will
be discussed in Secs. IV and V, respectively. Here we
present the results for the stationary solution of the
Gross-Pitaevskii (GP) equation at zero temperature.

B. Ground state

For a system of noninteracting bosons in a harmonic
trap, the condensate has the form of a Gaussian of av-
erage width aho [see Eq. (3)], and the central density is
proportional to N. If the atoms are interacting, the shape
of the condensate can change significantly with respect
to the Gaussian. The scattering length entering the
Gross-Pitaevskii equation can be positive or negative, its
sign and magnitude depending crucially on the details of
the atom-atom potential. Positive and negative values of
a correspond to an effective repulsion and attraction be-
tween the atoms, respectively. The change can be dra-
matic when the interaction energy is much greater than
the kinetic energy, that is, when Nuau/aho@1. The cen-
tral density is lowered (raised) by a repulsive (attractive)

474 Dalfovo et al.: Bose-Einstein condensation in trapped gases

Rev. Mod. Phys., Vol. 71, No. 3, April 1999

1998

BECs (very cold indeed!)
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๏ Overview (quantum simulators, ultracold atoms in optical lattices)

๏ tight binding regime: simulating condensed matter

✓ Maximally localized Wannier functions for ultracold atoms in 1D double-
well periodic potentials [MM and G. Pettini,  NJP 14, 055004 (2012)]

๏ mean field regime: simulating quantum mechanics

✓ Anomalous Bloch oscillations in one-dimensional parity-breaking periodic 
potentials [G. Pettini and MM,  PRA 83, 013619 (2011)]
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Can physics be simulated by a universal computer?

“Universal Quantum Simulator”: a certain class of quantum systems 
which would simulate other quantum systems

International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 

Simulating Physics with Computers 
Richard P. Feynman 

Department of Physics, California Institute of Technology, Pasadena, California 91107 

Received May 7, 1981 

1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 

467 

0020-7748/82/0600-0467503.0£1/0 © 1982 Plenum Publishing Corporation 
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๏ characteristics:

- implement the hamiltonian of other physical systems 

- prepare the relevant quantum state

- tunability and control of the parameters

- precise measurements

๏ scope:

- reproducing the quantum behavior of systems that are difficult to access

- control and analisys of specific effects  (that could be hidden)

- explore new parameter regimes (even unphysical)

- substitute “classical” computation



quantum simulators
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trapped ionsultracold atoms

cavity QED circuit QED
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Mott insulator transition [Munich 2002]

BKT transition [Paris 2006]

nonlinear instabilities 
[LENS 2003]

beams; or (ii) starting with a Raman-dressed state [12]
(a superposition of jmF ¼ 0; kx ¼ 0i and jmF ¼ "1; kx #
2kLi), we suddenly turn on the rf field.

After holding the lattice on for a time !pulse, we suddenly
turn off the rf and Raman fields, together with the confining
potential. The atoms are projected onto the bare spin-
momentum basis and separate in TOF in the presence of
a magnetic field gradient (along ez), allowing us to resolve
their spin and momentum components.

We observe a detectable population in states with mo-
menta up to jkxj $ 4kL [Fig. 4(b)]. We perform such
experiments for !R=!rf % 3 and 5. We minimize
the effects of interactions by working with small BECs
(% 9& 104 atoms). Figures 4(c) and 4(d) show the fraction
of atoms in each diffracted order evolving with time. We
observe multiple revivals of the initial spin-momentum
state and find symmetry in the population dynamics of
spin-momentum states with opposite momentum and op-
posite spin. The curves represent fits to the populations in all
spin-momentum components. The parameters from the fits
are all within 10% for our calibrated values, demonstrating
that the spin-momentumdynamics arewell described by the
unitary evolution of the initial states under HrfþR [14].

Based on this technique for controlling the Peierls phase
and inspired by recent proposals for creating flux lattices
[1,21], we now describe how this method might be ex-
tended to create a lattice with zero net flux that is topo-
logically equivalent to the Hofstadter model with flux
density n" ¼ 1=3 per plaquette. Because the hopping
phase is only defined modulo 2" (thus n" is only defined
modulo 1), a uniform magnetic field with n" ¼ 1=2 is
equivalent to a staggered field with n" ¼ "1=2. In the

same spirit, a magnetic field staggered along ez with flux
density ( . . . ; 1=3; 1=3;(2=3; . . . ; ) has zero net flux yet is
equivalent to a uniform field with n" ¼ 1=3. These fields
could be generated by the Peierls phases#yðjx; jzÞ ¼ 0 and
#xðjx; jzÞ ¼ (ð2"=3Þmodðjz; 3Þ. Reminiscent of the flux

(a)

(b)

(c)

(d)

FIG. 4 (color online). BEC diffraction from the effective Zeeman lattice. (a) Starting with a rf-dressed (Raman-dressed) state, we
suddenly turn on the Raman (rf) field for a variable time !pulse. (b) Using TOF absorption images of the projected spin-momentum

distributions, we count the number of atoms in each diffracted order and determine its fractional population. Panels (c) and (d) depict
the time evolution of these fractions. The curves are fits to the data, calculated from HrfþR. The fit parameters are (c) rf dressed@ð!rf ;!R;!zÞ ¼ ð3:57; 11:49;(0:04ÞEL and (d) Raman dressed @ð!rf ;!R;!zÞ ¼ ð3:06; 15:14; 0:08ÞEL.

(a) (b)

FIG. 5 (color online). Generation of the 1=3 flux Hofstadter
model. (a) Schematic showing effective 1=3 flux per plaquette
modulo 1. The color scale indicates the effective phase gradient
induced by the vector lattice. Atoms acquire phases as they hop
along ex, in contrast, no phase is acquired by hopping along ez
(see loop). (b) Region (in black) where the Chern numbers in the
lowest three bands are ð1;(2; 1Þ, equivalent to the n" ¼ 1=3
Hofstadter model as a function of the period 3a=2 vector lattice’s
strength. The horizontal axis is its vector contribution to !z and
the vertical is its scalar contribution to the overall lattice poten-
tial. The inclusion of a state-dependent potential spatially mod-
ulates the energy in the lowest dressed band (including the effect
of the scalar potential arising from the adiabatic approximation),
resulting in an unwanted spatial staggering of the lattice poten-
tial. The flat band condition corresponds to the case when the
scalar light shift cancels this unwanted modulation.

PRL 108, 225303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

225303-4

artificial gauge fields
[NIST 2009-2012]

for three different values of J. In all three cases, the system enters the
localized regime at the same disorder strength, providing compelling
evidence of the scaling behaviour intrinsic to the model described in
equation (1).

In this regime, the eigenstates of the hamiltonian in equation (1)
are exponentially localized, and the tails of diffusing wave packets are
expected to behave like stretched exponentials24. We therefore ana-
lysed the tails of the spatial distributions with an exponential func-
tion of the form fa(x) 5 Aexp(2j(x 2 x0)/lja), the exponent a being a
fitting parameter. Two examples of this analysis, one for weak dis-
order and one for strong disorder, are shown in Fig. 3a, b. The
exponent a exhibits a smooth crossover from a value of two to a
value of one as D/J increases (Fig. 3c), signalling the onset of an
exponential localization. The value a 5 2 that we obtain for small
D/J corresponds to the expected ballistic evolution of the initial
gaussian momentum distribution of the non-interacting condensate.
We note that in the radial direction, where the system is only har-
monically trapped, the spatial distribution is always well fitted by a
gaussian function (a 5 2).

Information on the eigenstates of the system can also be extracted
from the analysis of the momentum distribution of the stationary
atomic states in the presence of the harmonic confinement. The
width of the axial momentum distribution P(k) is inversely propor-
tional to the spatial extent of the condensate in the lattice. We mea-
sure it by releasing the atoms from the lattice and imaging them after
a ballistic expansion.

In Fig. 4, we show examples of the experimental momentum dis-
tributions that are in agreement with the model predictions for the
low-lying eigenstates. Without disorder, we observe the typical grat-
ing interference pattern with three peaks at k 5 0, 62k1, reflecting the
periodicity of the primary lattice. The very small width of the peak at
k 5 0 indicates that the wavefunction is spread over many lattice
sites25. For weak disorder, the eigenstates of the hamiltonian in equa-
tion (1) are still extended, and additional momentum peaks appear at
momentum space distances 62(k1 2 k2) from the main peaks, cor-
responding to the beating of the two lattices. As we further increase
D/J, P(k) broadens and its width eventually becomes comparable
with that of the Brillouin zone, k1, indicating that the extension of
the localized states becomes comparable with the lattice spacing.
From the theoretical analysis of the Aubry–André model, we have a
clear indication that in this regime the eigenstates are exponentially
localized on individual lattice sites.

We note that the side peaks in the two bottom profiles of Fig. 4a, b
indicate that the localization is non-trivial, that is, the tails of the
eigenstates extend over several lattice sites even for large disorder.
The small modulation on top of the profiles is due to the interference
between the several localized states over which the condensate is
distributed. In Fig. 4c, we present the root-mean-squared width of
the central peak of P(k) as a function of D/J, for three different values
of J. The three data sets lie on the same line, confirming the scaling
behaviour of the system. A visibility of the interference pattern,

J
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516 nm. b, Typical calculated density plot of a low-lying eigenstate of the
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Figure 2 | Probing the localization with transport. a, In situ absorption
images of the Bose–Einstein condensate diffusing along the quasi-periodic
lattice for different values of D and J/h 5 153 Hz (where h denotes Planck’s
constant). For D/J . 7 the size of the condensate remains at its original value,
reflecting the onset of localization. b, Root-mean-squared size of the
condensate for three different values of J, at a fixed evolution time of 750 ms,
versus the rescaled disorder strength D/J. The dashed line indicates the initial
size of the condensate. The onset of localization appears in the same range of
values of D/J in all three cases. Vertical error bars, 95% confidence level
(62 s.e.m.); horizontal error bars, 10% uncertainty due to the nonlinearity
of the modulators’ response.
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Anderson localization 
[LENS, Paris 2008]

long lived Bloch oscillations [LENS, Innsbruck 2006-2007]

V(x, y)

~{V!Xcos2(kxzh=2){VXcos2(kx){VYcos2(ky)

{2a
ffiffiffiffiffiffiffiffiffiffiffiffi
VXVY
p

cos(kx)cos(ky)cos(Q)

ð1Þ

where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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two counterpropagating laser beams→(periodic) standing wave

atom-laser electric dipole interaction

that due to the interference of the two laser beams, V0 is
four times larger than Vtrap if the laser power and beam
parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions can be formed
by overlapping two optical standing waves along differ-
ent, usually orthogonal, directions. For orthogonal po-
larization vectors of the two laser fields, no interference
terms appear. The resulting optical potential in the cen-
ter of the trap is then a simple sum of a purely sinusoidal
potential in both directions.

In such a two-dimensional optical lattice potential, at-
oms are confined to arrays of tightly confining one-
dimensional tubes !see Fig. 4"a#$. For typical experimen-
tal parameters, the harmonic trapping frequencies along
the tube are very weak "on the order of 10–200 Hz#,
while in the radial direction the trapping frequencies can
become as high as up to 100 kHz. For sufficiently deep
lattice depths, atoms can move only axially along the
tube. In this manner, it is possible to realize quantum
wires with neutral atoms, which allows one to study
strongly correlated gases in one dimension, as discussed
in Sec. V. Arrays of such quantum wires have been real-
ized "Greiner et al., 2001; Moritz et al., 2003; Kinoshita et
al., 2004; Paredes et al., 2004; Tolra et al., 2004#.

For the creation of a three-dimensional lattice poten-
tial, three orthogonal optical standing waves have to be
overlapped. The simplest case of independent standing
waves, with no cross interference between laser beams
of different standing waves, can be realized by choosing
orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the three standing waves. The

resulting optical potential is then given by the sum of
three standing waves. In the center of the trap, for dis-
tances much smaller than the beam waist, the trapping
potential can be approximated as the sum of a homoge-
neous periodic lattice potential

Vp"x,y,z# = V0"sin2 kx + sin2 ky + sin2 kz# "36#

and an additional external harmonic confinement due to
the Gaussian laser beam profiles. In addition to this, a
confinement due to the magnetic trapping is often used.

For deep optical lattice potentials, the confinement on
a single lattice site is approximately harmonic. Atoms
are then tightly confined at a single lattice site, with trap-
ping frequencies !0 of up to 100 kHz. The energy "!0
=2Er"V0 /Er#1/2 of local oscillations in the well is on the
order of several recoil energies Er="2k2 /2m, which is a
natural measure of energy scales in optical lattice poten-
tials. Typical values of Er are in the range of several
kilohertz for 87Rb.

Spin-dependent optical lattice potentials. For large de-
tunings of the laser light forming the optical lattices
compared to the fine-structure splitting of a typical
alkali-metal atom, the resulting optical lattice potentials
are almost the same for all magnetic sublevels in the
ground-state manifold of the atom. However, for more
near-resonant light fields, situations can be created in
which different magnetic sublevels can be exposed to
vastly different optical potentials "Jessen and Deutsch,
1996#. Such spin-dependent lattice potentials can, e.g.,
be created in a standing wave configuration formed by
two counterpropagating laser beams with linear polar-
ization vectors enclosing an angle # "Jessen and Deutsch,
1996; Brennen et al., 1999; Jaksch et al., 1999; Mandel et
al., 2003a#. The resulting standing wave light field can be
decomposed into a superposition of a $+- and a
$−-polarized standing wave laser field, giving rise to lat-
tice potentials V+"x ,##=V0 cos2"kx+# /2# and V−"x ,##
=V0 cos2"kx−# /2#. By changing the polarization angle #,
one can control the relative separation between the two
potentials %x= "# /&#'x /2. When # is increased, both po-
tentials shift in opposite directions and overlap again
when #=n&, with n an integer. Such a configuration has
been used to coherently move atoms across lattices and
realize quantum gates between them "Jaksch et al., 1999;
Mandel et al., 2003a, 2003b#. Spin-dependent lattice po-
tentials furthermore offer a convenient way to tune in-
teractions between two atoms in different spin states. By
shifting the spin-dependent lattices relative to each
other, the overlap of the on-site spatial wave function
can be tuned between zero and its maximum value, thus
controlling the interspecies interaction strength within a
restricted range. Recently, Sebby-Strabley et al. "2006#
have also demonstrated a novel spin-dependent lattice
geometry, in which 2D arrays of double-well potentials
could be realized. Such “superlattice” structures allow
for versatile intrawell and interwell manipulation possi-
bilities "Fölling et al., 2007; Lee et al., 2007; Sebby-
Strabley et al., 2007#. A variety of lattice structures can
be obtained by interfering laser beams under different

(a)

(b)

FIG. 4. "Color online# Optical lattices. "a# Two- and "b# three-
dimensional optical lattice potentials formed by superimposing
two or three orthogonal standing waves. For a two-
dimensional optical lattice, the atoms are confined to an array
of tightly confining one-dimensional potential tubes, whereas
in the three-dimensional case the optical lattice can be ap-
proximated by a three-dimensional simple cubic array of
tightly confining harmonic-oscillator potentials at each lattice
site.
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that due to the interference of the two laser beams, V0 is
four times larger than Vtrap if the laser power and beam
parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions can be formed
by overlapping two optical standing waves along differ-
ent, usually orthogonal, directions. For orthogonal po-
larization vectors of the two laser fields, no interference
terms appear. The resulting optical potential in the cen-
ter of the trap is then a simple sum of a purely sinusoidal
potential in both directions.

In such a two-dimensional optical lattice potential, at-
oms are confined to arrays of tightly confining one-
dimensional tubes !see Fig. 4"a#$. For typical experimen-
tal parameters, the harmonic trapping frequencies along
the tube are very weak "on the order of 10–200 Hz#,
while in the radial direction the trapping frequencies can
become as high as up to 100 kHz. For sufficiently deep
lattice depths, atoms can move only axially along the
tube. In this manner, it is possible to realize quantum
wires with neutral atoms, which allows one to study
strongly correlated gases in one dimension, as discussed
in Sec. V. Arrays of such quantum wires have been real-
ized "Greiner et al., 2001; Moritz et al., 2003; Kinoshita et
al., 2004; Paredes et al., 2004; Tolra et al., 2004#.

For the creation of a three-dimensional lattice poten-
tial, three orthogonal optical standing waves have to be
overlapped. The simplest case of independent standing
waves, with no cross interference between laser beams
of different standing waves, can be realized by choosing
orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the three standing waves. The

resulting optical potential is then given by the sum of
three standing waves. In the center of the trap, for dis-
tances much smaller than the beam waist, the trapping
potential can be approximated as the sum of a homoge-
neous periodic lattice potential

Vp"x,y,z# = V0"sin2 kx + sin2 ky + sin2 kz# "36#

and an additional external harmonic confinement due to
the Gaussian laser beam profiles. In addition to this, a
confinement due to the magnetic trapping is often used.

For deep optical lattice potentials, the confinement on
a single lattice site is approximately harmonic. Atoms
are then tightly confined at a single lattice site, with trap-
ping frequencies !0 of up to 100 kHz. The energy "!0
=2Er"V0 /Er#1/2 of local oscillations in the well is on the
order of several recoil energies Er="2k2 /2m, which is a
natural measure of energy scales in optical lattice poten-
tials. Typical values of Er are in the range of several
kilohertz for 87Rb.

Spin-dependent optical lattice potentials. For large de-
tunings of the laser light forming the optical lattices
compared to the fine-structure splitting of a typical
alkali-metal atom, the resulting optical lattice potentials
are almost the same for all magnetic sublevels in the
ground-state manifold of the atom. However, for more
near-resonant light fields, situations can be created in
which different magnetic sublevels can be exposed to
vastly different optical potentials "Jessen and Deutsch,
1996#. Such spin-dependent lattice potentials can, e.g.,
be created in a standing wave configuration formed by
two counterpropagating laser beams with linear polar-
ization vectors enclosing an angle # "Jessen and Deutsch,
1996; Brennen et al., 1999; Jaksch et al., 1999; Mandel et
al., 2003a#. The resulting standing wave light field can be
decomposed into a superposition of a $+- and a
$−-polarized standing wave laser field, giving rise to lat-
tice potentials V+"x ,##=V0 cos2"kx+# /2# and V−"x ,##
=V0 cos2"kx−# /2#. By changing the polarization angle #,
one can control the relative separation between the two
potentials %x= "# /&#'x /2. When # is increased, both po-
tentials shift in opposite directions and overlap again
when #=n&, with n an integer. Such a configuration has
been used to coherently move atoms across lattices and
realize quantum gates between them "Jaksch et al., 1999;
Mandel et al., 2003a, 2003b#. Spin-dependent lattice po-
tentials furthermore offer a convenient way to tune in-
teractions between two atoms in different spin states. By
shifting the spin-dependent lattices relative to each
other, the overlap of the on-site spatial wave function
can be tuned between zero and its maximum value, thus
controlling the interspecies interaction strength within a
restricted range. Recently, Sebby-Strabley et al. "2006#
have also demonstrated a novel spin-dependent lattice
geometry, in which 2D arrays of double-well potentials
could be realized. Such “superlattice” structures allow
for versatile intrawell and interwell manipulation possi-
bilities "Fölling et al., 2007; Lee et al., 2007; Sebby-
Strabley et al., 2007#. A variety of lattice structures can
be obtained by interfering laser beams under different
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FIG. 4. "Color online# Optical lattices. "a# Two- and "b# three-
dimensional optical lattice potentials formed by superimposing
two or three orthogonal standing waves. For a two-
dimensional optical lattice, the atoms are confined to an array
of tightly confining one-dimensional potential tubes, whereas
in the three-dimensional case the optical lattice can be ap-
proximated by a three-dimensional simple cubic array of
tightly confining harmonic-oscillator potentials at each lattice
site.
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graphene-type optical lattice [Lee et al., PRA 80, 043411 (2009)]

give the necessary requirements for reaching the massless
Dirac fermion regime. Finally, we examine how massless
Dirac fermions survive lattice distortions that could result
from intensity-unbalanced or misaligned laser beams. These
distortions open the way to new physics related to the quan-
tum Hall effect !17". We will close by briefly mentioning
possible experiments to target for noninteracting and inter-
acting ultracold fermions !18,19".

II. HONEYCOMB OPTICAL LATTICE

A. Radiative forces and optical lattices

A two-level atom #with angular frequency separation !at
and excited-state angular frequency width "$ that interacts
with a monochromatic laser field with complex amplitude
E#r , t$=E#r$e−i!Lt gets polarized and experiences radiative
forces due to photon absorption and emission cycles !20,21".
When the light frequency is tuned far away from the atomic
resonance, i.e., when the light detuning #=!L−!at is much
larger than ", the field-induced saturation effects are negli-
gible and the atom essentially keeps staying in its ground
state. In this situation, the atom-field interaction is dominated
by stimulated emission processes where the atomic dipole
absorbs a photon from one Fourier component of the field
and radiates it back into the same or another one of these
Fourier modes. In each such stimulated cycle, there is a mo-
mentum transfer to the atom and, as a net result, the atom
experiences an average force in the course of time. This di-
pole force exerted by the field onto the atom in its ground
state is conservative. It derives from the polarization energy
shift of the atomic levels #ac Stark or light shifts$ !22" and
the dipole potential V#r$ is given by

V#r$ =
$"

8
"

#

I#r$
Is

, #1$

where I#r$=%0c%E#r$%2 /2 is the light field intensity #time-
averaged energy current density$ at the center-of-mass posi-
tion r of the atom and Is is the saturation intensity of the
atom under consideration.

For multilevel atoms, the situation is more complicated as
the dipole potential now depends on the particular atomic
ground state sublevel under consideration. However, if the
laser detuning # is much larger than the fine and hyperfine
structure splittings of the atomic electronic transition, then
all ground-state atomic sublevels will essentially experience
the same dipole potential. This common potential turns out to
be given by Eq. #1$ as well. Hence, by conveniently tailoring
the space and time dependence of the laser field, one can
produce a great variety of dipole potentials and thus manipu-
late the ground-state atomic motion.

Optical lattices are periodic intensity patterns of light ob-
tained through the interference of several monochromatic la-
ser beams !23". By loading ultracold atoms into such artifi-
cial crystals of light one obtains periodic arrays of atoms.
Indeed, as seen from Eq. #1$, when the light field is blue-
detuned from the atomic resonance ##&0$, then the atoms
can be trapped in the field-intensity minima whereas for red-
tuned light ##'0$ they can be trapped at the field-intensity

maxima. Such arrays of ultracold atoms trapped in optical
lattices have been used in a wide variety of experiments. As
recently evidenced by the observation of the Mott-Hubbard
transition with degenerate gases !24", they have proven to be
a unique tool to mimic, test, and go beyond phenomena ob-
served until now in the condensed-matter realm !14,25".
They also have a promising potential for the implementation
of quantum simulators and for quantum information process-
ing purposes !13,26,27".

B. Optical lattice with honeycomb structure

1. Field configuration and associated dipole potential

The simplest possible optical lattice with honeycomb
structure is generated by superposing three coplanar travel-
ing plane waves that have the same angular frequency !L
=ckL, the same field strength E0&0, the same polarization
and the three wave vectors ka form a trine: their sum van-
ishes and the angle between any two of them is 2( /3,

k1 + k2 + k3 = 0, ka · kb = kL
2&3

2
#ab −

1
2
' #2$

with a ,b=1,2 ,3 and #ab is the Kronecker symbol !23". As is
illustrated in Fig. 1, we choose the x ,y plane as the common
plane of propagation and, to be specific, use

k1 = kLey, (k2

k3
) = kL

)*3ex − ey

2
#3$

for the parametrization of the wave vectors.
Further, we take all fields to be linearly polarized orthogo-

nal to the plane, so that the three complex field amplitudes
are given by

x

y

z

k1

k2k3

2π
3

2π
3

2π
3

FIG. 1. The coplanar three-beam configuration used to generate
the honeycomb lattice. All beams have the same frequency,
strength, and linear polarization orthogonal to their common propa-
gation plane. The honeycomb lattice under consideration is obtained
for blue-detuned beams with respective angles 2( /3. For these
symmetric laser beams, the time-averaged radiation pressure—
albeit small at large detuning—vanishes in this configuration. By
reversing the propagation direction of one of the lasers, such that
k1=k2+k3, say, a triangular lattice of a different geometry is
formed. We will, however, exclusively deal with the k1+k2+k3=0
case.
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!a1

a2
" = !

#3ex " ey

2
, $14%

where != &aa&=4# / $3kL%=2$L /3 is the common length of
the Bravais primitive vectors.

The Bravais lattice defined by Eq. $14% is a triangular
one. We opt here for the diamond-shaped primitive cell %
delineated by the two Bravais lattice vectors as a tiling for
optical potential $8%; see Fig. 3. Another possible choice
would have been the hexagonal Wigner-Seitz cell '28(. This
cell is useful when discussing the symmetry group of the
lattice.

To proceed further one now needs to analyze the structure
of optical potential $8% inside the primitive cell. In passing,

we mention here that red-detuned $&'0% lasers give V0'0
and there is only one potential minimum in each primitive
cell %. Upon trapping atoms in these potential minima, one
gets a triangular lattice that is not of graphene type. This
situation is interesting in view of quantum magnetism and
frustration phenomena '14( but it is not the situation we want
to study here.

3. Honeycomb structure

When the optical lattice is instead blue-detuned $&(0%,
V0 is positive and atoms are “weak-field seekers.” The po-
tential minima coincide with the minima of the electric field
strength and the maxima coincide as well. By choice of co-
ordinate system, the maxima locate at the Bravais sites and
the dimensionless potential $8% has its maximal value of
v$0%=9 at the corners O , P ,Q ,R of the diamond-shaped
primitive cell %; see Fig. 4.

Two different potential minima, given by the zeros of the
total dimensionless field amplitude f$r%, are found in % at

rA =
1
3

$a1 + a2% =
!

#3
ex and rB = 2rA, $15%

respectively. From a crystallographic point of view, % is a
primitive cell with a two-point basis. By applying repeated
Bravais translations on %, one generates two different sub-
lattices of potential minima, one made up of A-type sites and
the other made of B-type sites; see Figs. 3 and 4. Altogether
the potential minima are organized in a honeycomb structure
reminiscent of the positions of the carbon atoms in graphene
sheets.

The three displacements that move an A site to a neigh-

O Q

P

R

a1

a2

aa b

a

ab

b

FIG. 3. The underlying Bravais lattice B of a two-dimensional
honeycomb is the two-dimensional triangular Bravais lattice with a
two-point basis A and B. The gray-shaded area is the primitive cell
%. The honeycomb lattice constant a is defined as the distance
between nearest-neighbor sites.
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FIG. 4. $Color online% Left: the honeycomb pattern composed of the triangular lattices of minima at sites A and B, of maxima at sites C,
as well as of the saddle points between neighboring A and B sites $marked by dots%. The bottom plot shows the potential along the x axis
which is one of the …ABCABC… lines with x=0 at a C site. The saddle points S appear as local maxima here, with a height that is one ninth
of the global maxima at sites C. Cold atoms trapped in this optical potential would be found at the A and B sites. Right: equipotential lines
for the optical honeycomb potential $6%. Along the straight black lines that connect the saddle points, we have V$r%=V0. The $red% closed
circular curves filling out a hexagonal area are centered at the points of maximal potential; from inside out the respective values are V$r%
=8V0, 5V0, 2V0, and 1.05V0. The closed curves filling out areas of the shape of equilateral triangles are centered at the minima that constitute
the A sublattice $blue% or the B sublattice $green%; along the curves the potential has the values V$r%=0.95V0, 0.6V0, 0.3V0, and 0.05V0. One
primitive diamond-shaped unit tile % spanned by a1 and a2 is traced out. It contains two different minima, one of A type $in blue, on the left
inside% and one of B type $in green, on the right inside%. The trine of the A→B displacement vectors $16% is indicated as well. Finally, for
completeness, we also trace out the Bravais Wigner-Seitz unit tile. It is a hexagon centered at a potential maximum and with potential
minima at its corners.
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tight-binding: lattice intensity sufficiently high to localize the atoms in the lowest 
vibrational states of the potential wells

discrete lattice

it is convenient to map the system Hamiltonian onto a tight-binding model 
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6.1.4 Approssimazione di Gutzwiller e diagramma di
fase

Analizziamo adesso le proprietà del ground state dell’hamiltoniana di Bose-
Hubbard, che per semplicità riscriviamo qui sotto nel caso unidimensionale

ĤHB = �J
�

⌅j,j�⇧

â†j âj� +
�

j

⌅jn̂j +
U

2

�

j

n̂j (n̂j � 1) (6.39)

Un generico autostato |⇥⌃ di questa hamiltoniana può essere scritto tra-
mite uno sviluppo sulla base di stati di Fock, autostati degli operatori numero
n̂j

|⇥⌃ =
�

{nj}

c{nj} |n1, n2, · · ·⌃ (6.40)

dove i c{nj} sono i coe⇥cienti dello sviluppo. Tuttavia utilizzare questa ba-
se per un calcolo esatto risulta estremamente impraticabile se il numero di
siti e di atomi considerati supera le poche unità (il numero di stati cresce
fattorialmente, ed i tempi di calcolo diventano estremamente lunghi).

Per ovviare a questo, in letteratura è largamente usata la cosiddetta ap-
prossimazione di Gutzwiller, che consiste nel fattorizzare gli stati corrispon-
denti a ciascun sito del reticolo3

|⇥⌃ =
⇥

j

|⇥j⌃ (6.42)

dove gli stati |⇥j⌃ sono delle combinazioni lineari degli stati numero (Fock)
del singolo sito

|⇥j⌃ =
��

nj=0

f (j)
nj

|nj⌃ . (6.43)

Lo stato fondamentale del sistema può essere quindi trovato minimizzando
l’energia libera

F = ⇧⇤|H |⇤⌃ � µ ⇧⇤|
�

i

n̂i |⇤⌃ (6.44)

rispetto ai coe⇥cienti f (j)
nj (µ è il potenziale chimico legato alla conservazione

del numero di particelle). Senza entrare nei dettagli, quello che si trova nel
caso omogeneo (in assenza di potenziale armonico, ⌅j = 0) è che il sistema è
caratterizzato da una transizione di fase quantistica (dovuta alle fluttuazioni

3Si può dimostrare che che l’approssimazione di Gutzwiller è equivalente alla seguente
approssimazione di campo medio del termine di tunneling [4]

â†i âj ⌅ ⇧â†i ⌃âj + â†i ⇧âj⌃ � ⇧â†i ⌃⇧âj⌃ ⇤ �⇤
i âj + �j â

†
i � �⇤

i�j (6.41)

66

Bose–Hubbard model (bosons)

the actual values of J, U, ɛ depend on the parameters of the underlying 
continuous model (those directly accessed in the experiment)

tion is of first order. Crossing the phase boundary at any
nonzero current is therefore connected with an irrevers-
ible decay of the current to zero. Experimentally, the
decrease of the critical momentum near the SF-MI tran-
sition has been observed by Mun et al. !2007". Their re-
sults are in good agreement with the phase diagram
shown in Fig. 15.

In the mean-field picture, states of a SF with nonzero
momentum have an infinite lifetime. More precisely,
however, such states can only be metastable because the
ground state of any time-reversal-invariant Hamiltonian
necessarily has zero current. The crucial requirement for
SF in practice, therefore, is that current-carrying states
have lifetimes that far exceed experimentally relevant
scales. This requires these states to be separated from
the state with vanishing current by energy barriers,
which are much larger than the thermal or relevant zero-
point energy.10 The rate for phase slips near the critical
line in Fig. 15 was calculated by Polkovnikov et al.
!2005". It turns out that the mean-field transition sur-
vives fluctuations in 3D, so in principle it is possible to
locate the equilibrium SF-MI transition by extrapolating
the dynamical transition line to zero momentum. In the
experiments of Fertig et al. !2005", the system showed
sharp interference peaks even in the “overdamped” re-
gime where the condensate motion was locked by the
optical lattice !see Fig. 16". This may be due to localized
atoms at the sample edges, which block the dipole oscil-
lation even though atoms in the center of the trap are
still in the SF regime. A theoretical study of the damped
oscillations of 1D bosons was given by Gea-Banacloche
et al. !2006".

A different method of driving a SF-MI transition dy-
namically was suggested by Eckardt et al. !2005". Instead
of a uniformly moving optical lattice, it employs an os-

cillating linear potential K cos!!t"x̂ along one of the lat-
tice directions !in a 1D BHM, x̂=#jjn̂j is the dimension-
less position operator". For modulation frequencies such
that "! is much larger than the characteristic scales J
and U of the unperturbed BHM, the driven system be-
haves like the undriven one, but with a renormalized
tunneling matrix element Jeff=JJ0!K /"!", where J0!x"
is the standard Bessel function. Since U is unchanged in
this limit, the external perturbation completely sup-
presses the tunneling at the zeros of the Bessel function.
Moreover, it allows one to invert the sign of Jeff to nega-
tive values, where, for example, the superfluid phase cor-
responds to a condensate at finite momentum q=# /d. In
recent experiments by Lignier et al. !2007", the dynami-
cal suppression of tunneling with increasing driving K
was observed through measurement of the expansion
velocity along the direction of the optical lattice after
switching off the axial confinement.

E. Fermions in optical lattices

In this section, we focus on fermions in 3D optical
lattice potentials and experimental results that have
been obtained in these systems. Interacting fermions in a
periodic potential can be described by the Hubbard
Hamiltonian. For now we restrict the discussion to the
case of atoms confined to the lowest-energy band and to
two possible spin states $↑%, $↓% for the fermionic par-
ticles. The single-band Hubbard Hamiltonian thus reads

H = − J #
&R,R!%,$

!ĉR,$
† ĉR!,$ + H.c." + U#

R
n̂R↑n̂R↓

+
1
2

M!2#
R,$

R2n̂R,$. !76"

As in the case of bosonic particles, the zero tempera-
ture phase diagram depends strongly on the filling and
the ratio between the interaction and kinetic energies.
An important difference between the bosonic and fermi-
onic Hubbard Hamiltonian can also be seen in the form
of the interaction term, where only two particles of dif-
ferent spin states are allowed to occupy the same lattice
site, giving rise to an interaction energy U between at-
oms.

Filling factor and Fermi surfaces. A crucial parameter
in the fermionic Hubbard model is the filling factor of
atoms in the lattice. Due to the overall harmonic con-
finement of atoms 'last term in Eq. !76"(, this filling frac-
tion changes over the cloud of trapped atoms. One can,
however, specify an average characteristic filling factor,

%c = NFd3/&3, !77"

with &=)2J /M!2 describing the typical delocalization
length of the single-particle wave functions in the com-
bined periodic lattice and external harmonic trapping
potential !Rigol and Muramatsu, 2004; Köhl et al.,
2005a". The characteristic filling factor can be controlled
experimentally either by increasing the total number of
fermionic atoms NF or by reducing J via an increase of

10This is different from the well-known Landau criterion of
superfluid flow below a finite critical velocity !Pitaevskii and
Stringari, 2003". Indeed, the existence of phase slips implies
that the critical velocity is always zero in a strict sense.

Lattice Depth [Er]

3

2

1

0

z(
t w
=
90
m
s)
[
m
]

z

1086420

FIG. 16. Inhibition of transport in a one-dimensional bosonic
quantum system with an axial optical lattice. For lattice depths
above approximately 2Er, an atom cloud displaced to the side
of the potential minimum !see inset" is stuck at this position
and does not relax back to the minimum. From Fertig et al.,
2005.
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neighboring sites

on-site interaction
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Figure 2. A sketch of the double-well structure and of the tunnelling coefficients
between sites A and B.

of functions localized around each minimum

 ̂(x) ⌘
X

nj

ân j fn j(x), (3)

where â†
nj (ân j ) represent the creation (destruction) operator of a single-particle at site j , and

satisfy the usual commutation rules [ân j , â†
n0 j 0] = � j j 0�nn0 (following from those for the field  ̂).

In the presence of a single well per unit cell, it is known that a basis of localized functions
is provided by the exponentially decaying Wannier functions wnj(x) discussed by Kohn
[13, 14]. In general, this is not the case when there are two wells per unit cell. For example,
for a symmetric double well the Kohn–Wannier functions display the same symmetry of the
local potential structure [13, 16] and thus they cannot be associated with a single lattice site
as they occupy both wells in the unit cell. In the next section, we will show that when the two
lowest Bloch bands are sufficiently close to each other with respect to the third band (as will be
clear from the discussion in sections 3.2 and 4), we can construct a set of generalized Wannier
functions w̃nj(x) that are maximally localized at each minima, by following the approach of
Marzari and Vanderbilt [21] for a composite band. This corresponds to the generalization of
the single-band approximation (in the case of a single-well lattice) to the double-well case, as
we need at least two localized functions in each lattice cell to map the system on the discrete
lattice. Then, in section 4, we will explore the range of validity of this composite band approach,
highlighting the different implications on the structure of different tight-binding models.

In the following, we will restrict the analysis to the two lowest energy bands, in analogy
with the single-band approximation for the Bose–Hubbard model [11]. Then, within this
approximation, the single-particle Hamiltonian can be written as

Ĥ0 '
X

⌫⌫0=A,B

X

j j 0
â†

j⌫ â j 0⌫0 h f j⌫|Ĥ 0| f j 0⌫0 i, (4)

where j is the unit cell index, whereas ⌫ = A, B substitutes the band index n = 1, 2 being
an internal index labelling the left and right sub-wells, respectively (see figure 2). Here
the expansion coefficients correspond to the on-site energies E⌫ = h f j⌫ |Ĥ 0| f j⌫ i, and to the
tunnelling amplitudes between different (sub)wells T j j 0

⌫⌫0 ⌘ �h f j⌫|Ĥ 0| f j 0⌫0 i. In general, it is
customary to further approximate the above expression by neglecting the coupling beyond
nearest neighbours for both the single-well [10] and double-well lattices [25, 28, 29]. This is
a reasonable assumption for a single-well lattice in the tight-binding regime [14, 34], but may
not be fully justified in the range of the typical experimental parameters for a double well, as

New Journal of Physics 14 (2012) 055004 (http://www.njp.org/)

expansion over a basis of localized functions at each potential well 

precise knowledge of these basis functions important to 
connect the actual experimental parameters with the 

coefficients of the discrete model
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nj (ân j ) represent the creation (destruction) operator of a single-particle at site j , and

satisfy the usual commutation rules [ân j , â†
n0 j 0] = � j j 0�nn0 (following from those for the field  ̂).

In the presence of a single well per unit cell, it is known that a basis of localized functions
is provided by the exponentially decaying Wannier functions wnj(x) discussed by Kohn
[13, 14]. In general, this is not the case when there are two wells per unit cell. For example,
for a symmetric double well the Kohn–Wannier functions display the same symmetry of the
local potential structure [13, 16] and thus they cannot be associated with a single lattice site
as they occupy both wells in the unit cell. In the next section, we will show that when the two
lowest Bloch bands are sufficiently close to each other with respect to the third band (as will be
clear from the discussion in sections 3.2 and 4), we can construct a set of generalized Wannier
functions w̃nj(x) that are maximally localized at each minima, by following the approach of
Marzari and Vanderbilt [21] for a composite band. This corresponds to the generalization of
the single-band approximation (in the case of a single-well lattice) to the double-well case, as
we need at least two localized functions in each lattice cell to map the system on the discrete
lattice. Then, in section 4, we will explore the range of validity of this composite band approach,
highlighting the different implications on the structure of different tight-binding models.

In the following, we will restrict the analysis to the two lowest energy bands, in analogy
with the single-band approximation for the Bose–Hubbard model [11]. Then, within this
approximation, the single-particle Hamiltonian can be written as

Ĥ0 '
X

⌫⌫0=A,B

X

j j 0
â†

j⌫ â j 0⌫0 h f j⌫|Ĥ 0| f j 0⌫0 i, (4)

where j is the unit cell index, whereas ⌫ = A, B substitutes the band index n = 1, 2 being
an internal index labelling the left and right sub-wells, respectively (see figure 2). Here
the expansion coefficients correspond to the on-site energies E⌫ = h f j⌫ |Ĥ 0| f j⌫ i, and to the
tunnelling amplitudes between different (sub)wells T j j 0

⌫⌫0 ⌘ �h f j⌫|Ĥ 0| f j 0⌫0 i. In general, it is
customary to further approximate the above expression by neglecting the coupling beyond
nearest neighbours for both the single-well [10] and double-well lattices [25, 28, 29]. This is
a reasonable assumption for a single-well lattice in the tight-binding regime [14, 34], but may
not be fully justified in the range of the typical experimental parameters for a double well, as
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with

h⌫⌫0(k) =
✓
✏A(k) Z(k)
Z⇤(k) ✏B(k)

◆
(14)

and

✏⌫(k) ⌘ E⌫ � 2J⌫ cos(kd) (15)

Z(k) ⌘ �(TAB + JAB+ e�ikd + JAB� eikd), (16)

where the operators b̂k⌫ satisfy the canonical commutation relations, [b̂⌫k, b̂†
⌫0k0] = �(k � k 0)�⌫⌫0 .

Then, by diagonalizing the matrix h(k), and defining ✏±(k) ⌘ (✏A(k) ± ✏B(k))/2, we obtain
(see also [20])

"tb
±(k) = ✏+(k) ±

q
✏2�(k) + |Z(k)|2 (17)

that represents the spectrum of the full tight-binding model in (8). In addition, with J⌫ = 0 =
JAB+, the same expression gives also the spectrum for the nearest-neighbour approximation
in (9).

Instead, in the single-band case we simply have [1]

"sb
n (k) = E sb

n � 2J sb
n cos(kd) (18)

with

E sb
n = a

2⇡

Z

B
dk "n(k); J sb

n = � a
2⇡

Z

B
dk "n(k) eika, (19)

"n(k) being the exact Bloch spectrum; notably these expressions do not depend on the choice of
the Wannier basis.

3. Generalized Wannier functions

In this section, we discuss the method for constructing the MLWFs for the double well case.
In order to fix the notations, let us first recall some basic properties of periodic systems
[19, 30]. Owing to Bloch’s theorem, the eigenfunctions of the single-particle Hamiltonian Ĥ 0

can be written as  nk(x) = eikxunk(x), the unk(x)’s having the same periodicity of the potential
and satisfying the following normalization in the unit cell, humk|unki = (d/2⇡)�mn. The Wannier
functions for a single-band are defined as

wn(x � R j) =
r

d
2⇡

Z

B
dk e�ik R j nk(x) ⌘ wnj(x) (20)

with B indicating the first Brillouin zone, k 2 [�kB, kB], and R j ⌘ jd, whereas generalized
Wannier functions for composite bands have the same formal expression but are made from a
linear combination of Bloch eigenstates, namely

w̃n(x � R j) =
r

d
2⇡

Z

B
dk e�ik R j

X

m

Unm(k) mk(x) (21)

⌘
r

d
2⇡

Z

B
dk e�ik R j  ̃nk(x) (22)
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not uniquely defined,  their form depends on the (arbitrary) phase of Bloch functions

simple sinusoidal potential: 
exponentially decaying Wannier functions discussed by Kohn [Phys. Rev. 115, 809 (1959)]
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"n(k) being the exact Bloch spectrum; notably these expressions do not depend on the choice of
the Wannier basis.

3. Generalized Wannier functions

In this section, we discuss the method for constructing the MLWFs for the double well case.
In order to fix the notations, let us first recall some basic properties of periodic systems
[19, 30]. Owing to Bloch’s theorem, the eigenfunctions of the single-particle Hamiltonian Ĥ 0

can be written as  nk(x) = eikxunk(x), the unk(x)’s having the same periodicity of the potential
and satisfying the following normalization in the unit cell, humk|unki = (d/2⇡)�mn. The Wannier
functions for a single-band are defined as

wn(x � R j) =
r

d
2⇡

Z

B
dk e�ik R j nk(x) ⌘ wnj(x) (20)

with B indicating the first Brillouin zone, k 2 [�kB, kB], and R j ⌘ jd, whereas generalized
Wannier functions for composite bands have the same formal expression but are made from a
linear combination of Bloch eigenstates, namely

w̃n(x � R j) =
r

d
2⇡

Z

B
dk e�ik R j

X

m

Unm(k) mk(x) (21)

⌘
r

d
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B
dk e�ik R j  ̃nk(x) (22)
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Analytic expressions for both coefficients can be obtained by means of different approximations
[11, 15].

In the case of two wells per unit cell, the Kohn–Wannier recipe is not sufficient. For
example, for a symmetric double well the Kohn–Wannier functions display the same symmetry
as the local potential structure [13, 16] and thus they occupy both wells and cannot be associated
with a single lattice site. A common approach used in the literature is that of the so-called atomic
orbitals [17–19] that has recently been employed, e.g., for the case of a symmetric double-well
unit cell of 2D graphene-like optical lattices [20]. This method is based on a specific ansatz
according to which tight-binding Wannier functions are constructed from linear combinations
of wave functions deeply localized in the two potential wells of the unit cell.

A more general approach is that proposed by Marzari and Vanderbilt [21], where
maximally localized Wannier functions (MLWFs) are obtained by minimizing the spread of a set
of Wannier functions by means of a suitable gauge transformation of the Bloch eigenfunctions.
This method coincides with the Kohn method for the single-band MLWFs of a 1D potential, but
can be extended to more complex situations when generalized MLWFs for composite bands are
needed. The method is implemented by means of a software package, and is mostly used for
computing MLWFs of real condensed matter systems [22].

In this paper, we consider the case of a 1D periodic potential with a double well per
unit cell [23–29], discussing an alternative method for constructing the low-lying generalized
MLWFs based on the minimal spread requirement of Marzari and Vanderbilt [21], specifically
suited for double-well potentials. In particular, we consider a composite band made of the
two lowest Bloch bands and, differently from [21], we design a two-step gauge transformation
specific for a composite two-band system which can be solved by integrating a set of ordinary
differential equations, with suitable boundary conditions. This allows us to efficiently compute
the tunnelling coefficients and other tight-binding coefficients in terms of the parameter of the
continuous potential. We also remark that, although the approach of Marzari and Vanderbilt [21]
was proposed for degenerate bands, we find that the method works properly in a wider regime,
provided that the first band gap does not exceed the distance between the second and the third
band.

This paper is organized as follows. In section 2, we review the mapping of a many-
body Hamiltonian onto a tight-binding model, discussing in particular the case of a sinusoidal
periodic potential with a double well in the unit cell. Then, in section 3 we describe the gauge
transformation for constructing the generalized MLWFs, giving some examples and comparing
them with those of the single-band approach. Then, in section 4, we discuss the regime of
validity of the composite band approach and compare the predictions of the full and nearest-
neighbour versions of the model by discussing the behaviour of the tunnelling coefficients and
other tight-binding parameters. Final considerations are drawn in the conclusions. Technical
points regarding the mapping on momentum space and the numerical implementation are
discussed in the appendices.

2. Tight-binding models for double-well optical lattices

Let us start by reviewing how tight-binding models are defined from a continuous potential. As
a specific example, here we consider a 1D many-body Hamiltonian for ultracold bosons [10]

Ĥ=
Z

dx  ̂† Ĥ 0 ̂ +
g
2

Z
dx  ̂† ̂† ̂ ̂ ⌘ Ĥ0 + Ĥint (1)

New Journal of Physics 14 (2012) 055004 (http://www.njp.org/)

ultracold bosons in 1D optical lattices:

4

 0

 1

 2

 3

-1/2 0 1/2

V
(x

)/
V

1

x/d

(a)

  

  

  

  

-1/2 0 1/2

 

x/d

(b)

  

  

  

  

-1/2 0 1/2

 

x/d

(c)

Figure 1. The three possible configurations for the unit cell of the potential in (2)
(here V2 = 2V1): (a) two different minima, with the overall potential having
two centres of parity, for ✓0 = 0 (�0 ' ⇡/4); (b) an asymmetric double well
with parity that is broken globally—in this example ✓0 = ⇡/4 (�0 ' ⇡/8); (c) a
symmetric double well, ✓0 = ⇡/2 (�0 = 0). The black dots in (a) and (c) represent
the parity centres of the whole periodic potential.

with  ̂(x) being the bosonic field operator, Ĥ 0 = �(h̄2/2m)r2 + V (x) the single-particle
Hamiltonian and V (x) a double-well periodic potential of the form

V (x) = V1 sin2(kBx +�0) + V2 sin2(2kBx + ✓0 + 2�0) (2)

with kB = ⇡/d and V1 strictly non-vanishing (V1 > 0) in order to fix the overall period to d,
V (x + d) = V (x). This is the typical potential used in experiments with ultracold atoms [1], by
which one can construct an optical lattice with one or two wells in the unit cell. In particular,
the condition for having two minima in each period for any value of ✓0 is V2 > 0.5V1. In the
following, the potential amplitudes Vi will be expressed in units of ER = h̄2k2

B/2 m, the so-
called recoil energy for an atom absorbing a photon of the first lattice.

The phases ✓0 and �0 are arbitrary; �0 represents a rigid shift of the whole potential, while
✓0 can be varied along with the ratio of the amplitudes V2/V1 to change the landscape of the
potential. For convenience, the unit cell is defined as having two maxima at the cell borders,
with both minima inside the cell (see figure 1). In addition, the angle �0 is tuned in order
to have a unit cell centred in x = 0, x 2 [�d/2, d/2], with the absolute minimum in the left
well4. Depending on the value of ✓0, it is possible to realize three different configurations, as
shown in figure 1: (a) A unit cell with two different minima and with degenerate maxima, for
✓0 = n⇡ (n 2 Z); in this case the whole periodic potential has two (classes of) parity centres,
corresponding to the two minima, with all the maxima being degenerate. (b) An asymmetric
double well with parity that is globally broken, for any ✓0 2 (0,⇡/2) + n⇡/2. (c) A symmetric
double well in the unit cell, for ✓0 = ⇡/2 + n⇡ ; in this case the potential has again two centres
of parity, now at the two maxima, with all the minima being degenerate.

As anticipated in the introduction, when the potential wells are deep enough, it may
be convenient to map the Hamiltonian (1) onto a tight-binding model on the discrete lattice
corresponding to the potential minima, by expanding the field operator  ̂(x) on a basis { fnj(x)}
4 The presence of �0 is also useful in testing the robustness of the numerical method for obtaining the MLWFs,
which indeed should not depend on an overall translation of the potential.
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with  ̂(x) being the bosonic field operator, Ĥ 0 = �(h̄2/2m)r2 + V (x) the single-particle
Hamiltonian and V (x) a double-well periodic potential of the form

V (x) = V1 sin2(kBx +�0) + V2 sin2(2kBx + ✓0 + 2�0) (2)

with kB = ⇡/d and V1 strictly non-vanishing (V1 > 0) in order to fix the overall period to d,
V (x + d) = V (x). This is the typical potential used in experiments with ultracold atoms [1], by
which one can construct an optical lattice with one or two wells in the unit cell. In particular,
the condition for having two minima in each period for any value of ✓0 is V2 > 0.5V1. In the
following, the potential amplitudes Vi will be expressed in units of ER = h̄2k2

B/2 m, the so-
called recoil energy for an atom absorbing a photon of the first lattice.

The phases ✓0 and �0 are arbitrary; �0 represents a rigid shift of the whole potential, while
✓0 can be varied along with the ratio of the amplitudes V2/V1 to change the landscape of the
potential. For convenience, the unit cell is defined as having two maxima at the cell borders,
with both minima inside the cell (see figure 1). In addition, the angle �0 is tuned in order
to have a unit cell centred in x = 0, x 2 [�d/2, d/2], with the absolute minimum in the left
well4. Depending on the value of ✓0, it is possible to realize three different configurations, as
shown in figure 1: (a) A unit cell with two different minima and with degenerate maxima, for
✓0 = n⇡ (n 2 Z); in this case the whole periodic potential has two (classes of) parity centres,
corresponding to the two minima, with all the maxima being degenerate. (b) An asymmetric
double well with parity that is globally broken, for any ✓0 2 (0,⇡/2) + n⇡/2. (c) A symmetric
double well in the unit cell, for ✓0 = ⇡/2 + n⇡ ; in this case the potential has again two centres
of parity, now at the two maxima, with all the minima being degenerate.

As anticipated in the introduction, when the potential wells are deep enough, it may
be convenient to map the Hamiltonian (1) onto a tight-binding model on the discrete lattice
corresponding to the potential minima, by expanding the field operator  ̂(x) on a basis { fnj(x)}
4 The presence of �0 is also useful in testing the robustness of the numerical method for obtaining the MLWFs,
which indeed should not depend on an overall translation of the potential.
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Figure 2. A sketch of the double-well structure and of the tunnelling coefficients
between sites A and B.

of functions localized around each minimum

 ̂(x) ⌘
X

nj

ân j fn j(x), (3)

where â†
nj (ân j ) represent the creation (destruction) operator of a single-particle at site j , and

satisfy the usual commutation rules [ân j , â†
n0 j 0] = � j j 0�nn0 (following from those for the field  ̂).

In the presence of a single well per unit cell, it is known that a basis of localized functions
is provided by the exponentially decaying Wannier functions wnj(x) discussed by Kohn
[13, 14]. In general, this is not the case when there are two wells per unit cell. For example,
for a symmetric double well the Kohn–Wannier functions display the same symmetry of the
local potential structure [13, 16] and thus they cannot be associated with a single lattice site
as they occupy both wells in the unit cell. In the next section, we will show that when the two
lowest Bloch bands are sufficiently close to each other with respect to the third band (as will be
clear from the discussion in sections 3.2 and 4), we can construct a set of generalized Wannier
functions w̃nj(x) that are maximally localized at each minima, by following the approach of
Marzari and Vanderbilt [21] for a composite band. This corresponds to the generalization of
the single-band approximation (in the case of a single-well lattice) to the double-well case, as
we need at least two localized functions in each lattice cell to map the system on the discrete
lattice. Then, in section 4, we will explore the range of validity of this composite band approach,
highlighting the different implications on the structure of different tight-binding models.

In the following, we will restrict the analysis to the two lowest energy bands, in analogy
with the single-band approximation for the Bose–Hubbard model [11]. Then, within this
approximation, the single-particle Hamiltonian can be written as

Ĥ0 '
X

⌫⌫0=A,B

X

j j 0
â†

j⌫ â j 0⌫0 h f j⌫|Ĥ 0| f j 0⌫0 i, (4)

where j is the unit cell index, whereas ⌫ = A, B substitutes the band index n = 1, 2 being
an internal index labelling the left and right sub-wells, respectively (see figure 2). Here
the expansion coefficients correspond to the on-site energies E⌫ = h f j⌫ |Ĥ 0| f j⌫ i, and to the
tunnelling amplitudes between different (sub)wells T j j 0

⌫⌫0 ⌘ �h f j⌫|Ĥ 0| f j 0⌫0 i. In general, it is
customary to further approximate the above expression by neglecting the coupling beyond
nearest neighbours for both the single-well [10] and double-well lattices [25, 28, 29]. This is
a reasonable assumption for a single-well lattice in the tight-binding regime [14, 34], but may
not be fully justified in the range of the typical experimental parameters for a double well, as

New Journal of Physics 14 (2012) 055004 (http://www.njp.org/)

two wells: two-band approximation (~single-band approximation)

nearest neighboring cell (≠ well) approximation

5

TAB

A B BB AA

JA JB

JAB+

JAB-JAB-

JAB+

Figure 2. A sketch of the double-well structure and of the tunnelling coefficients
between sites A and B.

of functions localized around each minimum

 ̂(x) ⌘
X

nj

ân j fn j(x), (3)

where â†
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with UU † = 1 and Unm(k + 2kB) = Unm(k). The Wannier functions satisfy the ortho-normality
relation hwnj |wn0 j 0 i = hw̃nj |w̃n0 j 0 i = �nn0� j j 0 . We also remark that the generalized Bloch functions
 ̃nk are not eigenstates of Ĥ 0; however, their ortho-normality relations are preserved, owing to
the unitarity of the transformation matrices Unm(k).

Different choices of the matrices Unm(k) lead to different results, and it is customary to
speak about gauge dependence of the Wannier functions due to the k-dependence of the U (n)
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 ̃nk are not eigenstates of Ĥ 0; however, their ortho-normality relations are preserved, owing to
the unitarity of the transformation matrices Unm(k).

Different choices of the matrices Unm(k) lead to different results, and it is customary to
speak about gauge dependence of the Wannier functions due to the k-dependence of the U (n)
transformations. In the single-band case the arbitrariness reduces to the abelian U (1) group of
phase transformations coming from the freedom in choosing the Bloch basis at each k.

A general approach to obtain MLWFs has been proposed in a seminal paper by Marzari
and Vanderbilt [21], where MLWFs are obtained by minimizing the generalized Wannier spread
�= P

n[hx2in � hxi2
n] by means of a suitable gauge transformation of the Bloch eigenfunctions.

In the case of a single-band the method returns the Kohn result [21]. Marzari and Vanderbilt
have shown that the spread can be written as the sum of two positive terms, �=�I + �̄, the
first being gauge invariant and therefore fixing the minimal spread. The gauge-dependent term
�̄ can be further split into the diagonal and off-diagonal components, �̄=�D +�OD, that in
the 1D case read

�D =
X

n

X

j 6=0

|hwnj |x̂ |wn0i|2, (23)

�OD =
X

m 6=n

X

j

|hwmj |x̂ |wn0i|2. (24)

Both�D and�OD can be written in terms of the generalized Berry vector potentials Anm(k),
defined as [32, 33]

Anm(k) = i
2⇡
d

hunk|@k|umki (25)

with the matrix A(k) being Hermitian, A†(k) = A(k) (it follows from @khunk|umki = 0). We also
recall that the integral over the first Brillouin zone of Ann(k) gives the one-band Zak–Berry
phases �n

�n = i
2⇡
d

Z

B
hunk|@k|unki =

Z

B
Ann(k) ⌘ 2⇡

d
hAnniB, (26)

which are proportional to the offset of the Wannier function centres, hxin0 = (hxinj � R j) =
(d/2⇡)�n [21, 31], yielding hxin0 = hAnniB (this relation is preserved under a generic unitary
gauge transformation, as in (22)). It is also worth remembering that the single Wannier centres
are invariant only under single-band U (1) gauge transformations, whereas for general U (n)
transformations only their sum is conserved [21].

Then, the expressions for �D and �OD can be written as

�D =
X

n

h(Ann(k) � hAnniB)2iB =
X

n

�Dn, (27)

�OD =
X

m 6=n

h|Anm|2iB (28)

and in general can be reduced by means of a functional minimization in k space, as discussed
in [21, 22].

New Journal of Physics 14 (2012) 055004 (http://www.njp.org/)

+ +

๏ the method is implemented by a software package (Wannier90) adapted for computing 
MLWFs of real condensed matter systems

๏ in 1D it is possible to design analytically a two-step gauge transformation in 
terms of a set of ODEs (to be integrated numerically)

8

with UU † = 1 and Unm(k + 2kB) = Unm(k). The Wannier functions satisfy the ortho-normality
relation hwnj |wn0 j 0 i = hw̃nj |w̃n0 j 0 i = �nn0� j j 0 . We also remark that the generalized Bloch functions
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Figure 3. Plot of the density of the two lowest single-band (blue lines) and
generalized (red lines) MLWFs, in log scale (a,b) and linear scale (c,d). The
dotted line in (c,d) represents the potential, while the horizontal orange stripes are
the first three Bloch bands (on the same scale as the potential). Here V1 = 10ER,
V2 = 20ER, ✓0 = ⇡/2.

✓(�kB) = ✓(kB) + 2`0⇡ (45)

with `, `0 integers which can be taken ` = `0 = 0 without loss of generality. This set of
equations (41), (42), (44) and (45) can be solved as discussed in appendix B. The resulting
transformation is an SU (2) matrix S(k) of the form (36) with � = 0 and ' constant.

Summarizing, the procedure to make �̃ vanish can be divided into two steps: (a) a
gauge transformation of type II to make �OD vanish (without specific requirements on the
transformations of the diagonal elements Ann(k)); (b) a set of two gauge transformations of
type I (one for each band) that makes �D vanish without affecting �OD. Therefore, the full
transformation can be decomposed in the following way:

Unm(k) = ei�n(k)Snm(k). (46)

It is straightforward to verify that (46) can be cast again in the form (35) by properly redefining
the parameters z1, z3, r .

3.2. Examples of maximally localized Wannier functions

Here we present some examples of the generalized MLWFs obtained with the transformation
discussed above, and we compare them with the single-band MLWFs. The latter can be obtained
by using just the gauge transformation of type I, and correspond to the exponentially decaying
Wannier functions discussed by Kohn [13, 21]. Both gauge transformations are solved by using
the representation of Bloch functions in k-space, by means of the numerical methods discussed
in appendices A and B.

In figure 3, we show the case of a symmetric double well, ✓0 = ⇡/2. In this case, the single-
band MLWFs have the same symmetry as the potential [13] and therefore occupy both wells in
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we restrict to a 2 ⇥ 2 case, and therefore we have

U (k) =
✓

z1(k) �z⇤
3(k)

z3(k) z⇤
1(k)

◆✓
1 0
0 r(k)

◆
(35)

with |z1|2 + |z3|2 = 1, r(k) = ei�(k). Moreover, by using the following parameterization for a
matrix S 2 SU (2), S = ei↵ E� ·n̂/2 with n̂ = (cos ' sin ✓, sin ' sin ✓, cos ✓) and �i being the Pauli
matrices, we can write

U =
 

cos ↵
2 + i sin ↵

2 cos ✓ i ei(��') sin ✓ sin ↵
2

i ei' sin ✓ sin ↵
2 ei�

�
cos ↵

2 � i sin ↵
2 cos ✓

�

!

(36)

with � = �(k), ' = '(k), ↵ = ↵(k) and ✓ = ✓(k).
Then, since � transforms as follows:

�Dn ! �̃Dn = h( Ãnn(k) � h ÃnniB)2iB (37)

�OD ! �̃OD = 2h| Ã12|2iB, (38)

in order to get �̃ = 0 one has to impose (see (34))

Ann(k) ⌘ i
X

l

U ⇤
nl@kUnl +

X

l,l 0
U ⇤

nlUnl 0 All 0 = h ÃnniB (n = 1, 2) (39)

Ã12(k) ⌘ i
X

l

U ⇤
1l@kU2l +

X

l,l 0
U ⇤

1lU2l 0 All 0 = 0. (40)

Note that the former, (39), is an integro-differential equation where the right-hand side
corresponds to the centre of the Wannier functions, h ÃnniB = hw̃nj |x̂ |w̃nji, that are not known
a priori (only their sum is conserved in the parallel transport gauge).

Therefore, in the following we will consider a specific transformation that makes �OD

vanish without specific requirements on the transformation of �D, given by the solution of (40).
Then, by using (36), the latter can be transformed into a system of four differential equations
for ↵, ✓ , ', � , whose normal form is
@k↵

2
= �cos 2✓

sin ✓

�
AR

12 cos ⌘ + AI
12 sin ⌘

�� cotg
↵

2
cotg✓

�
AR

12 sin ⌘ � AI
12 cos ⌘

�

+ cos ✓(A11 � A22), (41)

@k✓ = cos ✓ sin ↵

sin2(↵/2)

�
AR

12 cos ⌘ + AI
12 sin ⌘

�
+

cos ↵

sin2(↵/2)

�
AR

12 sin ⌘ � AI
12 cos ⌘

�

�cotg
↵

2
sin ✓(A11 � A22), (42)

@k� = 0, @k' = 0, (43)

where we have defined ⌘ ⌘ ' � � with @k⌘ = 0. The solution of (43) is � = �0, ' = '0. Then,
it is evident that only two equations are left, namely (41) and (42), with ⌘ = '0 � �0 playing the
role of a parameter and with one of the angles '0 and �0 being arbitrary. We can then choose
�0 = 0 without loss of generality. In addition, in order to conform to (33), the angles ↵ and ✓
must satisfy the following periodicity conditions:

↵(�kB) = ↵(kB) + 4`⇡, (44)
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Here, we use a different approach specifically suited for constructing the set of MLWFs for
the double-well case. Namely, we show that the minimization problem can be reformulated by
identifying a specific gauge transformation for a composite band in one dimension, expressed
in terms of a set of ordinary differential equations with periodic boundary conditions. We recall
that, in one dimension, �̃ can be made strictly vanishing, and this corresponds to finding a
gauge (also called a parallel transport gauge) in which the matrix Anm(k) is diagonal, with the
diagonal elements being constant and equal to their mean values. The latter are related to the
eigenvalues of the matrix generalizing the Berry phase to the non-abelian case [21].

3.1. Gauge transformations and differential equations

The diagonal and off-diagonal spreads �D and �OD can be minimized either simultaneously
or independently. For the following discussion, it is useful to distinguish between two kinds of
gauge transformation.

I. Diagonal U (n) transformations which correspond to a set of single-band gauge
transformations of the form

|unki ! |ũnki = ei�n(k)|unki (29)

with �n(k) being a real continuous (differentiable) function of k, such that �n(k + 2kB) =
�n(k) + 2⇡` (` integer) in order to have periodic and single-valued Bloch eigenstates. Then,
we can set ` = 0 without loss of generality. As discussed in [21], this transformation may be
used to minimize each term of �D as it affects the Wannier spread �n = hx2in � hxi2

n while
preserving their centres hxin (modulo a lattice vector). In particular, �D can be set exactly to
zero [21]. In fact, we have Ann(k) ! Ann(k) � @k�n(k), and therefore

�Dn ! �̃Dn = h(Ann � @k�n � hAnniB)2iB (30)

that vanishes by imposing

@k�n = Ann � hAnniB. (31)

This equation can be readily solved numerically, as discussed in appendices A and B. In
addition, it is straightforward to verify that under the transformation (29), A12(k) changes only
by a phase factor and therefore �OD remains unchanged.

II. A full gauge transformation in the composite band of the form

|unki ! |ũnki =
X

m

Unm(k)|umki, (32)

where, as already said, U (k) 2 U (N ) (for an N -composite band), constrained to the following
periodic condition:

Unm(k + 2kB) = Unm(k). (33)

Under such a transformation the generalized Berry potentials transform as

Anm ! Ãnm = i
2⇡

a

Z
dx ũ⇤

n@kũmk = i
X

l

U ⇤
nl@kUml +

X

l,l 0
U ⇤

nlUml 0 All 0 . (34)

In general, U (N ) can be written as a semidirect product SU (N )oU (1), with U (1) being
a subgroup of U (N ) consisting of matrices of the form diag(1, 1, . . . , ei�). As anticipated, here

New Journal of Physics 14 (2012) 055004 (http://www.njp.org/)



technicalities 

27

10

we restrict to a 2 ⇥ 2 case, and therefore we have

U (k) =
✓

z1(k) �z⇤
3(k)

z3(k) z⇤
1(k)

◆✓
1 0
0 r(k)

◆
(35)

with |z1|2 + |z3|2 = 1, r(k) = ei�(k). Moreover, by using the following parameterization for a
matrix S 2 SU (2), S = ei↵ E� ·n̂/2 with n̂ = (cos ' sin ✓, sin ' sin ✓, cos ✓) and �i being the Pauli
matrices, we can write

U =
 

cos ↵
2 + i sin ↵

2 cos ✓ i ei(��') sin ✓ sin ↵
2

i ei' sin ✓ sin ↵
2 ei�

�
cos ↵

2 � i sin ↵
2 cos ✓

�

!

(36)

with � = �(k), ' = '(k), ↵ = ↵(k) and ✓ = ✓(k).
Then, since � transforms as follows:

�Dn ! �̃Dn = h( Ãnn(k) � h ÃnniB)2iB (37)

�OD ! �̃OD = 2h| Ã12|2iB, (38)

in order to get �̃ = 0 one has to impose (see (34))

Ann(k) ⌘ i
X

l

U ⇤
nl@kUnl +

X

l,l 0
U ⇤
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Note that the former, (39), is an integro-differential equation where the right-hand side
corresponds to the centre of the Wannier functions, h ÃnniB = hw̃nj |x̂ |w̃nji, that are not known
a priori (only their sum is conserved in the parallel transport gauge).

Therefore, in the following we will consider a specific transformation that makes �OD

vanish without specific requirements on the transformation of �D, given by the solution of (40).
Then, by using (36), the latter can be transformed into a system of four differential equations
for ↵, ✓ , ', � , whose normal form is
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12 cos ⌘ + AI
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+ cos ✓(A11 � A22), (41)

@k✓ = cos ✓ sin ↵

sin2(↵/2)

�
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12 cos ⌘ + AI
12 sin ⌘

�
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cos ↵
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�
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12 sin ⌘ � AI
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�

�cotg
↵

2
sin ✓(A11 � A22), (42)

@k� = 0, @k' = 0, (43)

where we have defined ⌘ ⌘ ' � � with @k⌘ = 0. The solution of (43) is � = �0, ' = '0. Then,
it is evident that only two equations are left, namely (41) and (42), with ⌘ = '0 � �0 playing the
role of a parameter and with one of the angles '0 and �0 being arbitrary. We can then choose
�0 = 0 without loss of generality. In addition, in order to conform to (33), the angles ↵ and ✓
must satisfy the following periodicity conditions:

↵(�kB) = ↵(kB) + 4`⇡, (44)
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where we have defined ⌘ ⌘ ' � � with @k⌘ = 0. The solution of (43) is � = �0, ' = '0. Then,
it is evident that only two equations are left, namely (41) and (42), with ⌘ = '0 � �0 playing the
role of a parameter and with one of the angles '0 and �0 being arbitrary. We can then choose
�0 = 0 without loss of generality. In addition, in order to conform to (33), the angles ↵ and ✓
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Figure 3. Plot of the density of the two lowest single-band (blue lines) and
generalized (red lines) MLWFs, in log scale (a,b) and linear scale (c,d). The
dotted line in (c,d) represents the potential, while the horizontal orange stripes are
the first three Bloch bands (on the same scale as the potential). Here V1 = 10ER,
V2 = 20ER, ✓0 = ⇡/2.

✓(�kB) = ✓(kB) + 2`0⇡ (45)

with `, `0 integers which can be taken ` = `0 = 0 without loss of generality. This set of
equations (41), (42), (44) and (45) can be solved as discussed in appendix B. The resulting
transformation is an SU (2) matrix S(k) of the form (36) with � = 0 and ' constant.

Summarizing, the procedure to make �̃ vanish can be divided into two steps: (a) a
gauge transformation of type II to make �OD vanish (without specific requirements on the
transformations of the diagonal elements Ann(k)); (b) a set of two gauge transformations of
type I (one for each band) that makes �D vanish without affecting �OD. Therefore, the full
transformation can be decomposed in the following way:

Unm(k) = ei�n(k)Snm(k). (46)

It is straightforward to verify that (46) can be cast again in the form (35) by properly redefining
the parameters z1, z3, r .

3.2. Examples of maximally localized Wannier functions

Here we present some examples of the generalized MLWFs obtained with the transformation
discussed above, and we compare them with the single-band MLWFs. The latter can be obtained
by using just the gauge transformation of type I, and correspond to the exponentially decaying
Wannier functions discussed by Kohn [13, 21]. Both gauge transformations are solved by using
the representation of Bloch functions in k-space, by means of the numerical methods discussed
in appendices A and B.

In figure 3, we show the case of a symmetric double well, ✓0 = ⇡/2. In this case, the single-
band MLWFs have the same symmetry as the potential [13] and therefore occupy both wells in
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Figure 6. Density plot of the ratio between the second and first band gaps,
R ⌘ "g12/"g23 , as a function of ✓ and V2 for V1 = 5ER (a) and V1 = 10ER (b).
The black line corresponds to R = 1. The colour scale is saturated at R = 1.

third bands; in this case both the single-band MLWFs are already localized within a single well,
the one in panels (b,d) having a small residual amplitude around the neighbouring wells. The
generalized MLWFs do not differ much from the former in linear scale, the effect of the gauge
mixing transformation being a reduction of the lateral lobes of the single-band MLWF in (b,d),
but the price to pay is a substantial increase of the width of the other one in log scale, see
panel (a). Actually, in this case the composite band approach is not fully justified, due to the
large band gap between the first and second bands, and one should consider the structure of the
upper bands. This, however, is beyond the scope of this work.

Instead, figure 5 shows a case still for ✓0 = 0 but where an almost degeneracy between the
two minima (that corresponds to a quasidegeneracy of the lowest two bands) is restored thanks
to a lower value of V1 (here V1 = 1 instead of 10 as in the former figure). Here the advantage of
using the generalized MLWFs is clearly seen.

4. Tight-binding regimes and tunnelling coefficients

In this section, we will discuss the features of the composite band approach by comparing the
predictions of the full and nearest-neighbour versions of the model and discussing the behaviour
of the tunnelling coefficients and other tight-binding parameters.

We recall that the potential is characterized by three parameters, V1/ER, V2/ER and ✓0. The
latter can be restricted to the range [0, ⇡/2] without loss of generality, see figure 1. As to the
potential amplitudes, we chose 106 V2/ER 6 40 in order to fulfil the tight-binding regime, in
a feasible range for current experiments with ultracold atoms [1]. In addition, for having both
wells deep enough in order to have the corresponding MLWFs mostly localized within each
well, V1 should not exceed V2/2.

As we anticipated in the previous section, in principle the composite band approach is
justified in a situation of quasidegeneracy between the first two Bloch bands, i.e. when their
separation "g12 is much smaller that the band gap "g23 between the second and third bands.
Therefore, it is convenient to define the ratio R ⌘ "g12/"g23 , whose behaviour is shown as a
density plot in figure 6 as a function of ✓0 and V2, for different values of V1. As a matter of fact,
we find that the composite band approach provides a basis of functions well localized in each
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Figure 8. Plot of the tunnelling coefficients (in modulus, rescaled to TAB) for
V1 = 5, as a function of ✓0 for V2 = 20 (a) and as a function of V2 for ✓0 = ⇡/2
(b). These figures refer to a horizontal and a vertical cut in the left panel of
figure 6.

in the previous section, as (see (21) and (46))

E⌫ = d
2⇡

Z

B
dk

2X

m=1

|S⌫m(k)|2"m(k), (48)

J⌫ = � d
2⇡

Z

B
dk e�ikd

2X

m=1

|S⌫m(k)|2"m(k), (49)

TAB = � d
2⇡

Z

B
dk ei1�(k)

2X

m=1

S⇤
1m(k)S2m(k)"m(k), (50)

JAB± = � d
2⇡

Z

B
dk ei(1�(k)⌥kd)

2X

m=1

S⇤
1m(k)S2m(k)"m(k), (51)

with ⌫ = A, B = 1, 2 and 1�(k) = �2(k) � �1(k). We recall that all these terms are relevant for
the full tight-binding model, while the nearest-neighbour approximation commonly used in the
literature corresponds to retaining just the contribution of E⌫ , TAB and JAB� . We also note that
all the above parameters are gauge dependent; E⌫ and J⌫ depend only on the gauge mixing
transformation and TAB and JAB± on the whole gauge transformation.

It is worth mentioning that in the parallel transport gauge, only the modulus of the
tunnelling coefficients is univocally defined. However, as is briefly discussed in appendix B,
there is freedom to choose them real.

The behaviour of the tunnelling coefficients (in modulus, rescaled to TAB) is shown in
figure 8 as a function of ✓0 and V2 (for V2 = 20 and ✓0 = ⇡/2, respectively; here V1 = 5), whereas
the absolute variation of TAB and of the on-site energy difference EB � EA is shown in figure 9.
The former figure reveals that the dependence on ✓0 is rather weak, the only notable effect
being that at ✓0 = 0 (where all the maxima are degenerate) TAB = JAB+, whereas at ✓0 = ⇡/2
we have JA = JB (and EA = EB, as in this case the minima are degenerate). Instead, the
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with ⌫ = A, B = 1, 2 and 1�(k) = �2(k) � �1(k). We recall that all these terms are relevant for
the full tight-binding model, while the nearest-neighbour approximation commonly used in the
literature corresponds to retaining just the contribution of E⌫ , TAB and JAB� . We also note that
all the above parameters are gauge dependent; E⌫ and J⌫ depend only on the gauge mixing
transformation and TAB and JAB± on the whole gauge transformation.

It is worth mentioning that in the parallel transport gauge, only the modulus of the
tunnelling coefficients is univocally defined. However, as is briefly discussed in appendix B,
there is freedom to choose them real.

The behaviour of the tunnelling coefficients (in modulus, rescaled to TAB) is shown in
figure 8 as a function of ✓0 and V2 (for V2 = 20 and ✓0 = ⇡/2, respectively; here V1 = 5), whereas
the absolute variation of TAB and of the on-site energy difference EB � EA is shown in figure 9.
The former figure reveals that the dependence on ✓0 is rather weak, the only notable effect
being that at ✓0 = 0 (where all the maxima are degenerate) TAB = JAB+, whereas at ✓0 = ⇡/2
we have JA = JB (and EA = EB, as in this case the minima are degenerate). Instead, the
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of the two sub-wells and correctly reproduces the lowest two Bloch energy bands even up to
R ⇡ 1, in the parameter range discussed above.

In order to characterize the level of fidelity in reproducing the exact single-particle Bloch
spectrum (that can be readily computed as discussed in appendix A), we define the following
quantity,

�"n ⌘ 1
1"n

s
d

2⇡

Z

B
dk ["n(k) � "tb

n (k)]2, (47)

which represents the ratio of the quadratic spread between the exact Bloch spectrum "n(k) and
that of the tight-binding Hamiltonians (8) and (9), to the bandwidth 1"n ⌘ ("max

n � "min
n ). We

also note that the formula (17) for "tb
n (k) provides the same numerical result of expression (C.6)

for the energy bands in terms of gauge transformations, and that these formulae have a
better accuracy in reproducing the exact Bloch spectrum than the single-band expression (17),
especially in the region close to the symmetric case ✓0 = ⇡/2.

The quantity �"n is shown in figure 7 for V1 = 5, as a function of ✓0 (V2 = 20) and V2

(✓0 = ⇡/2), in the left and right panels, respectively. These figures refer to a horizontal and a
vertical cut in the left panel of figure 6, and confirm that in the regime R . 1 the full tight-
binding model reproduces the exact energies with great accuracy. As to the nearest-neighbour
approximation commonly used in the literature, in general this is not the case, as it works
reasonably only for R . 0.1, i.e. for ✓0 ' ⇡/2 and large V2. Therefore, attention must be paid to
the regimes where it is allowed to neglect some of the next-to-nearest tunnelling terms.

4.1. Tunnelling coefficients

Let us now consider the explicit expressions for the on-site energies and the tunnelling
coefficients in (8). They can be expressed, in terms of the gauge transformations discussed
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vertical cut in the left panel of figure 6, and confirm that in the regime R . 1 the full tight-
binding model reproduces the exact energies with great accuracy. As to the nearest-neighbour
approximation commonly used in the literature, in general this is not the case, as it works
reasonably only for R . 0.1, i.e. for ✓0 ' ⇡/2 and large V2. Therefore, attention must be paid to
the regimes where it is allowed to neglect some of the next-to-nearest tunnelling terms.
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of functions localized around each minimum

 ̂(x) ⌘
X

nj

ân j fn j(x), (3)

where â†
nj (ân j ) represent the creation (destruction) operator of a single-particle at site j , and

satisfy the usual commutation rules [ân j , â†
n0 j 0] = � j j 0�nn0 (following from those for the field  ̂).

In the presence of a single well per unit cell, it is known that a basis of localized functions
is provided by the exponentially decaying Wannier functions wnj(x) discussed by Kohn
[13, 14]. In general, this is not the case when there are two wells per unit cell. For example,
for a symmetric double well the Kohn–Wannier functions display the same symmetry of the
local potential structure [13, 16] and thus they cannot be associated with a single lattice site
as they occupy both wells in the unit cell. In the next section, we will show that when the two
lowest Bloch bands are sufficiently close to each other with respect to the third band (as will be
clear from the discussion in sections 3.2 and 4), we can construct a set of generalized Wannier
functions w̃nj(x) that are maximally localized at each minima, by following the approach of
Marzari and Vanderbilt [21] for a composite band. This corresponds to the generalization of
the single-band approximation (in the case of a single-well lattice) to the double-well case, as
we need at least two localized functions in each lattice cell to map the system on the discrete
lattice. Then, in section 4, we will explore the range of validity of this composite band approach,
highlighting the different implications on the structure of different tight-binding models.

In the following, we will restrict the analysis to the two lowest energy bands, in analogy
with the single-band approximation for the Bose–Hubbard model [11]. Then, within this
approximation, the single-particle Hamiltonian can be written as

Ĥ0 '
X

⌫⌫0=A,B

X

j j 0
â†

j⌫ â j 0⌫0 h f j⌫|Ĥ 0| f j 0⌫0 i, (4)

where j is the unit cell index, whereas ⌫ = A, B substitutes the band index n = 1, 2 being
an internal index labelling the left and right sub-wells, respectively (see figure 2). Here
the expansion coefficients correspond to the on-site energies E⌫ = h f j⌫ |Ĥ 0| f j⌫ i, and to the
tunnelling amplitudes between different (sub)wells T j j 0

⌫⌫0 ⌘ �h f j⌫|Ĥ 0| f j 0⌫0 i. In general, it is
customary to further approximate the above expression by neglecting the coupling beyond
nearest neighbours for both the single-well [10] and double-well lattices [25, 28, 29]. This is
a reasonable assumption for a single-well lattice in the tight-binding regime [14, 34], but may
not be fully justified in the range of the typical experimental parameters for a double well, as
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teraction V(r82r), this replacement is, in general, a
poor approximation when short distances (r82r) are in-
volved. In a dilute and cold gas, one can nevertheless
obtain a proper expression for the interaction term by
observing that, in this case, only binary collisions at low
energy are relevant and these collisions are character-
ized by a single parameter, the s-wave scattering length,
independently of the details of the two-body potential.
This allows one to replace V(r82r) in Eq. (32) with an
effective interaction

V
~

r82r
!

5gd

~

r82r
!

, (33)

where the coupling constant g is related to the scattering
length a through

g5
4p\

2a
m

. (34)

The use of the effective potential (33) in Eq. (32) is
compatible with the replacement of Ĉ with F and yields
the following closed equation for the order parameter:

i\
]

]t
F

~

r,t
!

5S 2
\

2
π

2

2m
1Vext~r

!

1guF
~

r,t
!

u2DF

~

r,t
!

.

(35)

This equation, known as Gross-Pitaevskii (GP) equa-
tion, was derived independently by Gross (1961, 1963)
and Pitaevskii (1961). Its validity is based on the condi-
tion that the s-wave scattering length be much smaller
than the average distance between atoms and that the
number of atoms in the condensate be much larger than
1. The GP equation can be used, at low temperature, to
explore the macroscopic behavior of the system, charac-
terized by variations of the order parameter over dis-
tances larger than the mean distance between atoms.

The Gross-Pitaevskii equation (35) can also be ob-
tained using a variational procedure:

i\
]

]t
F5

dE
dF

* , (36)

where the energy functional E is given by

E
@

F

#

5E drF \

2

2m
uπFu21Vext~r

!

uFu21
g
2

uFu4G . (37)

The first term in the integral (37) is the kinetic energy of
the condensate Ekin , the second is the harmonic-
oscillator energy Eho , while the last one is the mean-
field interaction energy E int . Notice that the mean-field
term E int corresponds to the first correction in the virial
expansion for the energy of the gas. In the case of non-
negative and finite-range interatomic potentials, rigor-
ous bounds for this term have been obtained by Dyson
(1967), and Lieb and Yngvason (1998).

The dimensionless parameter controlling the validity
of the dilute-gas approximation, required for the deriva-
tion of Eq. (35), is the number of particles in a ‘‘scatter-
ing volume’’ uau3. This can be written as n uau3, where n 
is the average density of the gas. Recent determinations
of the scattering length for the atomic species used in
the experiments on BEC give: a52.75 nm for 23Na

(Tiesinga et al., 1996), a55.77 nm for 87Rb (Boesten
et al., 1997), and a521.45 nm for 7Li (Abraham et al.,
1995). Typical values of density range instead from 1013

to 1015 cm23, so that n uau3 is always less than 1023.
When n uau3!1 the system is said to be dilute or

weakly interacting. However, one should better clarify
the meaning of the words ‘‘weakly interacting,’’ since
the smallness of the parameter n uau3 does not imply nec-
essarily that the interaction effects are small. These ef-
fects, in fact, have to be compared with the kinetic en-
ergy of the atoms in the trap. A first estimate can be
obtained by calculating the interaction energy, E int , on
the ground state of the harmonic oscillator. This energy
is given by gNn , where the average density is of the
order of N/aho

3 , so that E int}N2uau/aho
3 . On the other

hand, the kinetic energy is of the order of N\vho and
thus Ekin}Naho

22. One finally finds

E int

Ekin
}

Nuau
aho

. (38)

This is the parameter expressing the importance of the
atom-atom interaction compared to the kinetic energy.
It can be easily larger than 1 even if n uau3!1, so that
also very dilute gases can exhibit an important nonideal
behavior, as we will discuss in the following sections. In
the first experiments with rubidium atoms at JILA
(Anderson et al., 1995) the ratio uau/aho was about 7
31023, with N of the order of a few thousands. Thus
Na/aho is larger than 1. In the experiments with 7Li at
Rice University (Bradley et al., 1997; Sackett et al., 1997)
the same parameter is smaller than 1, since the number
of particles is of the order of 1000 and uau/aho'0.5
31023. Finally, in the experiments with sodium at MIT
(Davis et al., 1995) the number of atoms in the conden-
sate is very large (106–107) and Nuau/aho;103–104.

Due to the assumption Ĉ8[0, the above formalism is
strictly valid only in the limit of zero temperature, when
all the particles are in the condensate. The dynamic be-
havior and the generalization to finite temperatures will
be discussed in Secs. IV and V, respectively. Here we
present the results for the stationary solution of the
Gross-Pitaevskii (GP) equation at zero temperature.

B. Ground state

For a system of noninteracting bosons in a harmonic
trap, the condensate has the form of a Gaussian of av-
erage width aho [see Eq. (3)], and the central density is
proportional to N. If the atoms are interacting, the shape
of the condensate can change significantly with respect
to the Gaussian. The scattering length entering the
Gross-Pitaevskii equation can be positive or negative, its
sign and magnitude depending crucially on the details of
the atom-atom potential. Positive and negative values of
a correspond to an effective repulsion and attraction be-
tween the atoms, respectively. The change can be dra-
matic when the interaction energy is much greater than
the kinetic energy, that is, when Nuau/aho@1. The cen-
tral density is lowered (raised) by a repulsive (attractive)
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Figure 1. BEC-based atom interferometer. (a) Experimental configuration: the
tunable BEC is formed at the intersection of the vertical guide laser beam L1

and a horizontal trapping beam L2. The lattice is oriented along the vertical
direction. Gravity, g, is initially compensated by a force due to a magnetic
field gradient, � B. (b) Imaging the first BZ: one cycle of Bloch oscillations
for a non-interacting BEC as seen in time-of-flight absorption imaging, showing
narrow peaks cycling through quasi-momentum space for cycle phases ⇧ = 0,
⌅/4, ⌅/2, . . . , to 2⌅ .

1. Phase evolution in the matter-wave interferometer

Our interferometer consists of a BEC adiabatically loaded into a one-dimensional (1D) optical
lattice potential with a superimposed harmonic trap, as illustrated in figure 1(a). In the tight-
binding regime, it is convenient to write the macroscopic wave function of the condensate,  ,
in a basis [17] of wave functions  j(z, r⌅) centered at the position z j = jd of the individual
lattice sites j ,  (z, r⌅, t) =

�
j c j(t) j(z, r⌅). Here, z is the coordinate along the (vertical)

lattice direction, r⌅ is the transverse coordinate, d is the distance between adjacent lattice sites
and c j(t) are time-dependent complex amplitudes.

After the BEC is loaded into the lattice, we tilt the lattice potential by applying a strong
force F along the lattice direction. In the limit Fd ⇥ J , where J is the tunneling matrix element,
tunneling between lattice sites is inhibited. The on-site occupation numbers |c j |2 are then fixed,
and we can write c j(t) = c j(0)ei⇧ j (t), where the phase ⇧ j(t) evolves in time according to the
local potential at each specific lattice site [21],

h̄
�⇧ j

�t
= Fd j + V trap

j + µloc
j

(1)

= Fd j +⇥tr j2 ��int j2.

Here, the total potential at each lattice site j consists of three terms. The applied force leads
to a term linear in j and causes Bloch oscillations [14, 15] with angular frequency Fd/h̄. The
second term comes from an optional harmonic confinement, where ⇥tr = m⌃2

trd
2/2 characterizes

the strength of the confining potential and ⌃tr is the trap frequency. Atom–atom interactions
give rise to a third term, the local chemical potential µloc

j , which depends on the scattering
length a and the site occupation number as [17] µloc

j ⇤
⇥

a|c j |2. When the BEC is loaded in the
Thomas–Fermi regime, as is done here, its initial value can be calculated in a simple way. The
density distribution will be such that the local chemical potential mirrors the trapping potential
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semiclassical eqs: particle dynamics described in terms of the wave packet 
centers xc and kc in coordinate and quasimomentum space
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]

ẋc = 1
h̄

∂ε

∂k

∣∣∣∣
k=kc

+ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

, (1)

k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]

Ak(t) = i
2π

a
〈uk|

∂

∂k
|uk〉, χk(t) = i

2π

a
〈uk|

∂

∂t
|uk〉, (3)

with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
2π

a

∫

BZ
〈uk|

∂

∂k
|uk〉dk. (4)

According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
h̄

∂ε(t)
∂k

∣∣∣∣
k=kc

, (5)

and of the anomalous velocity,

vA(t) ≡ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im

〈
∂uk

∂t

∣∣∣∣
∂uk

∂k

〉∣∣∣∣
k=kc

, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').

0

2

4

6

8

 10

 12

 14

 16

-4 -2 0 2 4

U

ξ/π

FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]
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k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]
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with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
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According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
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vA(t) ≡ ∂Ak
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− ∂χk
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. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im
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∂uk

∂t

∣∣∣∣
∂uk
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〉∣∣∣∣
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, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').
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FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]

ẋc = 1
h̄

∂ε

∂k

∣∣∣∣
k=kc

+ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

, (1)

k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]

Ak(t) = i
2π

a
〈uk|

∂

∂k
|uk〉, χk(t) = i

2π

a
〈uk|

∂

∂t
|uk〉, (3)

with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
2π

a

∫

BZ
〈uk|

∂

∂k
|uk〉dk. (4)

According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
h̄

∂ε(t)
∂k

∣∣∣∣
k=kc

, (5)

and of the anomalous velocity,

vA(t) ≡ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im

〈
∂uk

∂t

∣∣∣∣
∂uk

∂k

〉∣∣∣∣
k=kc

, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').
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FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]

ẋc = 1
h̄

∂ε

∂k

∣∣∣∣
k=kc

+ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

, (1)

k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]

Ak(t) = i
2π

a
〈uk|

∂

∂k
|uk〉, χk(t) = i

2π

a
〈uk|

∂

∂t
|uk〉, (3)

with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
2π

a

∫

BZ
〈uk|

∂

∂k
|uk〉dk. (4)

According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
h̄

∂ε(t)
∂k

∣∣∣∣
k=kc

, (5)

and of the anomalous velocity,

vA(t) ≡ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im

〈
∂uk

∂t

∣∣∣∣
∂uk

∂k

〉∣∣∣∣
k=kc

, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').
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FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]

ẋc = 1
h̄

∂ε

∂k

∣∣∣∣
k=kc

+ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

, (1)

k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]

Ak(t) = i
2π

a
〈uk|

∂

∂k
|uk〉, χk(t) = i

2π

a
〈uk|

∂

∂t
|uk〉, (3)

with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
2π

a

∫

BZ
〈uk|

∂

∂k
|uk〉dk. (4)

According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
h̄

∂ε(t)
∂k

∣∣∣∣
k=kc

, (5)

and of the anomalous velocity,

vA(t) ≡ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im

〈
∂uk

∂t

∣∣∣∣
∂uk

∂k

〉∣∣∣∣
k=kc

, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').
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FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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FIG. 4. Plot of the periodic potential V(ξ ) at (a) τ/τB = 1/8,
(b) 1/4, (c) 3/8, and (d) 1/2 for V1 = 10, V2 = 5, θ = 0.9π , A1 =
A2 = 5, η1 = 1, and η2 = 2.

equation, with that predicted by the semiclassical equations
[Eqs. (1)–(2)] (see Footnote 2).

In particular, let us separate the trajectory of the wave packet
center into two parts:

ξc(τ ) = ξN
c (τ ) + ξA

c (τ ), (14)

the first coming from the time integration of the normal
velocity in Eq. (5) and the second from the anomalous velocity
in Eq. (6). Then, we are interested in studying the role of
the contribution ξA

c (τ ) on the full solution when the shape of
the potential well is modulated in time and to find regions in the
parameter space where this term strongly characterizes the
dynamics. We remind the reader that Eq. (2) is not affected by
anomalous terms, and the evolution of the wave packet center
in quasimomentum space is linear in time; in dimensionless
units, it reads

k̃c(τ ) = k̃c(0) + 2
τ

τB

. (15)

Thus we consider the following periodic modulations of the
potential amplitudes:

Vi(τ ) = Vi(1 + Aisin2(&iτ )), (16)

where Ai and &i ≡ ηiπ/τB are the modulation amplitudes and
frequencies, respectively. Here we consider rational values of
ηi , corresponding to periodic modulations with a period that
is a multiple of the Bloch period, in order to have a cyclic
motion in parameter (quasimomentum) space, as required by
Berry’s theory. The upper bound on ηi , as well as that on the
modulation amplitudes Ai , is given by the limit of validity of
the one-band approximation, which requires that the band gap
during the dynamics evaluated at kc(t), Ec

g(t) remain much
greater than the modulation energies. This condition turns out
to be satisfied, in a large region of the parameter space, also for
values of Ai,ηi " 1.3 Typical shapes of the potential during
one modulation period are shown in Fig. 4.

We start by describing some specific examples, shown in
Fig. 5. Unless explicitly stated, all the results presented in
this section are obtained for the following set of parameters
characterizing the static properties of the potential: V1 = 10,

3From our simulations, we have found that the adiabatic approxi-
mation works well beyond the naive expectation.
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FIG. 5. (Color online) Evolution of the wave packet center ξc for
(a) A1 = A2 = 5, η1 = 1, η2 = 2, (b) η1 = 1, η2 = 3, and (c) η1 =
η2 = 2. The full semiclassical evolution (red solid line) perfectly
fits the solution of the Schrödinger equation (red points). The terms
corresponding to the normal dynamics, ξN

c (black dotted line), and
anomalous dynamics, ξA

c (blue dashed line), are also shown.

V2 = 5,θ = 0.9π . Then, we will discuss the dependence of
the results on the choice of parameters as well as their
generality.

In Fig. 5, we plot the evolution of the wave packet center
ξc(τ ), along with the separate contributions coming from
the normal and anomalous terms, for A1 = A2 = 5, η1 = 1,
η2 = 2 [Fig. 5(a)], η1 = 1, η2 = 3 [Fig. 5(b)], and η1 = η2 = 2
[Fig. 5(c)]. The full semiclassical evolution of Eq. (1) (red solid
line) perfectly agrees with the solution of the Schrödinger
equation (red points). For η1 #= η2, the normal term ξN

c (τ )
(black dotted line) shows peaks only at τ = 0 and τ = τB ,
whereas the anomalous term ξA

c (τ ) (blue dashed line) shows
one or two additional central peaks. In general, we find that the
number of central peaks (excluding those at τ = 0 and τ = τB)
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FIG. 2. (Color online) (a) Bandwidth ! and (b) minimal bandgap
Eg , normalized to the gravitational energy per unit cell, as a function
of θ for V1 = V2 = 2 (red solid line) and V1 = 10,V2 = 5 (blue
dashed line).

The latter condition is obtained by considering V1 ! 10.
Conversely, the lower boundV1 = 2 guarantees that the ratio of
the recoil energy to the gravitational energy is above the critical
value for having no drift, τBV1/2π ≈ 20. In addition, for this
value, the minimal gap Eg is already 1 order of magnitude
greater than the gravitational energy per site mga (see Fig. 2),
and this accounts for the use of the single-band approximation
(actually, this corresponds to the adiabatic approximation
TB > h/Eg).

Let us now consider the effect of the secondary lattice. For
V2 "= 0, both the bandwidth ! and the gap Eg strongly depend
on θ , as shown in Fig. 2.2 The band structure is periodic with
period π and is characterized by parity centers at integer multi-
ples of π/2. In addition, ! (Eg) also depends on the secondary
lattice intensity, increasing (decreasing) monotonically as V2
is increased (decreased) (in the range considered here). In the
following, we consider the case V2 < V1.

For θ "= nπ/2 (n integer), parity is broken, and this is
signaled by the appearance of a nonvanishing Zak-Berry phase
γ , defined in Eq. (4). This quantity is proportional to the offset
of the Wannier function centers [17,20],

γ = 2π

a
〈w0|x|w0〉, (12)

2The spectrum and the anomalous velocity term are computed by
using the truncated expression uk(ξ ) =

∑r
'=−r

1√
2π

ψ'(k)ei'ξ , with
r ' 1, and then solving the resulting eigenvalue equations for the
coefficients ψ' by means of LAPACK routines.
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FIG. 3. (Color online) Zak-Berry phase γ as a function of θ for
V1 = V2 = 2 (red solid line) and V1 = 10,V2 = 5 (blue dashed line),
as obtained from Eq. (4).

(w0 being the Wannier functions located at site j = 0 [19])
modulo a vector of the direct lattice, coming from equivalent
choices of the Bloch basis (with eiγ being the gauge-invariant
quantity). The Zak-Berry phase γ [calculated from Eq. (4)] is
shown in Fig. 3, as a function of θ , for two different sets of
the potential intensities. In both cases, γ grows monotonically,
reaching its maximum at θ ≈ 0.9–0.95π , and then goes steeply
to zero at θ = π . The same behavior can be found in a wide
range of values of Vi (i = 1,2). This suggests that the maximal
effects of the anomalous terms in the dynamics should be
expected for these values of θ , as we will discuss in the next
section. In addition, we find that the Zak-Berry phase is almost
independent of V1 and slightly decreases as V2 is increased.

This analysis reveals that the control of the phase θ is rather
a crucial issue for commensurate bichromatic lattices since
the band properties have a strong dependence on it. This may
become even more relevant in higher dimensions, where parity
breaking alone (no need for time-dependent bands) is sufficient
for producing anomalous terms in the semiclassical equations
of motion or other effects related to the Berry phase [10].

IV. ANOMALOUS BLOCH OSCILLATIONS

Let us now turn to the dynamical behavior of the system by
considering the evolution of an initial wave packet under the
effect of a constant force and in the presence of a modulation
of the periodic potential. In particular, we consider a Gaussian
wave packet modulated by the periodic potential, obtained as
the ground state of the potential V(ξ,0), plus an additional har-
monic confinement Vho(ξ ) = αξ 2 (we chose α = 3 × 10−5,
which corresponds to having about 12 occupied lattice sites)
[21]. Then, the wave packet evolution is investigated by solving
the Schrödinger equation [22]:

i∂τψ(ξ,τ ) = H(τ )ψ(ξ,τ ), (13)

with H(τ ) in Eq. (9).
As anticipated, the combined effect of parity breaking

and time modulation gives rise to an anomalous velocity
term in the semiclassical equation for the center-of-mass
dynamics in real space [see Eq. (1)]. The importance of this
term can be analyzed by comparing the evolution of ξc(τ ) ≡
〈ψ |ξ |ψ〉τ , obtained from the full solution of the Schrödinger
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system eigenfunctions can be written as ψnk(x) = eikxunk(x),
the unk(x)s having the same periodicity of the potential.
Consequently, the energies are restricted within energy bands
εn(k), which are periodic in the quasimomentum k space with
period 2kB = 2π/a, εn(k + 2kB) = εn(k).

At the semiclassical level, the particle dynamics can be
described in terms of the wave packet centers xc and kc

in coordinate and quasimomentum space, respectively. This
holds even when the band structure is modulated in time,
provided the variations are adiabatic. In particular, in the
presence of an additional constant force F , and within the
one-band approximation (we drop the index n), the evolution
of the wave packet centers is described by the semiclassical
equations [1,10]

ẋc = 1
h̄

∂ε

∂k

∣∣∣∣
k=kc

+ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

, (1)

k̇c = F/h̄, (2)

where the Berry vector potential Ak and scalar potential χk in
Eq. (1) are defined as [10,12]

Ak(t) = i
2π

a
〈uk|

∂

∂k
|uk〉, χk(t) = i

2π

a
〈uk|

∂

∂t
|uk〉, (3)

with the prefactor 2π/a coming from the standard normaliza-
tion of uks in the unit cell, 〈uk|uk〉 = (a/2π ), at each time
t [19]. We recall that Zak-Berry phase γ is defined as the
integral over the first Brillouin zone of the vector potential
Ak [17]:

γ = i
2π

a

∫

BZ
〈uk|

∂

∂k
|uk〉dk. (4)

According to Eq. (2), the quasimomentum center kc moves
linearly across the first Brillouin zone, TB = h/aF being the
time needed to scan the full zone. The dynamics in real space is
instead determined by the velocity term on the right-hand side
of Eq. (1), composed of the sum of the usual normal velocity,

vN (t) ≡ 1
h̄

∂ε(t)
∂k

∣∣∣∣
k=kc

, (5)

and of the anomalous velocity,

vA(t) ≡ ∂Ak

∂t

∣∣∣∣
k=kc

− ∂χk

∂k

∣∣∣∣
k=kc

. (6)

The latter represents the Berry correction to the standard
equations of motion [1], and it appears as an electric field
term in quasimomentum space.1 The anomalous velocity can
be cast into the form

vA(t) = −4π

a
Im

〈
∂uk

∂t

∣∣∣∣
∂uk

∂k

〉∣∣∣∣
k=kc

, (7)

which is manifestly vanishing for stationary potentials. In that
case, the wave packet performs the usual Bloch oscillations
of period TB and amplitude '/F , ' being the energy

1In higher dimensions, a Lorentz-like term appears as well, with a
k-space magnetic field given by the Berry curvature [10,12,17].

bandwidth. Instead, in the case of time-dependent parity-
breaking potentials, the effects of the anomalous velocity may
become relevant, as we discuss in the following.

III. THE MODEL

In order to illustrate the effects of the anomalous velocity in
a specific case, we consider the following periodic potential:

V (x,t) = V1(t) cos2(qx) + V2(t) cos2(2qx + θ ), (8)

with period a = π/q. In the presence of an external force F ,
the Hamiltonian takes the form

H = − h̄2

2m

∂2

∂x2
+ V (x,t) + Fx, (9)

m being the particle mass. Here we will consider the specific
case of gravity, F = mg. We also notice that the length q−1,
and the corresponding energy scale ER = h̄2q2/2m, represent
two natural scales for the system, and it is therefore useful to
rewrite Eqs. (8)–(9) in a dimensionless form as

H = − ∂2

∂ξ 2
+ V(ξ,τ ) + 2ξ

τB

, (10)

with

V(ξ,τ ) = V1(τ ) cos2 (ξ ) + V2(τ ) cos2 (2ξ + θ ) , (11)

where Vi = Vi/ER , ξ = qx, τ = ERt/h̄, and τB = 2πER/
mga is the dimensionless Bloch period, which corresponds to
the inverse of the normalized gravitational energy per unit cell
times 2π . The specific form of the modulation of Vi(τ ) will be
discussed in the next section.

The typical shape of the potential at τ = 0 is shown
in Fig. 1. Here we are mainly concerned with the single-
band approximation, and in the following, we will refer to
the (dimensional) bandwidth ' of the lowest band as the
bandwidth and to the (dimensional) minimal energy gap Eg

between the first and second band as the gap.
As for the parameters, we choose typical values of the

experiments with ultracold atoms in optical lattices [2]. We fix
τB/2π = 10. Then, V1 is chosen in the range 2–10 in order to
have—at least in the case of a static primary lattice alone—
clean Bloch oscillations (no drifts), a large band gap (in order to
conform to the single-band approximation), and large enough
oscillation amplitudes (i.e., large enough bandwidths ').
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FIG. 1. Plot of the total potential U (ξ ) = V(ξ,0) + 2ξ/τB at
τ = 0 for V1 = 10, V2 = 5, and θ = 0.9π .
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FIG. 8. (Color online) Plot of the momentum distribution |!(p̃)|2
at (a) τ/τB = 0, (b) 1/4, (c) 1/2, and (d) 3/4 for the case shown in
Fig. 5(a). The horizontal axis on the top represents the distance after
the time of flight (see text).

V. MEASURING THE ANOMALOUS VELOCITY

Let us now discuss the experimental relevance of these
results, focusing on current experiments with ultracold atoms
in optical lattices. As we have previously discussed, the
amplitude of anomalous Bloch oscillations in coordinate space
is rather small (only a fraction of a lattice size), and therefore
a direct detection by in situ imaging is not feasible because of
resolution limitations. Usually, Bloch oscillations are detected
via time-of-flight measurements, probing momentum space.
Typical shapes of the momentum distribution |!(p̃)|2 are
shown in Fig. 8 [for the wave packet in Fig. 5(a)]. They
are characterized by sharp peaks at p̃(τ ) = ±2n + k̃c(τ )
(n = 0, ± 1, . . .) [23,24], with k̃c(τ ) being the wave packet
quasimomentum given by Eq. (15). This equation is not
affected by anomalous terms, and therefore it is not possible to
measure the effect of the Berry terms simply from the shift of
the peaks, as they move linearly in time, as for normal Bloch
oscillations. Nevertheless, their relative population depends
on the modulation, and the wave packet velocity ξ̇c(τ ) can
be extracted from the momentum distribution, according to
Ehrenfest theorem d〈x〉/dt = 〈p〉/m, which, in dimensionless
units, reads

ξ̇c(τ ) = 1
2 〈p̃〉(τ ). (17)

In the experiments, the momentum distribution is inferred
from the density distribution after the time of flight, owing to
the relation

|ψ∞(x,t)|2 ≡ lim
te→∞

|ψ(x,t ; te)|2 ∝ |!(mx/te,t)|2, (18)

where te is the free expansion time and t is the evolution
time in the trap. Therefore the wave packet velocity ξ̇c(τ )
after an oscillation time τ = ERt/h̄ can be measured from
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FIG. 9. (Color online) The wave packet velocity for the case
shown in Fig. 5(a) (A1 = A2 = 5, η1 = 1, η2 = 2). The semiclassical
velocity ξ̇c (red solid line) fits that extracted from the momentum
distribution of the full Schrödinger solution (red points). The normal
velocity ξ̇N

c is also shown (black dashed line). The right vertical scale
corresponds to the center 〈x〉texp of the density distribution after a time
of flight texp = 50 ms for a noninteracting condensate of 39K.

the center 〈x〉te ≡ 〈ψ(t ; te)|x|ψ(t ; te)〉 of the measured density
distribution after a time of flight te as

ξ̇c(τ ) = 2
h̄q

m

te
〈x〉te . (19)

In Fig. 9, we show the comparison of the semiclassical
velocity ξ̇c(τ ) with that extracted from the momentum distri-
bution, 0.5〈p̃〉(τ ), and the corresponding center 〈x〉te of the
density distribution after a time of flight te = 50 ms, for a
noninteracting 39K condensate [25]. In this case, 〈x〉te turns
out to be of the order of some tens of microns, and its
detection is experimentally feasible. In addition, the effects
of the anomalous velocity term are pronounced in a large time
range, where the normal velocity is almost vanishing, and this
should help their visibility.

As discussed before, these effects can be maximized by
choosing suitable values of the angle θ . In Fig. 10, we plot
the maximum of the anomalous and normal velocities (ξ̇A

c and
ξ̇N
c , respectively) as a function of θ for 0.5π < θ < π and two

different sets of ηis. In particular, it is convenient to choose
θ ≈ 0.9π , where the magnitude of ξ̇A

c is close to its maximum
and ξ̇N

c is almost vanishing.
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FIG. 10. (Color online) Plot of maximum of the modulus of the
normal and anomalous velocities, |ξ̇N

c | (empty symbols) and |ξ̇A
c |

(filled symbols), respectively, as a function of θ for η1 = 1, η2 = 2
(squares) and η1 = 1, η2 = 3 (circles). In all cases, A1 = A2 = 5.
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FIG. 8. (Color online) Plot of the momentum distribution |!(p̃)|2
at (a) τ/τB = 0, (b) 1/4, (c) 1/2, and (d) 3/4 for the case shown in
Fig. 5(a). The horizontal axis on the top represents the distance after
the time of flight (see text).

V. MEASURING THE ANOMALOUS VELOCITY

Let us now discuss the experimental relevance of these
results, focusing on current experiments with ultracold atoms
in optical lattices. As we have previously discussed, the
amplitude of anomalous Bloch oscillations in coordinate space
is rather small (only a fraction of a lattice size), and therefore
a direct detection by in situ imaging is not feasible because of
resolution limitations. Usually, Bloch oscillations are detected
via time-of-flight measurements, probing momentum space.
Typical shapes of the momentum distribution |!(p̃)|2 are
shown in Fig. 8 [for the wave packet in Fig. 5(a)]. They
are characterized by sharp peaks at p̃(τ ) = ±2n + k̃c(τ )
(n = 0, ± 1, . . .) [23,24], with k̃c(τ ) being the wave packet
quasimomentum given by Eq. (15). This equation is not
affected by anomalous terms, and therefore it is not possible to
measure the effect of the Berry terms simply from the shift of
the peaks, as they move linearly in time, as for normal Bloch
oscillations. Nevertheless, their relative population depends
on the modulation, and the wave packet velocity ξ̇c(τ ) can
be extracted from the momentum distribution, according to
Ehrenfest theorem d〈x〉/dt = 〈p〉/m, which, in dimensionless
units, reads

ξ̇c(τ ) = 1
2 〈p̃〉(τ ). (17)

In the experiments, the momentum distribution is inferred
from the density distribution after the time of flight, owing to
the relation

|ψ∞(x,t)|2 ≡ lim
te→∞

|ψ(x,t ; te)|2 ∝ |!(mx/te,t)|2, (18)

where te is the free expansion time and t is the evolution
time in the trap. Therefore the wave packet velocity ξ̇c(τ )
after an oscillation time τ = ERt/h̄ can be measured from
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FIG. 9. (Color online) The wave packet velocity for the case
shown in Fig. 5(a) (A1 = A2 = 5, η1 = 1, η2 = 2). The semiclassical
velocity ξ̇c (red solid line) fits that extracted from the momentum
distribution of the full Schrödinger solution (red points). The normal
velocity ξ̇N

c is also shown (black dashed line). The right vertical scale
corresponds to the center 〈x〉texp of the density distribution after a time
of flight texp = 50 ms for a noninteracting condensate of 39K.

the center 〈x〉te ≡ 〈ψ(t ; te)|x|ψ(t ; te)〉 of the measured density
distribution after a time of flight te as

ξ̇c(τ ) = 2
h̄q

m

te
〈x〉te . (19)

In Fig. 9, we show the comparison of the semiclassical
velocity ξ̇c(τ ) with that extracted from the momentum distri-
bution, 0.5〈p̃〉(τ ), and the corresponding center 〈x〉te of the
density distribution after a time of flight te = 50 ms, for a
noninteracting 39K condensate [25]. In this case, 〈x〉te turns
out to be of the order of some tens of microns, and its
detection is experimentally feasible. In addition, the effects
of the anomalous velocity term are pronounced in a large time
range, where the normal velocity is almost vanishing, and this
should help their visibility.

As discussed before, these effects can be maximized by
choosing suitable values of the angle θ . In Fig. 10, we plot
the maximum of the anomalous and normal velocities (ξ̇A

c and
ξ̇N
c , respectively) as a function of θ for 0.5π < θ < π and two

different sets of ηis. In particular, it is convenient to choose
θ ≈ 0.9π , where the magnitude of ξ̇A

c is close to its maximum
and ξ̇N

c is almost vanishing.
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V. MEASURING THE ANOMALOUS VELOCITY

Let us now discuss the experimental relevance of these
results, focusing on current experiments with ultracold atoms
in optical lattices. As we have previously discussed, the
amplitude of anomalous Bloch oscillations in coordinate space
is rather small (only a fraction of a lattice size), and therefore
a direct detection by in situ imaging is not feasible because of
resolution limitations. Usually, Bloch oscillations are detected
via time-of-flight measurements, probing momentum space.
Typical shapes of the momentum distribution |!(p̃)|2 are
shown in Fig. 8 [for the wave packet in Fig. 5(a)]. They
are characterized by sharp peaks at p̃(τ ) = ±2n + k̃c(τ )
(n = 0, ± 1, . . .) [23,24], with k̃c(τ ) being the wave packet
quasimomentum given by Eq. (15). This equation is not
affected by anomalous terms, and therefore it is not possible to
measure the effect of the Berry terms simply from the shift of
the peaks, as they move linearly in time, as for normal Bloch
oscillations. Nevertheless, their relative population depends
on the modulation, and the wave packet velocity ξ̇c(τ ) can
be extracted from the momentum distribution, according to
Ehrenfest theorem d〈x〉/dt = 〈p〉/m, which, in dimensionless
units, reads

ξ̇c(τ ) = 1
2 〈p̃〉(τ ). (17)

In the experiments, the momentum distribution is inferred
from the density distribution after the time of flight, owing to
the relation

|ψ∞(x,t)|2 ≡ lim
te→∞

|ψ(x,t ; te)|2 ∝ |!(mx/te,t)|2, (18)

where te is the free expansion time and t is the evolution
time in the trap. Therefore the wave packet velocity ξ̇c(τ )
after an oscillation time τ = ERt/h̄ can be measured from
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FIG. 9. (Color online) The wave packet velocity for the case
shown in Fig. 5(a) (A1 = A2 = 5, η1 = 1, η2 = 2). The semiclassical
velocity ξ̇c (red solid line) fits that extracted from the momentum
distribution of the full Schrödinger solution (red points). The normal
velocity ξ̇N

c is also shown (black dashed line). The right vertical scale
corresponds to the center 〈x〉texp of the density distribution after a time
of flight texp = 50 ms for a noninteracting condensate of 39K.

the center 〈x〉te ≡ 〈ψ(t ; te)|x|ψ(t ; te)〉 of the measured density
distribution after a time of flight te as

ξ̇c(τ ) = 2
h̄q

m

te
〈x〉te . (19)

In Fig. 9, we show the comparison of the semiclassical
velocity ξ̇c(τ ) with that extracted from the momentum distri-
bution, 0.5〈p̃〉(τ ), and the corresponding center 〈x〉te of the
density distribution after a time of flight te = 50 ms, for a
noninteracting 39K condensate [25]. In this case, 〈x〉te turns
out to be of the order of some tens of microns, and its
detection is experimentally feasible. In addition, the effects
of the anomalous velocity term are pronounced in a large time
range, where the normal velocity is almost vanishing, and this
should help their visibility.

As discussed before, these effects can be maximized by
choosing suitable values of the angle θ . In Fig. 10, we plot
the maximum of the anomalous and normal velocities (ξ̇A

c and
ξ̇N
c , respectively) as a function of θ for 0.5π < θ < π and two

different sets of ηis. In particular, it is convenient to choose
θ ≈ 0.9π , where the magnitude of ξ̇A

c is close to its maximum
and ξ̇N

c is almost vanishing.
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Quantum simulations with ultracold quantum gases
Immanuel Bloch1,2*, Jean Dalibard3 and Sylvain Nascimbène1,3

Ultracold quantum gases offer a unique setting for quantum simulation of interacting many-body systems. The high degree
of controllability, the novel detection possibilities and the extreme physical parameter regimes that can be reached in these
‘artificial solids’ provide an exciting complementary set-up compared with natural condensed-matter systems, much in the
spirit of Feynman’s vision of a quantum simulator. Here we review recent advances in technology and discuss progress in a
number of areas where experimental results have already been obtained.

Calculate or simulate? Predicting the evolution of a multi-
component system is often a challenge that can be solved
either by direct mathematical analysis or by a device that

simulates its behaviour. In many cases the latter approach may
offer a faster solution, better accuracy and/or a more illustrative
representation than possible with available numerical methods. A
celebrated example is the ensemble of astronomical clocks that
were built in Asia and Europe in the period between 1000 and
1500. They were used to predict the position of the planets and the
constellations, the phases of themoon and its eclipses.

The general interest in the simulation of physical phenomena
has been greatly revitalized during the past decade. This renaissance
results from the conjunction of new needs and new tools. The new
needs originate in the increasing role of quantum effects in the states
of matter relevant for modern technology1. The computational
power required to describe an assembly of particles in quantum
physics increases exponentially with the number of its constituents.
The numerical description of a sample of quantum matter is thus
often limited to a small number of constituents, and this may
prevent one from addressing with the desired accuracy important
phenomena such as high-Tc superconductivity.

The new tools have emerged thanks to recent advances in the
control of atomic gases. Here, we will restrict ourselves to the case
of neutral atom assemblies, well suited for the analog simulation
of complex quantum systems. The design of an analog simulator
starts with the proper mapping of the Hamiltonian of the system
to be simulated. This includes both single-particle physics and the
interaction between the constituents. Next, one should prepare the
simulator in a state which is relevant for the physical problem of
interest. This can be a well-identified quantum state (for example,
the ground state) or an equilibrium state at non-zero temperature.
Finally, one must perform measurements on the simulator with
the highest-possible precision.We show that quantum atomic gases
provide a uniqueway to fulfil all the stages of this programme.

We have chosen three topics to illustrate the power of cold-
atom assemblies for implementing analog quantum simulation.
The first one deals with the control of interactions provided by
Feshbach resonances. We focus on the very strongly interacting
regime, where the fluid becomes scale-invariant and its behaviour
is characterized by a few dimensionless coefficients. This gas forms
a simulator for other strongly interacting fluids, a notion that is
validated by comparing the measured coefficients with the results
of state-of-the-art quantum Monte Carlo calculations. The second
topic deals with the control of the energy landscape at the level of the
single-particle Hamiltonian. We choose the paradigmatic example

1Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany, 2Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Strasse 1, 85748 Garching, Germany, 3Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75005
Paris, France. *e-mail: immanuel.bloch@mpq.mpg.de.

of optical lattices to explore quantum phase transitions, such as
the passage from a superfluid to a Mott insulator. Single-atom
control and detection allow one to study the time evolution of
these strongly correlated fluids, a very difficult task for a program
running on a classical computer. The last topic is the control of
the topology in which the quantum fluid evolves. Artificial gauge
fields can be applied to the gas, opening the way to the simulation
of quantum Hall systems and of topological insulators, their time-
reversal-invariant generalization. Artificial fields can reach values
well above those achievable for electrons moving in a real crystal,
thus illustrating another important feature of a simulator: it enables
the exploration of parameter ranges well beyond what is achievable
with the initial system.

Ultracold Fermi gases
We first consider quantum simulation of ultracold Fermi gases
with attractive interactions. These gases constitute a model system
of interacting fermions, whose physical behaviour is very rich2–4.
The phenomenon of Feshbach resonance provides a means to tune
the strength of interactions between atoms over several orders of
magnitude by means of an external magnetic field. This leads to the
possibility of investigating different regimes of superfluidity with a
single physical system. In the case of ultracold gases, interatomic
interactions can be described using a single parameter, the so-called
scattering length a. The other natural length scale to consider in a
Fermi gas is its inverse Fermi momentum k

�1
F , which is essentially

equal to themean interparticle distance. The physical behaviour of a
Fermi gas is then governed by the ratio 1/(kFa) of these two lengths.

In the case of weakly attractive interactions (1/kFa ! �1),
the superfluid behaviour of the gas can be understood using the
Bardeen–Cooper–Schrieffer (BCS) theory of pairing5. Developed
in the 1950s, this theory has proven extremely successful for the
understanding of conventional superconductors, and constitutes
a starting point for modelling more complex systems. BCS
superfluidity originates from the weak pairing of particles into
Cooper pairs, which are made of two particles of opposite spin
and velocity (Fig. 1a).

In the other limit of interaction strength (1/kFa! +1), atom
pairs are so strongly bound that one can picture the gas as
an ensemble of molecules of which the internal structure does
not play a crucial role. As these molecules are made of two
fermions, they behave as bosonic particles and form aBose–Einstein
condensate (BEC) at low temperature. It is important to mention
that although the attraction between atoms is very strong, the
molecules themselves are weakly interacting.
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We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in

the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two

examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The

second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-

Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties

of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.
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Introduction.—To date there exist several important
open problems in quantum field theories (QFTs) ranging
from the convergence of the scattering matrix to the infra-
red behavior of quantum chromodynamics (QCD). Such
problems can be probed analytically only by nonperturba-
tive methods that seem to be intractable in three and four
dimensions. As an alternative, numerical techniques or
quantum simulations can play a central role in obtaining
insight into the standard model.

Recently, much interest is focused on simulating QFTs
with cold atoms [1–5]. In the relativistic domain, these
studies are usually limited to generating Dirac fermions
[6,7] and background fields [8–10]. In this Letter, we
propose the realization of Dirac fermions interacting with
dynamic fields by employing cold atoms in optical lattices.
This constitutes the first step towards the quantum simula-
tion of a general model with coupled relativistic fermionic
and bosonic fields. Cold atoms provide a controlled me-
dium with well understood interactions. A wide range of
quantum optics and atomic physics technology allows for
the preparation, manipulation, and detection of a variety of
interesting many-body phenomena. Employing cold atoms
gives us the possibility to consider two, three, and four
spacetime dimensions, to tune the couplings of the inter-
actions and to explore the behavior of multicomponent
fields. Compared to numerical simulations of lattice gauge
theories on computers, a physical simulation on a quantum
system naturally overcomes the sign problem [11].

Here we show how to simulate a two-dimensional self-
interacting model of Dirac fermions, known as the Thirring
model [12,13] and two-dimensional Dirac fermions
coupled to a scalar field that is equivalent to the Gross-
Neveu model. The Hamiltonians of these systems are
supported on one spatial dimension. The necessary build-
ing blocks are the Dirac Hamiltonian, which describes
relativistic fermions, and the interaction of fermions with
themselves or with a dynamic scalar field. This goes
beyond previous proposals concerned with dynamical

fermions coupled to classical fields. We show how the
required components naturally emerge in the low energy
sector of specifically designed lattice Hamiltonians. The
Dirac operator describes the continuum limit of certain
fermionic lattices [8,14,15], as in graphene [16], that re-
markably give rise to both the spin and the linear dispersion
relation. Compared to previous approaches [8] here we
realize the Dirac operator only by the free tunnelling of
single species of atoms. Slow spatial variations of the
lattice couplings result, in the Dirac picture, to an interac-
tion with a scalar field background [10]. When these dis-
tortions are caused by coupling the lattice fermions to
bosons, the resulting fields become dynamic. Self-energy
terms can be implemented, giving rise to a variety of
interesting QFTs. The presented models are exactly solv-
able and serve for demonstrating the ability to simulate
important properties of the standard model such as dy-
namical symmetry breaking and mass generation with
cold atoms.
Thirring model.—Our starting point is the two-

dimensional Thirring model [12,13]. It describes interact-
ing fermions with the Hamiltonian

HT@ ¼
Z

dxðvs
!"!1p"þm0v

2
s@ !""

þ g

2
!"!"" !"!""Þ: (1)

Here the !’s are two-dimensional matrices satisfying
f!";!#g¼2$"# for ", #¼0, 1 with $"# ¼ diagð1;!1Þ,
!5 ¼ !0!1, and " is a two-dimensional spinor with !" ¼
"y!0. The mass of the fermions is m0, g is their dimen-
sionless self-interaction coupling constant, and vs is the
sound velocity taken in high energy to be the speed of light.
This model has exciting physics with the massless case,
m0 ¼ 0, being equivalent to free bosons and the massive
case being equivalent to the Sine-Gordon model [17].
To simulate the Thirring model in an atomic system we

consider a linear bicolorable fermionic lattice with spacing
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‘‘bare’’ massm0 decrease as a function of! so that a finite
constant value of the ‘‘physical’’ mass is obtained. It is
intriguing that this renormalization procedure can be es-
tablished experimentally by studying the spectral behavior
of the fermionic lattice system. Observing such a strong
renormalization of parameters [see Fig. 2] in a system of
cold atomic gases provides a unique fingerprint of strong
correlations.

Fermion-scalar interaction and the Gross-Neveu
model.—Next we consider a two-dimensional model where
an N- color massless Dirac fermion "n n ¼ 1; . . . ; N
interacts with a massive quantized scalar field# according
to the Hamiltonian

H#@ ¼
Z

dxðvs
$"n!1p"n þ gm# $"n"n þ

m2

2
#2Þ: (4)

Here we assume summation over the color index n, g is the
coupling strength between the bosonic and fermionic
fields, and m is a mass scale that can be absorbed in #.
It can be shown that this Hamiltonian yields exactly
equivalent fermionic behavior as the Gross-Neveu model
[21] given by

HGN@ ¼
Z

dx½vs
$"n!1p"n þ

g2

2
ð $"n"nÞ2&: (5)

The HamiltonianHGN describes massless fermions subject
to attractive interactions. This attraction causes the fermi-
ons to create bosonic pairs. Eventually, these composite
bosons condense, breaking spontaneously the Z2 symme-
try, " ! !5", of Hamiltonian (5), thereby causing the
fermions to dynamically acquire mass. This fascinating
property is very similar to the behavior of the BCS theory
of superconductivity or of four-dimensional QCD. Note
that (4) does not contain a kinetic term for the scalar
field. This corresponds to a Yukawa theory with interac-
tions mediated by infinitely massive fields, making their
propagation pointlike and resulting in the Gross-Neveu
effective four-fermion interaction.

We will now consider a cold atom system that gives rise
to H# [22], which would make it possible to observe the
dynamical mass generation experimentally. The kinetic
term of the Dirac fermions, "n, can be produced by the
same fermionic tunneling term as in (2). In general, a
variety of interaction terms can be generated between
bosonic and fermionic atoms. To conform with (4), we
specifically want the bosonic modes, #, to couple linearly
to the fermionic ones, "n, as dictated by the minimal
coupling prescription. Such an interaction can result
similarly to the m0 term of the Thirring model. A
position-dependent tunneling distortion gives rise to a
classical scalar field configuration. Formally, the quantiza-
tion of the scalar field is obtained by writing it as # ¼
ðdy þ dÞ=

ffiffiffi
2

p
, where d is a bosonic mode. Substituting it

intoH# gives the quantized Dirac fermion-scalar model. In
the cold atom setting, this can be achieved by employing a
bosonic condensate interacting with the lattice fermions as
we shall see below.
Consider a one-dimensional fermionic lattice super-

posed with a one-dimensional bosonic lattice, as seen in
Fig. 3. We assume that the dynamics of the atoms is
described by

H@ ¼ 2"
X

i

f½'ðJ0ayn;ibn;i þ Jbyn;ian;iþ1Þ

' #$y
i $ia

y
n;ibn;i þ H:c:& þU$y2

i $2
i þ%$y

i $ig: (6)

Here the an’s and bn’s are N different species of fermionic
atoms (summation over n is assumed) and $i ¼ Dþ di is
an atomic condensate with particle density D and bosonic
operator d. When the couplings of (6) and the condensate
density are appropriately tuned, then the low energy be-
havior of the Hamiltonian H reproduces H#. Indeed, for
J0 ¼ J ' #D2 and % ¼ '2D2U one reproduces the de-
sired low energy behavior with g2 ¼ 2" ( 2#2l=U and
vs ¼ 2" ( 2Jl. To suppress spurious terms we take the
weak fluctuation limit hdydi ) D2.
The terms in (6) can be realized in the lattice configu-

ration of Fig. 3 by employing one-dimensional optical
lattices filled with the appropriate species of atoms. All
the required interactions naturally appear in cold atom
settings and can be tuned, e.g., by Feshbach resonances.
The J and J0 terms of (6) result from the tunneling of the
fermionic atoms along their lattice and contribute to the

0.25 0.5
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1

FIG. 2. The regularized mass M, in units of @=ðvslÞ, as a
function of the tunneling disorder # for various interaction
strengths U. When no interactions are present the mass in-
creases, as expected, linearly as a function of #. The presence
of interactions dramatically changes this behavior even for
moderate ratios of U=J.
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a b
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FIG. 3. The one-dimensional optical lattice with tunneling fer-
mions and bosons that simulates the Dirac fermion-scalar field
model. The bosonic sites are placed in between the fermionic ones
with double spacing. In this way the bosonic population on site i
controls the fermionic tunneling within the same cell.
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intriguing that this renormalization procedure can be es-
tablished experimentally by studying the spectral behavior
of the fermionic lattice system. Observing such a strong
renormalization of parameters [see Fig. 2] in a system of
cold atomic gases provides a unique fingerprint of strong
correlations.
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interacts with a massive quantized scalar field# according
to the Hamiltonian

H#@ ¼
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dxðvs
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Here we assume summation over the color index n, g is the
coupling strength between the bosonic and fermionic
fields, and m is a mass scale that can be absorbed in #.
It can be shown that this Hamiltonian yields exactly
equivalent fermionic behavior as the Gross-Neveu model
[21] given by
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ons to create bosonic pairs. Eventually, these composite
bosons condense, breaking spontaneously the Z2 symme-
try, " ! !5", of Hamiltonian (5), thereby causing the
fermions to dynamically acquire mass. This fascinating
property is very similar to the behavior of the BCS theory
of superconductivity or of four-dimensional QCD. Note
that (4) does not contain a kinetic term for the scalar
field. This corresponds to a Yukawa theory with interac-
tions mediated by infinitely massive fields, making their
propagation pointlike and resulting in the Gross-Neveu
effective four-fermion interaction.

We will now consider a cold atom system that gives rise
to H# [22], which would make it possible to observe the
dynamical mass generation experimentally. The kinetic
term of the Dirac fermions, "n, can be produced by the
same fermionic tunneling term as in (2). In general, a
variety of interaction terms can be generated between
bosonic and fermionic atoms. To conform with (4), we
specifically want the bosonic modes, #, to couple linearly
to the fermionic ones, "n, as dictated by the minimal
coupling prescription. Such an interaction can result
similarly to the m0 term of the Thirring model. A
position-dependent tunneling distortion gives rise to a
classical scalar field configuration. Formally, the quantiza-
tion of the scalar field is obtained by writing it as # ¼
ðdy þ dÞ=
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, where d is a bosonic mode. Substituting it

intoH# gives the quantized Dirac fermion-scalar model. In
the cold atom setting, this can be achieved by employing a
bosonic condensate interacting with the lattice fermions as
we shall see below.
Consider a one-dimensional fermionic lattice super-

posed with a one-dimensional bosonic lattice, as seen in
Fig. 3. We assume that the dynamics of the atoms is
described by
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Here the an’s and bn’s are N different species of fermionic
atoms (summation over n is assumed) and $i ¼ Dþ di is
an atomic condensate with particle density D and bosonic
operator d. When the couplings of (6) and the condensate
density are appropriately tuned, then the low energy be-
havior of the Hamiltonian H reproduces H#. Indeed, for
J0 ¼ J ' #D2 and % ¼ '2D2U one reproduces the de-
sired low energy behavior with g2 ¼ 2" ( 2#2l=U and
vs ¼ 2" ( 2Jl. To suppress spurious terms we take the
weak fluctuation limit hdydi ) D2.
The terms in (6) can be realized in the lattice configu-

ration of Fig. 3 by employing one-dimensional optical
lattices filled with the appropriate species of atoms. All
the required interactions naturally appear in cold atom
settings and can be tuned, e.g., by Feshbach resonances.
The J and J0 terms of (6) result from the tunneling of the
fermionic atoms along their lattice and contribute to the
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FIG. 2. The regularized mass M, in units of @=ðvslÞ, as a
function of the tunneling disorder # for various interaction
strengths U. When no interactions are present the mass in-
creases, as expected, linearly as a function of #. The presence
of interactions dramatically changes this behavior even for
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FIG. 3. The one-dimensional optical lattice with tunneling fer-
mions and bosons that simulates the Dirac fermion-scalar field
model. The bosonic sites are placed in between the fermionic ones
with double spacing. In this way the bosonic population on site i
controls the fermionic tunneling within the same cell.
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FIG. 1: (a) The one-dimensional superlattice with tunnelling
fermionic atoms that simulates Dirac fermions. Each unit cell
includes two fermion sites, a and b. An alternating distortion
of the tunnelling couplings J and J � � gives rise to the mass
term, �. (b) The energy dispersion relation as a function of
momentum, p. At half filling and for � = 0 the low energy be-
haviour is linear with respect to p, allowing the Dirac operator
description.

To simulate the Thirring model in an atomic system
we consider a linear bicolourable fermionic lattice with
spacing l (see Fig. 1(a)) which is subject to the Hubbard
Hamiltonian

H

~ = 2⇡
X

i

h

� J(a†i bi + b†iai+1) + �a†i bi + H.c.

+Ua†iaib
†
i bi

i

. (2)

Here J is the tunnelling coupling between neighbouring
sites of the lattice of the same fermionic atoms a and b
with {ai, a†j} = {bi, b†j} = �ij and all the other anticom-
mutators vanishing. The a, b index is a spatial distinction
within the unit cell that allows the encoding of the spin
degree of freedom. The tunnelling distortion � occurs on
alternating links, as shown in Fig. 1(a), while U is the
interactions coupling between fermions in the same cell.

If we diagonalise the J-term of the Hamiltonian in
the a, b basis we find the dispersion relation E±(p) =
±2| cos pl

2 | plotted in Fig. 1(b). It can be easily seen that
there is a single Fermi point, P = ⇡/l, for which E±(P ) =
0. If the lattice is half filled with fermions, which occupies
the valence band completely, the behaviour of the small
energy fluctuations is governed by the Hamiltonian ex-
panded around P . Setting p = P + k for |k| ⌧ 1/l we
obtain a dispersion that is linear in momentum, k. Hence,
the fermionic tunnelling term around the Fermi point can
be e�ciently described by the relativistic Dirac Hamil-
tonian Jl

R

dk †
k�2k k, where  = (a, b)T corresponds

to the one-dimensional version of the Kogut-Susskind
fermions [14, 15]. To assign the appropriate dimensions
to the Dirac fermions we set  =

p
2l . In this way we

obtain the massless free Dirac fermion term of (1) written
in the momentum representation with �0 = �1, �1 = i�3
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FIG. 2: The regularised mass M , in units of ~/(vsl), as a
function of the tunnelling disorder � for various interaction
strengths U . When no interactions are present the mass in-
creases, as expected, linearly as a function of �. The presence
of interactions dramatically changes this behaviour even for
moderate ratios of U/J .

and vs = 2⇡ · 2lJ . It can be verified that the continuum
limit of (2) gives also rise to the rest of the terms in (1)
with m0v

2
s /~ = 2⇡ · 2� and g = 2⇡ · 2Ul. The continuum

limit corresponds to small lattice spacing. This is equiv-
alent to restricting to the low energy sector of the system
where states have a large wavelength support. These are
exactly the states we are interested in for probing the
infrared behaviour of QFT, such as the ground state and
its gapped or gapless nature.

The Hamiltonian (2) can be realised with cold atoms as
follows. The one-dimensional fermionic tunnelling term
of (2) appears when a fermionic gas is placed in an optical
lattice with very tight confinement in the other two direc-
tions. The �-term corresponds to a uniformly decreased
tunnelling coupling between sites of the same cell. It can
be generated, e.g. by employing superlattices as seen in
Fig. 1(a). This alternatively signifies that inhomogene-
ity in the tunnelling coupling due to experimental im-
perfections will generate a mass term as observed in [1].
The final U -term results from the interaction between the
atoms a and b present in the same cell [See supplemen-
tary material at [URL will be inserted by AIP]].

The Thirring model is the simplest relativistic inter-
acting QFT that one could implement in the laboratory
with present technology. Its realisation can demonstrate
the renormalisation of mass due to interactions. Indeed,
m0 6= 0 is the fermionic mass of the classical theory.
When the interactions g are introduced then a regulari-
sation condition needs to be adopted, |p| < ⇤, where ⇤
is a momentum cuto↵ that excludes modes with unphys-
ically high energy. Our system is naturally regularised
due to the underlining lattice structure, where the mo-
mentum cuto↵ is related to the optical lattice spacing by,
⇤ = ⇡/l. A quantum field theory is called renormalisable
when this cuto↵ can be absorbed in the initial, bare pa-
rameters of the model, such as the mass. The massive
Thirring model is such a renormalisable theory where the
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