Higgs Properties at the LHC Short and Long Term

Giovanni Petrucciani (Univ. of California, San Diego) CMS Collaboration

Overview

- In the context of SM Higgs boson searches,
 - a new heavy boson has been observed at a mass of around 125 GeV.
- Having established that *something* exists there, the most natural question is now *what* is it:

shift of focus from searches to

measurements.

• Of course we're also still searching for 10.10.2012

SM Higgs-centric measurements

- The H125 boson was observed relying on searches specifically tuned for the SM Higgs:
 - Signal kinematic taken from SM Higgs prediction.
 - Use of specific production modes: VBF, VH, ttH
 - Selection of decay modes searched
- Most measurements of properties are made by reinterpreting the results of these searches.
- Therefore, the measurements of the properties depend to some extent on SM Higgs assumptions.
- The validity of these measurements is therefore dependent on how close H125 is to

3

Mass measurement

- The first and most natural thing to measure.
- Experimentally accessible in yy, 4I decays
- Well defined theoretically, at least down to the natural width of H125 (tiny, in most models)
- If no assumption is made on the expected signal yield, the measurement is model independent, except for some effects:
 - the modelling of the signal kinematic , which enters in the overall calibration of the mass scale from MC.
 - the relative weights given to the events in the measurement, which depends on the expected

10.10.2012 S/B

G. Petrucciani (UCSD)

Mass: experimental challenges

- The dominant systematical uncertainty on the mass measurement is from the knowledge of the energy scales for photons and leptons:
 - Extrapolation from the standard candles (e.g. Z)
 - to the kinematic of a H125 signal (p_T, η)
 - Extrapolation from electrons to photons.
- The control of the energy resolution on data

10.10.2012 also important Petrucciani (UCSD)

Results with Summer'12 data

 $\begin{array}{l} 125.3 \pm 0.4^{(stat)} \pm 0.5^{(syst)} & 126.0 \pm 0.4^{(stat)} \pm \\ & 0.4^{(syst)} \end{array}$

Mass: looking in the future

- By the end of 2012 run, we expect \sim x3 data.
 - Statistic term from about 0.4 GeV to about 0.2 GeV
 - Can gain also from further analysis improvements
- The systematic can also be reduced with better calibrations, better tuning of the simulation, ...
- The ATLAS and CMS uncertainties are totally uncorrelated, also in the systematic part, so get a factor $\sqrt{2}$ from combining the two.
- Total uncertainty below 0.2 GeV by 2013?

• Unclear to me how useful it is to go beyond

Tests of the Couplings

 For a SM Higgs, there's nothing to measure besides the mass: all the rest is well know.

As a consequence, all production cross sections and decay rates are predicted from them.

 However, SM Higgs predictions are all that we have readily and accurately available now.

• So, rather than "measure" the couplings, 10.10.2012

Measurement vs Test

- Starting point: a model, dependent on some parameters, that can be fitted to the data.
- Measurement: all parameter values are sensible; we search for the one best describing the data.
 e.g. measure the Z mass, combining μμ and ee.
- Test: only some parameter values are sensible; If the result is not compatible with those, taking into account the uncertainties, the model is rejected.

e.g. measure the Z mass in $\mu\mu$ and ee as if

Tests of the couplings

- 1. Introduce a set of parameters {X}, intuitively related to the couplings of the Higgs
- 2. Compute the production cross sections in each topology and all the BRs, rescaling the SM predictions by functions of {X} $\sigma(xx \rightarrow H \rightarrow yy) \sim \sigma_{xx} \Gamma_{yy} / \Gamma_{tot}$
- Fit the data and the allowed regions of {X}, or the allowed region for one X allowing all the others X's to take arbitrary values.

A set of benchmark models have been defined to probe various BSM scenarios:

arxiv:1209.0040

Universal vector & fermion couplings

"Rescale universally the Higgs boson couplings to fermion by κ_F and couplings to vector boson by κ_V "

- σ_{VBF} , σ_{VH} , Γ_{WW} , Γ_{ZZ} scale as κ_V^2
- σ_{ttH} , Γ_{ff} scale as κ_F^2
- σ_{ggH} , Γ_{gg} scale as κ_F^2 (assume they're just the SM quarks in the loop)
- $\Gamma_{\gamma\gamma}$ scale as $|\alpha \cdot \kappa_V + \beta \cdot \kappa_F|^2$ (assume W, t, b in the loop, as in the SM)
- $\Gamma_{tot} = \sum \Gamma_X$ for all X decays in the SM (assume no other BSM decay mode)

	Prod	Decay	Signal yield scale	Appro x
	VH	bb	$K_V^2 K_F^2 / [\frac{3}{4} K_F^2 + \frac{1}{4} K_V^2]$	K _V ²
	ttH	bb	$\kappa_{F}^{2} \kappa_{F}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	κ _F ²
	VBF	TT	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	κ _V ²
	ggH	TT	$\kappa_{F}^{2} \kappa_{F}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	κ _F ²
	ggH	WW, ZZ	$\kappa_{F}^{2} \kappa_{V}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	κ _V ²
10.	VBF	WW	$K_{V}^{2} K_{V}^{2} / [\frac{3}{4} K_{E}^{2} + \frac{1}{4}]$	$\kappa_{\rm V}^4 / \kappa_{\rm c}^2$

	Prod	Decay	Signal yield scale	Appro x	
	VH	bb	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	K _V ²	ĸ
	ttH	bb	$\kappa_{\rm F}^{2} \kappa_{\rm F}^{2} / [\frac{3}{4} \kappa_{\rm F}^{2} + \frac{1}{4} \kappa_{\rm V}^{2}]$	KF ²	F
	VBF	TT	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	K _V ²	K _V
	ggH	TT	$\kappa_{F}^{2} \kappa_{F}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	κ _F ²	
	ggH	WW, ZZ	$\kappa_{\rm F}^2 \kappa_{\rm V}^2 / [\frac{3}{4} \kappa_{\rm F}^2 + \frac{1}{4} \kappa_{\rm V}^2]$	K _V ²	
10.	VBF	WW	$K_{1/2} K_{1/2} / [\frac{3}{4} K_{E}^{2} + \frac{1}{4}]$	$\kappa_{\rm M}^4$ / $\kappa_{\rm m}^2$	13

	Prod	Decay	Signal yield scale	Appro	
	VH	bb	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	K _V ²	к
	ttH	bb	$\kappa_{\rm F}^{2} \kappa_{\rm F}^{2} / [\frac{3}{4} \kappa_{\rm F}^{2} + \frac{1}{4} \kappa_{\rm V}^{2}]$	K _F ²	F
	VBF	TT	$K_V^2 K_F^2 / [\frac{3}{4} K_F^2 + \frac{1}{4} K_V^2]$	Ky ²	K _V
	ggH	TT	$\kappa_{F}^{2} \kappa_{F}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	K _F ²	
	ggH	WW, ZZ	$\kappa_{\rm F}^2 \kappa_{\rm V}^2 / [\frac{3}{4} \kappa_{\rm F}^2 + \frac{1}{4} \kappa_{\rm V}^2]$	K _V ²	
10.	VBF	WW	$K_{1/2} K_{1/2} / [\frac{3}{4} K_{E}^{2} + \frac{1}{4}]$	$\kappa_{\rm M}^4$ / $\kappa_{\rm m}^2$	14

	Prod	Decay	Signal yield scale	Appro x	
	VH	bb	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	K _V ²	κ
	ttH	bb	$\kappa_{F}^{2} \kappa_{F}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	κ _F ²	
	VBF	TT	$\kappa_V^2 \kappa_F^2 / [\frac{3}{4} \kappa_F^2 + \frac{1}{4} \kappa_V^2]$	Ky ²	К _V
	ggH	TT	$\kappa_{\rm F}^2 \kappa_{\rm F}^2 / [\frac{3}{4} \kappa_{\rm F}^2 + \frac{1}{4} \kappa_{\rm V}^2]$	K _F ²	
	ggH	WW, ZZ	$\kappa_{F}^{2} \kappa_{V}^{2} / [\frac{3}{4} \kappa_{F}^{2} + \frac{1}{4} \kappa_{V}^{2}]$	K _V ²	
10.	VBF	WW	$K_{1/2} K_{1/2} / [\frac{3}{4} K_{E}^{2} + \frac{1}{4}]$	$\kappa_{\rm M}^4$ / $\kappa_{\rm m}^2$	15

K_V, **K**_F results: CMS

K_V, **K**_F results: ATLAS

Testing custodial symmetry

- In most alternative models to the SM, the ratio of the Higgs-like boson couplings to W and Z is fixed to the SM value.
- Two ways of probing it:
 - Directly from the the measured WW, ZZ yields
 - From a fit to the full dataset , as in κ_{V, κ_F} but with independent parameters for W and Z
- Each approach has its merits

W/Z from event yields

- Ideally one would like to select WW, ZZ decays from the same ggH production mode, so that the ratio of yields depends only on the BRs.
- However, both CMS and ATLAS have an inclusive ZZ analysis, with with an O(10%) contamination from VBF and VH.

 $N_{WW}/N_{ZZ} = BR_{WW}/BR_{ZZ} \cdot (1 + \sigma_{VBF+VH}/\sigma_{ggH})^{-1}$

 If σ_{VBF+VH}/σ_{ggH} is diffent from the SM value, the ratio of yields can depart from 1.0 even if the ratio of W and Z couplings is as in the
10.10.2 SM. G. Petrucciani (UCSD)

W/Z from event yields

W/Z from couplings

- Three parameter fit: κ_F , κ_Z , λ_{WZ} := κ_W / κ_Z
- Leave κ_{F} , κ_{7} float freely, get a constraint

Fermion non-universality

- Several BSM models predict different couplings for the Higgs to different fermion kinds.
- Two benchmark models devised to probe this:
 - Allow separate couplings for up-type and down-type fermions : separate t vs from b, t
 - Allow separate couplings to quarks and leptons
- In both cases, the coupling to the top is measured only from the ggH production cross
 10.10.25 ectiton, G. Petrucciani (UCSD)

Fermion non-universality

Due to the deficits observed bb and ττ at LHC compared with the SM Higgs predictions, the fits prefers values of λ_{du}, λ_{lq} close to zero.

Search for BSM physics in loops

Alternative benchmark model:

- Assume the tree-level couplings between Higgs and the other particles are as in the SM
- However, allow extra contributions to the loops that give the effective gluon and γ couplings:

treat κ_g , κ_γ as free parameters and scale $\sigma_{ggH} \sim \kappa_g^2 \quad \Gamma_{gg} \sim \kappa_g^2 \quad \Gamma_{\gamma\gamma} \sim \kappa_{\gamma}^2$

Search for BSM physics in loops

Note anti-correlation from $\sigma \cdot BR(gg \rightarrow H \rightarrow \gamma\gamma) = \kappa_g^2 \kappa_\gamma^2$ 10.10.2012 G. Petrucciani (UCSD)

Search for BSM physics in decays

- As the previous model, but allow also for BSM decays of the Higgs boson in modes not searched for.
- Constrain BSM decays through the total width

 $\Gamma_{tot} = \Gamma_{SM} + (\kappa_g^2 - 1) \cdot \Gamma_{gg} + \Gamma_{BSM}$ • Hard to do for unconstrained κ_g , κ_γ values, as most of the really sensitive modes rely on ggH production or on γγ decay.

Search for BSM physics in decays

For now can only constrain BR_{BSM} to be below ~90%

Expect larger improvements when non-ggH modes become more sensitive: currently they're statistically limited, but have better S/B

Spin and parity

- Previous coupling tests all assumed $J^{CP} = 0^+$
- The picture becomes increasingly more complex if this requirement is dropped.
 Especially true for J=2, where there are potentially many tensor couplings to consider.
- So far, studies done only trying to separate between SM H and another fixed alternative hypothesis (e.g. minimal 0⁻). However, we might be dealing with a mixed parity state, or with non-minimally coupled particle.

Spin and parity: ZZ

- From angular distribution of ZZ decay products: full analysis done at CMS, expect 2-3σ separation between SM Higgs and a minimal pseudo-scalar Higgs model.
- Spin 2 case more complex.
 For a graviton-like H, expect little or no separation with this year data.

Spin and parity: WW

G. Petrucciani (UCSD)

- Spin alignment is already used in the WW search: the fact we see a signal supports J=0 vs J=2.
- No full analysis done yet, but from generatorlevel studies one expects 2-3 σ separation of J=0 vs J=2 with this year data.

JHU Generator L = 10 fb⁻¹, $\sqrt{s} = 8$ Te supposed by the second seco

Spin parity: yy and VH modes

- Other ways of testing the spin and parity have been proposed:
 - from angular distribution in γγ, inclusive and VBF
 - from transverse mass distribution of V+H system
- However, it will likely take a while before results from this approach will be ready. Maybe first results for Moriond?

Beyond this LHC run

- Some first projections have been done to estimate the sensitivity of the LHC with higher integrated luminosity and beam energy.
- Improvement expected in two directions:
 - The sensitivity in the currently explored decay modes will be increase: larger event yields in signal region, larger control and calibration samples, ...

- New modes with low yield but good S/B will 10.10.2012 start to be accessible (UCSD)

More precision

Naïve rescaling of uncertainties on $\sigma \times BR$ with $\sqrt{(\sigma \times L)}$, **NOT AN OFFICIAL CMS PROJECTION**

Decay	Prod.	30+30 fb ^{−1} @ 8 TeV	300fb ^{−1} @ 14 TeV
H→bb	VH	30%	10%
H→bb	ttH	60%	10%
$H \rightarrow \tau \tau$	ggH	40%	10%
$H \rightarrow \tau \tau$	qqН	40%	10%
$H\to \gamma\gamma$	ggH	20%	6%
$H\to \gamma\gamma$	qqН	40%	10%
$H\toWW$	ggH	16%	5%
$H \rightarrow WW$	qqН	60%	16%
$H \rightarrow ZZ$	ggH	16%	5%

O. I Ellucularii (OCOD)

Measure couplings at 10%

CMS Projection

http://indico.cern.ch/contributionDisplay.py?contribId=144&confId=175067

Theory uncertainties become important

More modes

- ttH, H→bb: expect to reach Δσ/σ ~ 100% with this year data, and σ grows fast with energy. Important to probe top coupling at tree level.
- VBF, VH to ZZ: expect just ~1 event with 30 fb⁻¹
- $H \rightarrow Z\gamma$: another constraint to BSM $H \rightarrow \gamma\gamma$
- $H \rightarrow \mu\mu$: 3 σ evidence in reach with ~3000 fb $^{-1}$?
- $H+H \rightarrow bb+\gamma\gamma$: ??? Still to be studied.
- Note: some of these measurements are not trivial to do at a low-luminosity linear e⁺e⁻
 ^{10.10.2012} Ollidor

Conclusions

- After the observation of H125, now we are focusing on measuring its properties.
- Mass already measured to better than 0.5%
- Started to probe the couplings: currently with O(50%) uncertainties, but could gain a factor 2 this year, and reach ~10% with 300fb⁻¹ @14TeV
- Effort also ongoing for J^{CP} measurements. 10.10.20 Some results expected on this year data.