

$H \rightarrow ZZ$ and $H \rightarrow \tau\tau$

M. Bachtis

CERN

Introduction

- Today covering two final states that in first sight they have nothing in common
 - $H \rightarrow ZZ \rightarrow 41$
 - High S/B
 - excellent mass resolution
 - Direct coupling of H to vector bosons \rightarrow probes SSB
 - Excess at 125 GeV
 - $H \rightarrow \tau \tau$
 - Low S/B
 - Moderate mass resolution due to the neutrinos in tau decay
 - Only final state capable to study coupling to leptons
 - Signal not observed yet
- Both of them providing and expected to provide useful knowledge about the new h₁₂₅ resonance

CMS Experiment at LHC, CERN Data recorded: Wed May 23 21:09:26 2012 CEST Run/Event: 194789 / 164079659

The H \rightarrow ZZ* \rightarrow 4l search

- Golden Channel
 - ATLAS and CMS experiments were designed based on it
 - Clean experimental signature
 - 4 isolated leptons (electrons or muons)
 - Benefit for high lepton reconstruction efficiency and excellent resolution
 - Narrow resonance on the four lepton mass spectrum
- Backgrounds
 - SM ZZ production (very small for m_{41} < 2 M_{7})
 - Z + jets / Top pairs with fake leptons/leptons from HF decays
- Very low background contamination at low mass
- Current public results from ATLAS and CMS as of July 4th
- Both experiments performing inclusive search -not looking at specific production mechanisms (I.e VBF/VH) yet

Trigger and Lepton selection

- ATLAS
 - Single and Double lepton
 triggers
 - Muon p₁ > 6 GeV, η<2.7
 - Electron p₁>7 GeV, η<2.47
- CMS
 - Double Lepton triggers
 - Muon p₁ > 5 GeV, η<2.4
 - Electron $p_{T} > 7$ GeV, $\eta < 2.5$

Construction of ZZ candidates(ATLAS)

Construction of ZZ candidates(CMS)

- Any OS/SF lepton pair must have M_µ>4 GeV
 - To suppress QCD
- FSR recovery
 - Photons added to the Z candidates before cuts

7

4µ + FSR event

7.6 GeV photon

CMS Experiment at LHC, CERN Data recorded: Wed May 23 21:09:26 2012 CEST Run/Event: 194789 / 164079659 Lumi section: 118

Estimation of the backgrounds

- The irreducible background⁻(qq → ZZ, gg → ZZ) is estimated using the theoretical cross section
- Reducible backgrounds from data
 - Dominated by a real lepton pair + 1 or 2 fake leptons (or leptons from HF decays)
 - Similar estimation methods
 - Exploiting fake rate measurement in tri-lepton sample
 - Using several control regions (I.e SS or Non isolated OS)

4 lepton mass spectra

- First looking at ZZ continuum
 - ATLAS ZZ cross section: $1.25 \pm 0.15 \times \sigma$ (theory)
 - CMS ZZ cross section: $1.10 \pm 0.16 \times \sigma$ (theory)

Low mass spectra

- $Z \rightarrow 4I$ resonance
 - Suppressed more in ATLAS selection
- Well known h₁₂₅ bump

	ATLAS (120-130)	CMS (121.5-130.5)
Background	4.9	3.8
Signal	5.3	7.5
Observed	13	9

ATLAS over-fluctates, CMS unde-rfluctuates ¹¹ within statistics

Matrix element approach (CMS)

- Matrix Element
 Likelihood Approach
- Uses 5 angles and 2 masses
 - To discriminate spin 0 signal from background

Significance of the excess

- CMS
 - Expected 3.8σ
 - Observed 3.2σ

- - Expected 2.6σ
 - Observed 3.4σ

Anatomy of the excess $(M_{z_1} vs M_{z_2})$

- CMS shows most of events off-shell on Z₁
- ATLAS shows consistency with the expectation
- Considering expected S+B yields the results can still be consistent

Anatomy of the excess(CMS MELA)

- Large fraction of events appear with high MELA
 - Very signal like
- Those events tend to have high M_{22} and small M_{21}

Consistency with the SM

 ATLAS and CMS results consistent with SM, other channels and between them

Mass of the new resonance

- ZZ is currently the second more sensitive final state to measure the mass affter γγ
- Consistent results between the experiments

H → ZZ summary

- Both experiments have observed a new resonance in the ZZ final state
- The results are consistent within statistics between the two experiments and between each experiment and the SM
- The excellent performance of ZZ analysis will provide in the future interesting information about
 - spin-CP
 - Couplings
 - Mass
- Possible discrepancies in some distributions will be reled-out/confirmed by the end of the year

The H \rightarrow $\tau\tau$ search

- $H \rightarrow \tau \tau$ is the only handle we have to study Higgs couplings to leptons at the LHC
- Dominated by $Z \rightarrow \tau \tau$ background
- Taus decay hadronically 64% of the time
 - Hadronic tau identification is an experimental challenge
- There are 2-4 neutrinos present in the tau decays
 - Degrades mass resolution. New techniques are need to improve this
- There have been huge improvements in $H \rightarrow \tau \tau$ since the LHC startup in both experiments
 - The sensitivity was proven to be much better than initially projected 20

Relevant production mechanisms

Vector boson fusion(qqH)

- Golden mode
 - Cross section ~ 1/10 ggH
 - Di-jet signature suppresses Z → TT

Associated production(VH)

- Largest cross section
 - Dominated by Z → TT background
 - Z+1 jet experimentally more promising

- min
- Additional boson suppresses $Z \rightarrow \tau \tau$
 - Dominant background: dibosons
 - Very small cross section

Current H → ττ public results

- Moriond 2012
 - 4.7 fb⁻¹ @ 7 TeV
- Covered
 - gluon fusion
 - vector boson fusion
 - associated production

- ICHEP 2012
 - 4.7 fb⁻¹ @ 7TeV
 - 5.0 fb⁻¹ @ 8 TeV
- Covered
 - gluon fusion
 - Vector boson fusion
 - associated production

Hadronic tau identification

- Cone based approach
 - Starting from jet define signal cone
 - Define discrimination variables
 based on cone contents
 - Define isolation annulus between signal and isolation cone
- Combinatorial approach
 - Starting from jet make combinations of decay modes
 - π/K , $\rho \rightarrow \pi^{+}\pi^{0}s$, $\alpha_{1} \rightarrow \pi^{+}\pi^{-}\pi^{+}$
 - Apply mass and narrowness criteria
 - Define isolation cone excluding decay mode constituents

Tau Identification (ATLAS)

- Cone based approach
 - Define discrimination variables and combine in a multivariate discriminant (BDT)
- Tau energy measured with Calorimeter
 - Specific tau corrections applied

Tau Identification (CMS)

- Combinatorial approach
 - Uses reconstructed particles from Particle Flow Algorithm
- Reconstructs individual decay modes
 - Using particles from Particle Flow event description)
- Energy of the tau measured using only associated decay mode PF constituents
 - Dominated by Tracker+ECAL
 - Pileup effect in energy scale minimal

Reconstructing the tau mass

- Crucial to separate $Z \to \tau \tau$ from Higgs $\to \tau \tau$
- A semi-leptonic $\tau\tau$ final state has three neutrinos
 - Corresponding to 7 unknown variables
 - Missing ET and tau mass constraint reduces them to 3

Collinear approximation

- Project the MET in the direction of the visible products
 - Often no solution → events discarded

- minimizing an event likelihood
 - Using visible decay kinematics and MET

Methods used

- For µт,ет,тт
- Collinear approximation
 - For ee,µµ,eµ

• For all final states

Analysis strategy

• Exploit best the properties of each event

- Exploit VBF by applying di-jet tagging (Δη,Μjj)
 - Use multivariate approaches to improve sensitivity

- Exploit gluon fusion + 1 jet
 - Boost from the jet improves mass resolution
- All other events are collected in a 0-jet category 28

Background estimation techniques

 Well established and similar techniques in both experiments

Embedding Technique

- Reconstruct $Z \rightarrow \mu\mu$ events in data
- Replace µ with decay the event
- Mix the simulated tau pair event with the initial events without the muon
- PU/UE and jets from data

QCD from Same Sign Events

ATLAS : QCD(OS/SS)=1.10 ± 0.09

CMS : QCD(OS/SS)=1.10 ± 0.10

W from sidebands

29

VBF category

H+1 jet category

H+0 jet category

Expected Sensitivity

- Sensitivity dominated by VBF +1 jet(Boosted) category
- Most sensitive final state is $\mu\tau$

CMS Results with 10fb⁻¹

- Expected sensitivity
 - 1.3 x SM @ 125 GeV
- Observed
 - 1.06 x SM
- Good agreement with background only hypothesis

Consistency with the SM

- Injected test shows broad excess as expected from resolution
- Best fit value still compatible with the SM and the other CMS channels
- With the current dataset an under-fluctuation could still be possible
 - By the end of the year we will have a better picture(exp ~ 0.8xSM sensitivity)

ATLAS results at 4.7 fb⁻¹

- Sensitivity of 3.5x SM
 - Good agreement with background only hypothesis
- Update expected soon with the 2012 dataset

What if we don't see $H \rightarrow \tau \tau$?

We know we can produce it also in the most sensitive VBF mode

Lower or zero cross section implies smaller coupling

Т

- Limited precision with 2011+2012 dataset
 - Promising for LHC restart

Conclusions

- H → TT final state has surpassed all expectations in sensitivity
- Will reach 0.8 x SM by the end of the year with one experiment
 - ~0.5 for ATLAS/CMS combination
- Up to now no signal observed but consistent with the SM
- By the end of the year we will have first evidence if the coupling of the new boson to tau is SM like
- In parallel, a lot of studies ongoing on the context of 2HDM