Searches for Higgs Boson with CMS

Kun / Evenil, 100033 //3940 1040 /

Vivek Sharma, UCSD GGI workshop, Oct 2012

2011. All rights reserved.

Higgs Production in pp Collsions

(a) $gg \rightarrow H$

(b) VBF

(c) *VH*

Higgs Branching Ratio

[Production Cross section \times Decay Rate] Vs M_H

[Cross section × Decay Rate] Vs M_H : Low Mass

Higgs Search Sensitivity: By Mass & By Mode

- For a given M_H , sensitivity of search channel depends on
 - Production cross section & decay branching fraction
 - Signal selection efficiency (including trigger)
 - Mass resolution (intrinsic and instrumental)
 - Level of SM background in the same or similar final states
- In low mass range:
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$ play a special role due to complete reconstruction & excellent photon/lepton reconstruction ($\Delta M \cong 2\%$)
 - $H \rightarrow WW \rightarrow (lv)(lv)$ provides high sensitivity but has poor mass resolution due to presence of neutrinos in the final state
 - Sensitivity in H \rightarrow bbbar and H $\rightarrow \tau\tau$ channels is reduced due to large backgrounds and poor mass resolution (jets or neutrinos)
- In high mass range:
 - Sensitivity dominated by H \rightarrow WW, ZZ in various sub-channels

The Story As Of Dec 13, 2011

ICHEP'12 Data Sample

CMS Total Integrated Luminosity, p-p

Results shown today uses data recorded till June'12 : $\sim 5 \text{ fb}^{-1}$ each at $\sqrt{s} = 7 \& 8 \text{ TeV}$

CMS Searches (ICHEP' 12)

		Analyses	No. of	<i>m</i> _H range	$m_{\rm H}$	Lumi	(fb^{-1})
H decay	H prod	Exclusive final states	channels	(GeV)	resolution	7 TeV	8 TeV
0.01	untagged	$\gamma\gamma$ (4 diphoton classes)	4	110-150	1-2%	5.1	5.3
TT	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (low or high m_{jj} for 8 TeV)	1 or 2	110-150	1-2%	5.1	5.3
	VH-tag	($ u u$, ee, $\mu\mu$, ev, $\mu\nu$ with 2 b-jets) \otimes (low or high p_T^V)	10	110–135	10%	5.0	5.1
bb	ttH-tag	$(\ell \text{ with } 4,5,\geq 6 \text{ jets}) \otimes (3,\geq 4 b\text{-tags});$ $(\ell \text{ with } 6 \text{ jets with } 2 b\text{-tags}); (\ell\ell \text{ with } 2 \text{ or } \geq 3 b\text{-tagged jets})$	9	110–140		5.0	-
	0/1-jets	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times$ (low or high $p_T^{\tau\tau}$) × (0 or 1 jets)	16	110–145	20%	4.9	5.1
$H \rightarrow \tau \tau$	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) + (jj)_{VBF}$	4	110–145	20%	4.9	5.1
$\Pi \rightarrow \ell \ell$	ZH-tag	$(ee, \mu\mu) imes (au_h au_h, e au_h, \mu au_h, e\mu)$	8	110–160		5.0	-
	WH-tag	$\tau_h ee, \tau_h \mu \mu, \tau_h e \mu$	3	110–140		4.9	-
$WW \rightarrow \ell \nu q q$	untagged	$(e\nu, \mu\nu) \otimes ((jj)_W \text{ with } 0 \text{ or } 1 \text{ jets})$	4	170-600		5.0	5.1
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \otimes (0 or 1 jets)	4	110-600	20%	4.9	5.1
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1 or 2	110-600	20%	4.9	5.1
$WW \rightarrow \ell \nu \ell \nu$	WH-tag	$3\ell 3\nu$	1	110-200		4.9	-
$WW \rightarrow \ell \nu \ell \nu$	VH-tag	$\ell \nu \ell \nu + (jj)_V$ (DF or SF dileptons)	2	118-190		4.9	-
$ZZ ightarrow 4\ell$	inclusive	4 <i>e</i> , 4 <i>µ</i> , 2 <i>e</i> 2 <i>µ</i>	3	110-600	1-2%	5.0	5.3
$ZZ ightarrow 2\ell 2 au$	inclusive	$(ee, \mu\mu) \times (\tau_h \tau_h, e \tau_h, \mu \tau_h, e \mu)$	8	200-600	10-15%	5.0	5.3
$ZZ ightarrow 2\ell 2q$	inclusive	(<i>ee</i> , $\mu\mu$)×((<i>jj</i>) _Z with 0, 1, 2 b-tags)	6	$\left\{\begin{array}{c} 130-164\\ 200-600\end{array}\right.$	3%	4.9	-
$ZZ ightarrow 2\ell 2 u$	untagged	$((ee, \mu\mu) \text{ with MET}) \otimes (0 \text{ or } 1 \text{ or } 2 \text{ non-VBF jets})$	6	200-600	7%	4.9	5.1
$ZZ ightarrow 2\ell 2 u$	VBF-tag	(<i>ee</i> , $\mu\mu$) with MET and (<i>jj</i>) _{VBF}	2	200-600	7%	4.9	5.1

Most analyses updated with 8 TeV data

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

9

Today: Focus On the Low Mass Searches

- Low mass resolution modes:
 - $H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$
 - VH; H \rightarrow bb
 - H **→**ττ
- High mass resolution modes
 - $H \rightarrow \gamma \gamma$
 - $-H \rightarrow ZZ \rightarrow 4l$

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC Physics Letters B, Vol. 716, Issue 1, 17 September 2012, Pages 30–61 arXiv:1207.7235 & CMS PAS HIG-12-020 (Combination of All Higgs Searches, ICHEP'12)

$H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$: The Workhorse

Poor Higgs mass resolution (20%) due to escaping neutrinos
→ Counting experiment, look for excess over backgrounds

Backgrounds In H \rightarrow WW \rightarrow (1 v) (1 v) Search

- Reducible backgrounds:
 - (DY) Z \rightarrow ll + (jets faking MET)
 - $W \rightarrow 1v + (jets faking lepton)$
 - tW and ttbar production
 - $W + \gamma^{(*)}$
 - WZ \rightarrow 31 + MET
- Irreducible background: $- pp \rightarrow WW \rightarrow (l v) (l v)$
 - Non-resonant production

 Challenge is to kill off as much background & measure residual contributions using data-driven techniques and control samples

Background Alleviation Strategy

process	characteristic	rejection		
W+jets (31000 pb)	lepton + fake lepton	2 well identified and isolated leptons		
Z+jets (5000 pb)	Z peak, no real E_T^{miss}	 proj E^T_{miss} > 40 GeV(ee,μμ), 20 GeV (eμ) m₁₁-m_Z <15 GeV (ee, μμ), m₁₁>12 GeV (eμ) 		
tt (158 pb), tW (11 pb)	additional (b-)jets	 classify events in 0-,1-jet anti b-tagging 		
W,Z + γ (165 pb)	electron from γ coversion	 conversion veto 		
WW (43 pb)	non resonant	∗ small ∆φ11		
WZ (18 pb), ZZ (6 pb)	Z peak	* m _{ll} -m _Z <15 GeV (ee, μμ), m _{ll} >12 GeV (eμ)		

decreasing cross section (@ 7 TeV)

relative importance after selection depends on m_H

Key Kinematic Observables

- P_T of leading and sub-leading leptons
- Azimuthal angle difference $(\Delta \Phi_{ll})$
- $P_{T}(ll)$
- Dilepton invariant mass (M_{ll})
- $M_T = \sqrt{2p_T^{\ell\ell} E_T^{miss} (1 \cos \Delta \phi_{E_T^{miss} \ell \ell})}$

14

Background Prediction & Data Yields Vs M_H

2012 data : 5.1 fb⁻¹, Cut-based Analysis, 0-Jet category

$m_{\rm H}$	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$	$\rightarrow W^+W^-$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$ m W\gamma^{(*)}$	all bkg.	data
		-	0-jet category $e\mu$ final state					
125	23.9 ± 5.2	87.6 ± 9.5	2.2 ± 0.2	9.3 ± 2.7	19.1 ± 7.2	6.0 ± 2.3	124.2 ± 12.4	158
130	35.3 ± 7.6	96.8 ± 10.5	2.5 ± 0.3	10.1 ± 2.8	20.7 ± 7.8	6.3 ± 2.4	136.3 ± 13.6	169
160	98.3 ± 21.2	53.6 ± 5.9	1.2 ± 0.1	6.3 ± 1.7	2.5 ± 1.3	0.2 ± 0.1	63.9 ± 6.3	79
400	16.6 ± 4.8	50.5 ± 5.8	1.5 ± 0.2	26.1 ± 5.7	4.5 ± 2.0	0.7 ± 0.5	83.3 ± 8.4	92
125	14.9 ± 3.3	60.4 ± 6.7	37.7 ± 12.5	1.9 ± 0.5	10.8 ± 4.3	4.6 ± 2.5	115.5 ± 15.0	123
130	23.5 ± 5.1	67.4 ± 7.5	41.3 ± 15.9	2.3 ± 0.6	11.0 ± 4.3	4.8 ± 2.5	126.8 ± 18.3	134
160	86.0 ± 18.7	44.5 ± 4.9	11.3 ± 13.4	3.8 ± 0.9	1.3 ± 1.1	0.4 ± 0.3	61.4 ± 14.4	92
400	12.3 ± 3.6	37.1 ± 4.3	5.7 ± 1.3	20.0 ± 4.7	3.4 ± 1.9	13.6 ± 4.8	79.9 ± 8.3	55

Mild excess over background is observed at low masses

$H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$ Results

Expected Exclusion@ 95% CL: 122-450 GeV Observed Exclusion@95% CL: 129-520 GeV A small excess makes limits weaker than expected

CMS $H \rightarrow$ bb Search In a Nutshell

- H \rightarrow bb production via gluon fusion and VBF are quite large but are buried (10⁷) under QCD production of b bbar pairs
- Most promising channel is $H \rightarrow$ bb production associated with a Vector (V=W or Z) boson

- H \rightarrow bb reconstructed as two b-tagged jets recoiling against a high P_T W/Z boson
 - Large W/Z $P_T \rightarrow$ smaller background & better di-jet mass resolution
 - Use b-jet energy regression \rightarrow improved H \rightarrow bb mass resolution
- Events separated into categories , based on S/N (5 channels x 2 $P_T(V)$ bins = 10)
- Use data control regions to constrain major backgrounds (V + jets, ttbar etc)
- Use MVA methods to discriminate between signal & background.

Backgrounds in $H \rightarrow$ bb Search

Reducible backgrounds:

- QCD (strongly suppressed by lepton isolation and Pt)
- V+udscg,V+bb @ low p_T and mass
- W(lv)W(jj)
- ttbar and single top $(\rightarrow Wb)$

Irreducible backgrounds:

- V+bb (a) high p_T and mass
- ZZ(bb), W(lv)Z(bb)

Important discriminating variables

- Mass resolution (separation of VH from VV)
- b-tagging \rightarrow suppression of V+light quarks
- Back-to-back topology
- Additional jet activity in the event (ttbar)

ā

Improved b-Jet Energy Measurement

Mass resolution and bias improved using algorithm developed at CDF for b-jet energy corrections http://arxiv.org/pdf/1107.3026.pdf

A Regression trained on VH signal events using several jet variables:

- raw *p*_T transverse momentum of the jet before corrections;
- $p_{\rm T}$ transverse momentum of the jet after corrections;
- $E_{\rm T}$ transverse energy of the jet after corrections (Z($\ell \ell$)H uses *E* instead);
- *M*_T transverse mass of the jet after corrections;
- η pseudorapidity of the jet;
- ptLeadTrk transverse momentum of the leading track in the jet;
- vtx3dL 3-d flight length of the jet secondary vertex;
- vtx3deL error on the 3-d flight length of the jet secondary vertex;
- vtxMass mass of the jet secondary vertex;
- vtxPt transverse momentum of the jet secondary vertex;
- Chf fraction of jet constituents that are charged;
- Nch number of jet constituents that are charged;
- Ntot total number of jet constituents;
- ho25 energy density calculated within $|\eta|$ < 2.5;

0.3 N Nominal Regression CMS Simulation $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹ Events Events Z(I I⁺)H(bb) (m = 125 GeV) 0.2 $\sigma = 12 \text{ GeV}$ 0.15 0.1 0.05 0 100 120 140 160 180 200 60 80 M_{bb} [GeV]

➔ Improvements in M_{bb} mass resolution of about 20% for Z(ll)H, 15% for W(lv)H and Z(vv) M_{bb} Mass Distribution : All Channels Combined

Distribution of events that pass a selection optimized for M_{bb} variable

Good agreement between data and background prediction

Further Separating Signal From Backgrounds

- A multivariate (BDT) algorithm trained at each Higgs mass hypothesis
- Several kinematic and topological variables used to separate signal from background

Variable

 p_{T_i} : transverse momentum of each Higgs daughter

m(jj): dijet invariant mass

 $p_{\rm T}(jj)$: dijet transverse momentum

 $p_{T}(V)$: vector boson transverse momentum (or pfMET)

CSV_{max}: value of CSV for the b-tagged jet with largest CSV value

CSV_{min}: value of CSV for the b-tagged jet with second largest CSV value

 $\Delta \phi$ (V, H): azimuthal angle between V (or E_T^{miss}) and dijet

 $|\Delta \eta(jj)|$; difference in η between Higgs daughters

 $\Delta R(j1, j2)$; distance in η - ϕ between Higgs daughters (not for $Z(\ell \ell)H$)

 $N_{\rm aj}$: number of additional jets ($p_{\rm T} > 30 \,{\rm GeV}$, $|\eta| < 4.5$)

 $\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$) $\Delta \theta_{\text{pull}}$: color pull angle [62] (not for $Z(\ell\ell)H$)

Shapes of Signal & Background BDT Distributions

• A Higgs signal in the mass range [110-135] GeV is searched for as an excess in MVA classifier using predicted shapes for signal & bkgnd

CMS Limits: VH, H \rightarrow bb Searches (10 fb⁻¹)

Limit based on S & B shape analysis of BDT output

Approaching SM Higgs sensitivity, should hit $< 1 \times \sigma_{SM}$ with full data ²⁴

$H \rightarrow \tau \tau$: Another Low Mass Specialist

- Most promising mode for measuring Higgs coupling to leptons
- Searched for in three Higgs production modes

• And subsequent decay of τ lepton

 $-\tau \rightarrow evv, \tau \rightarrow \mu vv, \tau \rightarrow hadrons$

- Four signatures considered : $e\mu$, $\mu\mu$, $e\tau_{h}$, $\mu\tau_{h}$
- Due to missing neutrinos, Higgs signal appears as a broad excess in reconstructed τ -pair mass (Mass resolution $\approx 20\%$)
- Major backgrounds arise from
 - ttbar
 - W & Z (+jets), dibosons

$H \rightarrow \tau\tau$ Search Strategy

• Search divided in 5 categories based on $H \rightarrow \tau \tau$ mass resolution & S/B

All categories are fit simultaneously

Anatomy of the $H \rightarrow \tau\tau$ Analysis

Tau-Pair Mass Distributions In 0 &1 Jet Catagories

Possible Signal over large backgrounds ! 28

VBF ($\tau\tau$ +2jets) Category Has Best S/N

 q_2

 q_1

29

Much better signal to noise, but small signal

Expected exclusion @ $M_H = 125 : 1.3 \sigma_{SM}$ Observed exclusion @ $M_H = 125 : 1.1 \sigma_{SM}$ Sensitive to $< 1 \times \sigma_{SM}$ with full 8 TeV data

31

$H \not \rightarrow \gamma \gamma$

- A discovery channel in $110 < M_H < 150 \text{ GeV}$
- Br (H $\rightarrow \gamma\gamma$) $\approx 10^{-3}$

- Search for a narrow peak with two isolated high E_T photons over a continuous diphoton background spectrum
- Background is large and composed of
 - Reducible: One or more misidentified (fake) photon (e.g. γ +jets)

• Irreducible: both photons are real

Flowchart For $H \rightarrow \gamma \gamma$ Search

$H \rightarrow \gamma\gamma$: Important Analysis Aspects

- $M_{\gamma\gamma}^2 = 2E_1E_2(1-\cos \alpha_{\gamma\gamma}) \rightarrow$ - ECAL Calibration for $M_{\gamma\gamma}$ energy scale & resolution - $\gamma\gamma$ vertex determination (angle $\alpha_{\gamma\gamma}$)
- Photon energy correction and energy resolution
- Prompt photon identification
- di-photon selection and S/B based catagorization(not all γγ pair are measured with same resolution)
 - -4 catagories for inclusive $\gamma\gamma$ analysis

-+1-2 exclusive VBF catagories

• Signal & background modeling

ECAL Calibration, 2012 Data

- W→ev sample E/p: Stable E scale during 2012 run after light monitoring (LM) corrections:
 - ECAL Barrel (EB): RMS stability after corrections 0.19%
- $Z \rightarrow ee$: Good resolution with prelim. energy calibration for 2012:
 - Instrumental resolution: ≅1.0 GeV in ECAL Barrel

Selecting yy Vertex (CMS)

- $M_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$,
 - $M_{\gamma\gamma}$ resolution depends on vertex selection
 - Important for high pileup events \rightarrow many choic
- No pointing \rightarrow vertex identified using tracks from
 - recoiling jets and underlying event & $\gamma \rightarrow ee$, Input variables: Σp_t^2 , Σp_t projected onto the $\gamma\gamma$ transverse direction, p_t asymmetry and conversions

Inclusive $\gamma\gamma$ Event Catagorization (CMS)

Cat 0 : mostly $P_T^{\gamma\gamma} > 40$ GeV Cat1 : unconverted γ in barrel

Performance By Catagory

Expected signal and estimated background									
Event classes		SN	Background						
							$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \mathrm{GeV}$
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./GeV)
-1	Untagged 0	3.2	61%	17%	19%	3%	1.21	1.14	$3.3 \pm \ 0.4$
l fb	Untagged 1	16.3	88%	6%	6%	1%	1.26	1.08	37.5 ± 1.3
5.	Untagged 2	21.5	91%	4%	4%	_	1.59	1.32	74.8 ± 1.9
TeV	Untagged 3	32.8	91%	4%	4%	_	2.47	2.07	193.6 ± 3.0
7	Dijet tag	2.9	27%	73%	1%	_	1.73	1.37	1.7 ± 0.2
1	Untagged 0	6.1	68%	12%	16%	4%	1.38	1.23	$7.4 \pm \ 0.6$
3 TeV 5.3 fb ⁻	Untagged 1	21.0	88%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
	Untagged 2	30.2	92%	4%	3%	_	1.94	1.55	115.2 ± 2.3
	Untagged 3	40.0	92%	4%	4%	_	2.86	2.35	256.5 ± 3.4
	Dijet tight	2.6	23%	77%	_	_	2.06	1.57	1.3 ± 0.2
	Dijet loose	3.0	53%	45%	2%	_	1.95	1.48	3.7 ± 0.4

Category 3 diphotons have the worst $M_{\gamma\gamma}$ resolution & S/B

γγ Mass Distribution By Catagories (8 TeV)

but not obvious to naked eye !

Fit all catagories simultaneously with a signal & background model ⁴⁰

95% SM Higgs Exclusion Limit

- Expected 95% CL exclusion 0.76 x σ_{SM} at M = 125 GeV
- Large range with expected exclusion below σ_{SM}
- Largest excess at 125 GeV

Scan Of p-value Vs Mass

- Minimum p-value at 125 GeV with a local significance of 4.1σ
- Similar excess at same mass in 2011 and 2012
- Global significance in the full search range (110-150 GeV): 3.2 σ 42

Combined Mass Distribution Weighted by S/B

- Sum of mass distributions for each catagory, weighted by S/B
- B is integral of background model over a constant signal fraction interval

Fitted Signal Strength σ/σ_{SM}

Combined best fit signal strength $\sigma/\sigma_{SM} = 1.56 \pm 0.43$ consistent with but larger than SM expectation

Best fit signal strength consistent between different classes and datasets

$H \rightarrow ZZ \rightarrow 4l$

- **Golden channel** : Four isolated leptons from one point in 3D space
- Benefits from excellent e/μ measurement
 - M_{4l} mass resolution \approx 1-2 %
- $\sigma \times Br(H \rightarrow ZZ \rightarrow 41)$ quite small
 - Needs highest selection efficiency possible \rightarrow Efficient lepton ID over broad P_t range
- Backgrounds
 - Non-resonant pp→ ZZ→4l is largest and irreducible, has same topological signature as H → 4l
 - But no narrow peak as in $H \rightarrow ZZ$
 - Z+jets,ttbar, WZ...all reducible and important at low M₄₁

An excess observed near M = 126 GeV

$H \rightarrow ZZ \rightarrow 41$ Event yield : CMS

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	2.7 ± 0.3	5.7 ± 0.6	7.2 ± 0.8	15.6 ± 1.4
Z + X	$1.2^{+1.1}_{-0.8}$	$0.9\substack{+0.7\\-0.6}$	$2.3^{+1.8}_{-1.4}$	$4.4^{+2.2}_{-1.7}$
All backgrounds (110 < $m_{4\ell}$ < 160 GeV)	4.0 ± 1.0	6.6 ± 0.9	9.7 ± 1.8	20 ± 3
Observed (110 < $m_{4\ell}$ < 160 GeV)	6	6	9	21
Signal ($m_{\rm H} = 125 {\rm GeV}$)	1.36 ± 0.22	2.74 ± 0.32	3.44 ± 0.44	7.54 ± 0.78
All backgrounds (signal region)	0.7 ± 0.2	1.3 ± 0.1	1.9 ± 0.3	3.8 ± 0.5
Observed (signal region)	1	3	5	9

An Odd Aspect: Z_1 Vs Z_2 Mass In H \rightarrow ZZ

48

Angular Analysis In $H \rightarrow ZZ \rightarrow 41$ (CMS)

- $H \rightarrow ZZ \rightarrow 41$ Decay kinematic fully described by 5 angles and the 2 Z masses
 - discriminates spin 0 particle from background
 - MELA: matrix element likelihood analysis

PR(D) 81, 075022(2010)

Some discriminating variables

MELA Vs 41 Mass

MELA =
$$\left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

50

CMS : 2D Fit of MELA Vs 4l Mass

Expected local significance at 125.5 GeV: 3.8 σ Observed local significance at 125.5 GeV: 3.2 σ

Combination Of SM Higgs Searches

Exclusion Limits On The SM-like Higgs Boson

95% CL Exclusion: $110 < M_H < 122.5, 127 < M_H < 600 \text{ GeV}$

Observation Of A New Boson

Decay mode or Combination	Expected (σ)	Observed (σ)
ZZ	3.8	3.2
22	2.8	4.1
WW	2.5	1.6
bb	1.9	0.7
ττ	1.4	—
$\gamma\gamma + ZZ$	4.7	5.0
WW + $\tau\tau$ + bb	3.4	1.6
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

5.0σ at M_x = 125.3 GeV

Quantifying Observed Excess : Signal Strength μ

 $\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$: Indicates by what factor SM Higgs cross section

would have to be scaled to best match the observed data

Observed rate consistent with SM Higgs expectations ($\mu = 1$)

Signal Strength By Sub Channel & Production Mode

Mass Of The New Boson From High Precision Modes

68% CL contour after fixing relative signal strength to SM Higgs expectation (μ =1)

Model independent M_x scan with independent cross section but constraint of a unique mass

 M_x = 125.3±0.4 (stat)±0.5 (syst), dominated by H $\rightarrow \gamma\gamma$

Dominant syst. uncertainty from extrapolation of energy scale from $Z \rightarrow ee$ to $X(125) \rightarrow \gamma\gamma$ & control over energy resolution

Test Of Custodial Symmetry

- Use inclusive $H \rightarrow ZZ$ sample & $H \rightarrow WW$ with 0,1 jets
- dominated by $gg \rightarrow H$
 - small contamination from VH, VBF (mostly in H \rightarrow ZZ)
- Scan ratio of event yields for $R_{W/Z}$

Test Of Coupling To Vector Bosons & Fermions

Rescale universally the Higgs boson couplings to fermion by C_F and couplings to vector boson by C_V , compare with observed yields

Next Steps

- Establishing the properties of the new particle is just the first part of a long journey : **sprint is over, marathon has begun**
- LHC continues its excellent performance, CMS hopes to accumulate ≈ 25 fb⁻¹ by end of 2012

→ total ≈ 30 fb⁻¹ data

- Continue to investigate the observed resonance in a variety of channels
 - Precise measurement of the boson mass
 - Measure its coupling to Vector bosons and fermions
 - Measure angular distribution in WW/ZZ modes to determine the spin and parity of the observed boson
- Exciting times ahead !