Tevatron Results on Higgs and m_W

J.Hopkins workshop,

Giovanni Punzi - U.of Pisa/INFN

CDF and D0 data

Overview of Tevatron Higgs analyses

A piece of history in Higgs search

Milestone Higgs paper from CDF+D0, was based on "high-mass" Higgs search.

In Feb. 2010 the limit curve touched 1.0 for the first time giving the start to the Higgs program:

Excluded M_H in [163-166] GeV

Progress has been fast since then.

I will concentrate on the 125 GeV Higgs for the rest of the talk.

Producing the SM Higgs at different hadron colliders

Tevatron and the $\gamma\gamma$ **mode**

Tevatron combined *yy* **limits**

• Expected limit @125GeV = 6.3 * SM - observed ~10*SM

Fermiophobic limits

 $\gamma\gamma$ information from Tevatron essentially superseded by LHC

- Four channels cover 90% of the 125GeV Higgs yield for at the Tevatron
- Their total yield is ~constant in the low-mass range but composition changes
- The WW channel is the only one not requiring associate production still:
 - 30% of the WW final state comes from associate production
 - WWW and ZWW channels have better S/B than gg->H

H→WW Search Channels @Tevatron

Channel	Main Signal	Main Background	Most Important kinematic variables	
OS dileptons, 0 Jets	gg→H	WW	LR _{HWW} , ΔR _{II} , H _T	
OS dileptons, 1 Jet	gg→H	DY	ΔR_{II} , m _T (II,E _T), E _T	Breakdown by #jets
OS dileptons, 2+ Jets	Mixture	t-tbar	$H_{T}^{}$, $\Delta R_{II}^{}$, $M_{II}^{}$	
OS dileptons, low M _{II} , 0 or 1 Jet	gg→H	W+y	p _T (l2), p _T (l1), E(l1)	
SS dileptons, 1+ Jet	WH→WWW	W+Jets	$E_{T}, \Sigma E_{T}^{j}$, M_{II}	
Tri-leptons, no Z candidate	WH→WWW	WZ	E _T , ΔR ^{flose} , Type(III)	Associated
Tri-leptons, Z candidate, 1 Jet	ZH→ZWW	WZ	Jet E_T , ΔR_{ij} , E_T	production
Tri-leptons, Z candidate, 2+ Jets	ZH→ZWW	Z+Jets	$M_{jj}, M_T^H, \Delta R_{WW}$	J
OS dilepton, electron + hadronic tau	gg→H	W+Jets	$\Delta R_{l_{T}}$, T id variables	
OS dilepton, muon + hadronic tau	gg→H	W+Jets	$\Delta R_{l\tau}$, τ id variables	

Divide-and-conquer approach

- Separating events into multiple analysis channels and combining the results improves sensitivity.
- Allows to use separate, optimized discriminates for each channel based on:
 - specific signal contributions
 - specific background contributions
 - specific event kinematics
- Then combine everything in a single histogram, binning in S/B (Likelihood ratio).

WW Results

- WW still gives the largest contribution to the Tev-excluded range : 147-180 GeV
- Sensitivity @125 ~2*SM No significant signal (~1σ deviation)

Comparision of SS /OS dilepton searches

Reconstruction of VH channels

Select:

- 0,1,2 leptons and/or missing E_t
- Two high E_t jets
- Critical > Lepton reconstruction and selection efficiencies
- points: Ffficiency for tagging b-quark jets
 - Dijet mass resolution

B-tagger calibration

- Both CDF and D0 employ sophisticate MVA algorithms (NN/BDT) with bjet efficiencies of up to 60-80%, and u,d,s,g - jet mis-ID rates (≤1-10%)
- Tested in two real data samples:
 - tt-enhanced samples (simultaneously extract tt cross section & tagger performance corrections)
 - Jet pairs with one jet containing an electron (either conversion or from heavy flavor decay)

- Bottom quark jets have properties which are different from standard light flavor quark jets
- Specialized jet energy scale corrections focused on bottom quark jets improve our dijet invariant mass and missing transverse energy measurements

Specialized Jet Energy algorithm

Neural network correlates all jetrelated variables and returns most probable jet energy based on bottom quark hypothesis – better signal/background separation

Combining all discriminants

Tevatron Combined H→b-bbar Discriminant

21

From Discriminants to Limits

Combined binned likelihood function

$$L(R, \vec{s}, \vec{b} | \vec{n}) = \prod_{i=1}^{N_{\text{channel}}} \prod_{j=1}^{N_{\text{bin}}} \frac{\mu_{ij}^{n_{ij}} e^{-\mu_{ij}}}{n_{ij}!}$$

- Incorporate sistematics as nuisance parameters
 About 20% effects
- Uncertainties taken on both the shapes and normalizations of signal & background templates
- Additional constraints on background model obtained directly from fit

Tevatron b-bbar limits and significance

- Local p-value distribution for background-only expectation.
- Minimum Local p-value: 3.3 σ (at m=135GeV)
- Global p-value (LEE=2): 3.1σ

We interpret these results as evidence for the presence of a new particle, produced in association with a weak vector boson and decaying to a bottom-antibottom quark pair

[Phys. Rev. Lett. 109, 071804 (2012])

Local p-value@125: 2.8 σ (no LEE needed)

Tevatron's b-bbar signal rate

- Cannot determine mass precisely, but shape of the excess quite similar to expectation from SM Higgs at 125 GeV
- The amplitude of the excess appears slightly larger.
- Cross section estimate:

 $(\sigma_{WH} + \sigma_{ZH}) \times \mathcal{B}(H \to bb) =$

 $0.23^{+0.09}_{-0.08}$ (stat + syst) pb

(insensitive to mass)

Compare to SM expectation@125 GeV

 $0.12 \pm 0.01 \ \rm pb$

The signal is compatible (1σ) with a SM Higgs @125 GeV

H->bb, straight mass view

400 Tevatron Preliminary, $L_{int} \leq 9.5 \text{ fb}^{-1}$ Events / (20 GeV/c²) Simple overlay of $H \rightarrow bb$ signal Two b-Tagged Jets prediction for the dijet invariant mass 300 - Data - Bkgd (MH = 120 GeV)WZ ZZ 200 Higgs Signal Data and diboson prediction from ____ $m_{\mu}=120 \text{ GeV/c}^2$ **Tevatron low-mass WZ/ZZ** 100 measurement (important cross-check !) Additional signal statistically compatible -100 0 50 100 150 200 250 300 350 400 CDF Run II Preliminary (9.4fb⁻¹) Central Leptons, 2 jets, "TT" b-tags WH→I∨bb Dijet Mass [GeV/c²] Number of events 45 Tevatron Preliminary, $L_{int} \leq 9.5 \text{ fb}^{-1}$ 40 zz 800 l wz One b-Tagged Jet l ww 35 Single top (t-ch) Single top (s-ch) 🔶 Data - Bkgd tī. 600 30 NonW QCD WZ Z+jets W+c] ΖZ 25 W+cc Higgs Signal W+bb 400 W₄H $m_{\mu}=120 \text{ GeV/c}^2$ 20 WH (115 GeV) x 10 200 15 10 5 363 Data Events -200 0 40 0 20 60 80 100 120 140 160 180 200 50 200 250 350 100 150 300 400 0 Dijet mass NN Corrected (GeV/c²) Dijet Mass [GeV/c²]

Individual experiments results in bb

Comparing different Higgs modes

All modes compatible with SM Higgs scenario within errors

All channels combined

Full-combination p-values

Minumum p-value corresponds to SM-predicted rates

Tevatron in the Higgs coupling game

- After the Higgs mass has been measured, the question is the couplings
- Above is an example of fit produced just after spring results (based on just limit information).
- Tevatron giving some important inputs. Dominates b-bbar information

Anything more on the Higgs ?

- Most of the improvements to the analyses happened recently - latest results ~20% better on the same sample
- The history has been one of continuing improvements there may still be some additional gain to be made.
- A personal favorite: constraining the invisible Higgs width
 - This may be possible at the Tevatron in the ZH ->II + MET
 - Both D0 and CDF have reconstructed ZZ->II+vv [CDF 6fb-1: PRL 108, 101801 (2012)]
 - sigma*BR(ZZ->llvv)~240fb, while sigma(ZH) is ~80fb
 might be within the sensitivity of a specifically optimized analysis.

What else can we do to understand the Fermi scale ?

<u>What else can we do to understand</u> <u>the Fermi scale ?</u>

- We live in a different era of physics than few months ago.
- No direct evidence for new physics at LHC
- Finding the Higgs (candidate) mass has turned attention from "Higgs search" to "Higgs couplings".
 - Hoping to find out what else is there, if any
 - Will keep us busy for a while.
- There is also another interesting shift of perspective

Impact of mH on EWK tests

- We have been using EWK data to predict the Higgs mass.
 - Tevatron's Mtop, mW crucial inputs
 - Dependence on log(mH) required high precision to estimate mH precisely

 $M_H = 94^{+25}_{-22} \,\text{GeV} \;,$

- Today, use the Higgs mass to predict the W boson mass.
 - Dependence on log(mH) means: from mH we can predict mW precisely
 - Previous SM prediction of mW: $\sigma = 28 \text{ MeV}$

Possible non-SM contributions to mW

- m_W can be expressed as: $m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2}G_F \sin^2 \theta_W (1 \Delta r)}$
- Where radiative corrections $\Delta r = \Delta r(SM) + \Delta r(NP)$, where $\Delta r(NP)$ could come from many non-SM processes

generic new fermions/sfermions

gauge bosons

New Higgs/ Goldstone bosons

Chargino/Neutralino/ Higgsino, and others...

After knowing mH, mW is much more sensitive to detect $\Delta r(NP) \neq 0$

<u>Mw experimental status few months ago</u>

- Best measurements from Tevatron:
 - DØ M_W=80401±43 MeV [1 fb⁻¹, e]
 - CDF *M*_W=80413±48 MeV [200 pb⁻¹, *e*+µ]

• WA: σ_{exp} =23 MeV

- Little motivation to improve it when σ_{th} was 28 MeV
- NB Mtop is known well enough already (impact ~5 Mev)

The recent Tevatron measurement of mW is particularly timely, bringing the WA experimental resolution down

Factors affecting mW measurement

- Not just statistics: CDF 0.2 \rightarrow 2.2fb-1 DZero 1.0 \rightarrow 4.3fb-1
- Each physics factor must be modeled to better than ~5 MeV
- Similarly for detector response

How to achieve high precision

- Start with clean, low-background events
 - i.e., no taus, no hadronic decays
- Lepton pT carries most information
 - Precision achieved: 0.01%
- Hadronic recoil affects inference of neutrino energy
 - Calibrate to ~0.5%
 - Can reduce impact by requiring pT(W) << MW
- Need:
 - Accurate theoretical model
 - Including boson pT model and QED radiation
 - Tunable fast simulation
 - Parameterized detector description for study of systematic effects
 - Large data samples of well-measured states
 - Various dimuon resonances
 - Z boson

Energy scale calibration

Muon Z mass and track momentum scale

- Perform independent measurement of Z mass using tuned momentum scale
 - $M_Z = 91180 \pm 12_{\text{stat}} \pm 9_{\text{p-scale}} \pm 5_{\text{QED}} \pm 2_{\text{alignment}} = 91180 \pm 16 \text{ MeV}$
 - Excellent agreement with LEP average (91188±2 MeV)
- Add Z data as final calibration point for momentum scale
 - $\Delta p/p_{\text{final}} = (-1.29 \pm 0.07_{\text{stat}} \pm 0.05_{\text{QED}} \pm 0.02_{\text{align}}) \times 10^{-3}$
 - Apply scale to W muons and E/p calibration
 - Systematic uncertainty $\Delta M_W = 7 \text{ MeV}$

Electron Z mass (Dzero)

- Tuned to PDG by construction
- Yields scale uncertainty of 17 MeV

Recoil model validation

u (recoil)

Transverse mass distributions

Multiple consistency checks

- Multiple measurements methods allow several internal checks.
- D0 has 3, CDF has 6
- Performed blind: unknown overall shift until the final results is approved.
- Data turn out to be statistically consistent
- Combined with BLUE procedure to yield final result

Summary of uncertainties

Successfully reduced many sources of uncertainty

Final Results

<u>mW, mt, mH</u>

mW, predicted vs measured

- $\Delta m(W) = 0.026 \pm 0.017 \text{ GeV}$
- Any new physics effect must be compatible with this result (now tighter by a factor of 2 !)

Example of new physics sensitivity

Could you do even better ?

- D0 has 2x data, CDF 4x
- Managed to reduce most uncertainties by ~Sqrt(L)
 - most notably CDF: 10x jump
- Will need new ideas for Pt(W),QED, and PDFs (new external constraints?)
- Work has already started towards a 10fb-1 analysis: aiming at 10MeV resolution

<u>Conclusion</u>

- Tevatron found evidence for production of a state compatible with SM Higgs and decaying into b pairs
- This and other measurements support the idea that the boson is a SM boson and provide info for couplings
- The measurements of the Higgs mass has increased sensitivity of mW in probing NP effects
- The latest mW from the Tevatron has strongly improved the precision and it is now 2x constraining
- Further digging into Tev data may still yield some valuable physics output on Higgs couplings, and precision EWK
- Thank you for your attention !