Higgs boson searches at ATLAS

Glasses by Siobhan Murray

Bill Murray On behalf of the ATLAS collaboration bill.murray@stfc.ac.uk 18th October 2012

The discovery
What do we know so far?
Outlook

The Standard Model

- The 'Standard Model' has been remarkable successful
 - 3 forces
 - $-2 \rightarrow 3$ families of quarks/leptons
- But the Higgs sector remained unknown...until now
- A Higgs-like boson has been discovered
 - What do we know?
 - What more can we learn?
- Is it alone?

History of the search

- 1964 Brout & Englert, Higgs, Gouralnik, Hagen & Kibble,
 - Not taken too seriously until...
- 1967 Used in the formulation of the 'Standard Model'
 - Proven to be self-consistent in 1971
- 1973 Experimental acceptance of the 'Standard Model'
- 1983 Discovery of W and Z bosons
 - Closely linked to the Higgs boson
- 1993 LEP studies Z's and rules out m_{H} <53 GeV
 - And indirectly excludes m_H>300GeV
- 2000 LEP limits reach 114.4 GeV
 - Hint of production at 115?
- 2011 LHC excludes 130-550GeV, Tevatron 156-175
 - Some indications for a particle at 125?
- 4th July 2012 New particle found at 126GeV
 - Consistent with the Higgs

ATLAS

Detector emphasis: robust lepton and jet measurement

W.Murray STFC/RAL

Hunting the Higgs Boson

Never forget background

proton - (anti)proton cross sections

LHC backgrounds!
 10¹⁰
 Every event at a lepton collider is physics; every event at a hadron collider is background
 Sam Ting

Detailed studies, huge samples

- The rate of jets as 1/N dN/d a function of p_{τ}
- 20-2000GeV tested
- Rate falls off by thirteen orders of magnitude
- We need to understand the common process extremely well

W.Murray STFC/RAL

Trigger strategies 2012

Single muon	p _T >24GeV	IIII, IvIv
Single electron	p _⊤ >24GeV	אוען, וווו
Muon pair	p _T > (13,13) GeV	
Asymmetric Muon pair	p _T > (18,8) GeV	IIII
Electron pair	P _t > (12,12) GeV	
Photon pair	P _t > (12,12) GeV	γγ

• The IIII analysis maximises trigger efficiency

- The WW however emphasizes comprehensibility
- The two-photon efficiency is over 99%

W/Z/top measurements

W.Murray STFC/RAL

Science & Technology Facilities Council Rutherford Appleton Laboratory

- The three most common modes
 - Others also exist: ttH, tH , bbH...
- Gluon fusion dominated the discovery
 - The loop allows not only virtual top quarks in principle
- Vector boson fusion and associated also used
 - Can be used to tag process
 - Improves the purity

Higgs decay modes used

• $H \rightarrow ZZ$

- $-ZZ \rightarrow IIII:$ Golden mode
- $ZZ \rightarrow IIvv$: Good High mass
- $-ZZ \rightarrow$ IIbb: Also high-mass
- $H \rightarrow WW$
 - WW \rightarrow lvlv: Most sensitive
 - $-WW \rightarrow Ivqq$: highest rate
- $\bullet \hspace{0.2cm} H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- Η→ττ
 - Uses VBF, low mass
- $H \rightarrow bb$
 - ttH, WH, ZH useful but hard

Rates by channel at 125GeV

- Data to June 2012
- From 10s to 100000 events per channel
 - Easy!
- But total pp events: 8x10¹⁴
- 20 Higgs to IIII events
- Needs incredible background rejection
 - The green channels end up the most sensitive

Data collection

- LHC delivered 5fb⁻¹ in 2011

 Gave first hints for SM Higgs
 √s raised 7 → 8TeV in 2012
 Luminosity already triple 2011
 - 6 fb⁻¹ allowed Higgs discovery
- Great effort by LHC team! We hope for still more by Christmas

Pileup passing design

In 2011 9 collisions per bunch crossing Changed to 20 in 2012 - Peak 35+ - Design: 23 That is how LHC increased the data rate.... - So we learn

to cope

W.Murray STFC/RAL

Mean Number of Interactions per Crossing

Pileup in 2012

- Example: $Z \rightarrow \mu\mu$
- Has multiple overlayed interactions
 - 25 seen here
- Tracker can distinguish them by position
- Calorimetry suffers
 - Degrades isolation
 E^{Miss}_t
- We are finding solutions

So what do 2012 data say?

- Papers submitted 31st July by CMS and ATLAS
 - Both claiming observation of a new particle
- Focus on region 117-129GeV left from 2011
- ATLAS used only 3 strongest channels:
 - $-\gamma\gamma$
 - -ZZ
 - -WW
- Others will come when they are ready

$H \rightarrow \gamma \gamma$

Rare decay,

- 2 per mille
- $-110 < m_{H} < 150$

Drove ECAL design – Pointing geometry

- Pointing geometry
- To measure mass need to know vertex position
 - Pileup hurts!

W.Murray STFC/RAL

- But pointing reduces impact
- Good jet rejection also essential

KUTNETTORO Appleton Laborato

Extrapolate photon directions to beam position

- Measure the difference between positions to check resolution
- Matches simulation, pileup effects small
- Estimated resolution therefore ~µ independent
 - A Likelihood including vertices is used to pick best one
 - But getting it right is normally not crucial

$H \rightarrow yy$ mass resolution

- Higgs resolution assessed in classes:
- Understood using Z→ee
 - Z with needs to be unfolded
 - Material effects on e/γ scale taken from MC
- Checked with $Z \rightarrow II\gamma$
 - Statistics limited

W.Murray STFC/RAL

- Will be improved with more data
- Scale already limits m_H

$H \rightarrow yy$ sample makeup

Measure sample composition in data: γγ, γj or jj?

- Plus small Drell-Yan
- Use isolation sidebands
- Samples are dominated by real di-photon.
 - We did reject 99.99% of jets!
 - Little gain from better signal purity

$\textbf{H} \rightarrow \textbf{yy} \text{ analysis method}$

- In principle look at the $m(\gamma\gamma)$ spectrum for a bump
- But signal/background and resolution depend upon other variables
- Split into several categories:
 - p_{Tt},
 - barrel/forward,
 - converted/unconverted
- 2-jet category sensitive to VBF added too
 - -2 jets, p_T>25GeV
 - if $|\eta|>2.5$ require >50% associated track p_{τ} from primary vertex
 - if 2.5<|η|>4.5 p_T>30GeV
 - _ Δη_{ij}>2.8
 - m_{jj}>400
- But. 20 is too many plots to take in
 - So weight categories and add them up.

$H \rightarrow yy mass$

Simple sum of events (top)
Weighted by ln(s+b)/b (bottom)
See significant peaks

- around 125 – Weighted sum clearer
- As it should be if real

Background Compatibility

 Peak near 126, both years
 Local excess 4.5σ

 Best single channel evidence there is....

 Strength exceeds expectation

$H \rightarrow ZZ \rightarrow IIII$

- The golden mode
- Good energy measurement like yy
 - But know production point
- Very low backgrounds
 - Dominated by real $ZZ \rightarrow IIII$
- But signal rate low
 - $Z \rightarrow ee \text{ or } \mu\mu \text{ Br only } 3\%$
 - Challenge is to maximise efficiency
 - ATLAS improved low- p_T electrons w.r.t 2011
 - New tracking algorithm, allowing for bremsstrahlung

Run: 182796 Event: 74566644 2011-05-30 07:54:29 CEST

efficiency

- Two prompt leptons plus b quarks are important, so:
 - Require isolation
 - Require leptons from primary

Background Measurement

- Remove isolation from 1st or 2nd Z candidate
 - Left is low mass ee candidates
 - Right high mass µµ
- Also detailed studies of electron take rates

Mass distribution

- Background shapes matches expectation
 - Note peaks at 90 and >180 (1 real Z, 2 real Z's)
 - Small peak at 125 GeV seen too...
- Check Z_{12} and Z_{34} masses for candidates

Background compatibility

- ATLAS expects about 2.7sigma at 126GeV
- Observe 3.6σ excess at 125
- Consistent with a Higgs

 A little high, but not significant

 $H \to WW \to I \nu I \nu$

Run Number: 204026, Event Number: 33133446

Date: 2012-05-28 07:23:47 CEST

AT LAS

$WW \to I \nu I \nu$

• The most sensitive channel for $130 < m_{H} < 200$

- Still one of the 3 most important at 125GeV
- But poor mass information due to 2 undetected neutrinos
- Good trigger, reasonable rate
 - Largest background is non-resonant WW
 - Also top when looking at WW+1 jet
 - Backgrounds measured from control regions
- Request two leptons
 - 15,25 GeV
 - ATLAS only uses e- μ pairs in 2012 (ee/ $\mu\mu$ have more bkgd.)
- Require missing E_{T} (E_{t}^{rel}) and p_{T} (II) for WW
- Select signal area with $\Delta \phi$ and m₁ selections
 - ATLAS prefers cut-based selections
- Many backgrounds need estimation from data tricky

WW background extraction

Backgrounds are (almost) all found in control regions

- ATLAS same-sign (left) check W+jets
- ATLAS WW control (right) from high m_{τ} events
 - Integrals must match data/MC by contruction.
 - But scale factors are near 1.

- Treat 0/1/2 jets separately
 - VBF selection has no relevant candidates
- Delicate analyses, complex data/MC mix
- Distinct excess seen in 0+1 jets
 - In the region signal is expected
 - But not well localised
 - -2.8σ in ATLAS

WW limits

- Set bad limits...
- 2.8sigma excess around 125GeV
- Two neutrinos means mass not well measured
 - So broad excess seen

Fermion couplings?

- ATLAS has released no 2012 fermionic Higgs decay results
 - These are important but delicate
- Unique is ttH, H → bb which is fermions in both production and decay
 - Recent 2011 results right:
 - ATLAS-CONF-2012-135
 - Will benefit from higher energy

Combined limits

Excludes nearly all mass range at high confidence

W.Murray STFC/RAL

- Probabilities 2x10⁻⁹ or 5.9σ...we got it
 - Just outside 1σ band for signal

But what did we get?

Rate versus Mass

 2D fits of rate and mass reduce model dependence – m_H=126±0.4±0.4

These channels all have consistent solutions.

1 particle assumed from now on

W.Murray STFC/RAL

The Combined Results

For a signal at 126 (or 125.3):

 ATLAS just over a sigma above SM rate, 1.4±0.3 @126

 This is consistent with a SM Higgs

Channel results

Above zero in all 5 channels (just)

- More powerful ones (WW,ZZ,γγ) certainly do.
- Is there too much $\gamma\gamma$? Not really

Open Parenthesis

W.Murray STFC/RAL

Limitation of current method

- Pick an m_H hypothesis
- Fit for signal strength at that m_H
 - Compare with expectations for a signal at that mass
- Plot the results as a function of $m_{_{\rm H}}$
- So what is wrong?

Limitation of current method

- Pick an m_H hypothesis
- Fit for signal strength at that m_H
 - Compare with expectations for a signal at that mass
- Plot the results as a function of $m_{_{\rm H}}$
- So what is wrong?
 - Nothing.
 - Unless you then use the results to select and report one mass
- The above procedure assumes

 $m_{H}^{tested} \equiv m_{H}^{true}$

So lets start with that....

Dummy experiment

Like ATLAS search

- 22K background and 55 sigr
- Two categories
 - 90% signal, 99% bkd.
 - 10% signal, 1% bkd.
- Mass resolution 1.7GeV

- A bit like the ATLAS 2011 yy search
 - but just a dummy designed following their papers
 - Parameters designed to have 1.4σ expected sensitivity
- Make toy MC investigations with a signal
 - Inject signal
 - Constrain µ to be non-negative
 - Fit with mass fixed or floating to compare results

Fitted Mass distribution

- ML fit in minuit
 - Fit 2 background slopes and rates and 1 signal rate
 - Scan 115-135 first
- Quite often the best fit has NOTHING to do with the signal
 - RMS 3.7 (in this window!)
- RED selects 'lucky' experiments with 2.5-30 observed excess
 - 2xexpected, as ATLAS/CMS
 - Cluster around the signal
 - But RMS still 2.6GeV
 - ATLAS+CMS were compatible!

OK, so m_{H}^{fitted} \neq m_{H}^{true}

- The resolution on m_H is worse than the per-event resolution!
 - The statistics is dominated by background fluctuations
- Imagine a 'perfect' (Asimov) signal
- Add a fluctuating background under it
 - Just above and just below peak gives 2 chances to fluctuate
 - Odds are one of them fluctuates up
 - The signal gets pulled to that point
 - And grows in size!
- This is not included in the ATLAS/CMS 'expected p-values for signal' because they assume m_H^{fitted} = m_H^{true}

How large is effect on μ ?

- Red injects at 125 and tests at 125 as expts. Do – 4% bias, coming from µ≥0
- Green injects at 125 and fits with m_H free
 - 43% bias!

Bias versus significance

- Vary:
 - Lumi
 - Signal rate
 - both
- Bias seem to be given by expected significance
 Universal
- Universal curve?

 Need thought
 <σ> <3 raises
- alarm bells!

Test of Predictions

I predicted 6 months ago that the gamma-gamma signals from ATLAS and CMS would converge in mass and reduce in rate

	ATLAS	CMS
January Peak Mass	126.5	123.5
mu	2.0	1.7
ICHEP mass	126.5	125 (124)
mu	1.8	1.5
World Average	1	25.7

- Expected about 0.3 drop, see about 0.2
 Pretty much as expected
- ATLAS' mass remains stubbornly high

End Parenthesis

Interpreting couplings

WE want to test whether what we have is the Higgs boson

- Like the EW fits done at LEP
- Need 'pseudo observables' that allow fits:
 - http://arxiv.org/abs/arXiv:1209.0040
- The LHC cannot measure the total width
 - There are always impossible decays like $H \rightarrow gluons$
 - So some assumption is need
- Many couplings accessible eventually:
 - ZZ, WW, $\gamma\gamma$, bb, tt, gg, $\tau\tau$, $\mu\mu$?, invisible?
 - Note gg/yy are effective coupling through loops
- Too many to fit all at once
- Simplify by grouping the couplings
 - e.g. Bosons and fermions

κ_vκ_F couplings

Science & Techno

Rutherfor

- Top right:
 - W/Z scaled via κ_v
 - Fermions by κ_{F}
 - Assume no invisible decay
- Sign of fermion coupling tested in photon decay loop
 - We will have some sensitivity to sign with more data
- Measuring single top+Higgs would help this
- Bottom right tests W v Z
 - Custodial symmetry
 - 1.07^{+0.35}-0.27

New particle search

- Another possibility is to ASSUME a SM Higgs
 - But allow the loops to have unknown particles
 - ggF, H $\rightarrow \gamma\gamma$

W.Murray STFC/RAL

- Top assumes no invisible decay
 - -(1,1) is the SM strength
 - compatible with this
- Bottom tests for invisible branching ratio
 - Cannot all be invisible as we see it!
- We test many other possibilities ... all look like SM

So what do we know?

Higgs Mass	Measured – agrees with SM rough prediction
Spin	Should be 0. We know it is integer, and not 1
Parity (mirror symmetric?)	Should be symmetric. Unknown
Charge	Zero, as it should be
Lifetime	Unknown, but narrow resonance and no obvious flight, OK.
Interaction with W,Z	Rates in WW,ZZ look as expected.
Interaction with matter (quarks/leptons)	ATLAS information weak here (But Tevatron has around 3σ evidence - twice expected)
Interaction with gluons	Total rates suggest this as expected
Interaction with photons	1.8±0.5 (ATLAS) This is less than 2σ high

It is consistent with the SM Higgs

- With reasonable statistical fluctuations

What does 125-126 tell us?

- In SM m_H=94⁺²⁹-24 GeV
 - So observed mass fits SM with no additions

How many neutrinos?

- LEP proved 3 light neutrinos
 hence 3 generations?
- Now we know neutrinos have mass maybe 2m,>mz?
 - Could be a heavy neutrino
- But Higgs production is mostly through gluon fusion
 - Virtual top in a loop
 - A new heavier quark would increase the rate a lot
 - Whatever mass the quark had
- Much harder to believe in a 4th generation today.

Dark Matter?

- If this is a Higgs, in many models it couples strongly to dark matter
- 5-50GeV dark matter will be tested if Higgs decays as expected
- Not yet, but the blue area will be constrained
 - SUSY prediction OK!

W.Murray STFC/RAL

Xenon plot from ArXiv: 1005.0380v3

SUSY prediction from: JHEP 0812:024,2008

What about the Higgs field?

- A unique prediction of the Higgs mechanism is the vacuum energy density
 - Unlike the forces, it exists without a source
- The energy density of this field conflicts with cosmology
 - It is 120 orders of magnitude larger than dark energy and the opposite sign
- So how do we persuade people it is there?
- Of course we need a quantum theory of gravity

Evidence: H to ZZ

- The measured HZZ rate is about 10xHyy
 - After allowing for Br,
 - So HZZ must be singe vertex, not a loop
- The Z interacts with weak charge
 - But Z is neutral (Charge and weak charge)
- ZZH vertex shows the H must be weak charged
 - But in $H \rightarrow ZZ$ where does the charge go?

н

Evidence: H to ZZ

- The measured HZZ rate is about 10xHyy
 - After allowing for Br,
 - So HZZ must be singe vertex, not a loop
- The Z interacts with weak charge
 - But Z is neutral (Charge and weak charge)
- ZZH vertex shows the H must be weak charged
 - But in $H \rightarrow ZZ$ where does the charge go?
- It is really a 4-point coupling
 - One leg 'grounded' in the vacuum
- The ZZ decay shows vacuum participates
 - With a (weak) charge!
- The apparent 3 point couplings come from ∂_μ¢∂_μ¢ expanded about v
- There IS a field

н

Quid nunc for Higgs?

- The mass is just great
- LHC targets 5 modes
 - ZZ
 - -WW
 - γγ
 - bb
 - ττ
- More coming one day?
 - Ζγ
 - μμ
 - χχ

Full 2012 data

• How will we do?

- The following GUESSES assume SM rates
- They also assume a lot of work

	Gluon fusion	VBF	VH	ttH
ZZ	5σ	1σ	0	0
WW	3σ	1σ	0	0
γy	4σ	2σ	0.5σ	0
bb	0	0	2σ	0.5σ
ττ	0	2.5σ	0.5σ	0

If true we see 5 decays and 3 production mechanisms
Pretty good for the discovery year!

Spin/parity

- We know integer spin, not 1
 - To reasonable confidence
- We can establish from ZZ/WW/yy
 - ~3σ 0⁺ v 0⁻
 - ~3σ 2⁺ v 0⁺
- But there are caveats:
 - Spin 2 assumes the production/ helicity structure
 - Why make those?
 - There are some very hard to separate
 - The bosonic decay projects out 0+ from a mixed state
 - We are not sensitive to mixed (CP violating) systems
- So..we WILL learn something
 - But most theorists are not expecting surprises here
 - The rates match too well the 0⁺ model...

Whither LHC?

Figure 1: LHC baseline plan for the next ten years. In terms of energy of the collisions (upper line) and of luminosity (lower lines). The first long shutdown 2013-14 is to allow design parameters of beam energy and luminosity. The second one, 2018, is for secure luminosity and reliability as well as to upgrade the LHC Injectors.

- 25fb⁻¹ by end of year
- 300fb⁻¹ by end of 2021
 - With Energy 13+ TeV
 - ~50 times the Higgs events reported on so far....

HL-LHC and ATLAS

- LHC runs to 2022
- 300fb⁻¹ at 14TeV expected
 - SLHC is proposed thereafter 3000fb⁻¹
- ttH,H \rightarrow yy and H \rightarrow µµ are two interesting studies

 But in general Higgs couplings must gain from factor 10 more data!

HL-LHC Higgs projections

- Only subset of channels studied
 - But impressive performance possible
- LHC can never measure Higgs width
 - But ratios of couplings at O(20%) level
 - But systematic errors are approximate in these estimates

 Γ_{Z} / Γ_{g} Γ_{t} / Γ_{g} $\Gamma_{\tau} / \Gamma_{\mu}$ $\Gamma_{\mu} / \Gamma_{Z}$ $\Gamma_{\tau} / \Gamma_{Z}$ $\Gamma_{\gamma} / \Gamma_{Z}$ $\Gamma_{g} \bullet \Gamma_{Z} / \Gamma_{H}$ $0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8$ $\Delta (\Gamma_{X} / \Gamma_{Y})$

ATLAS Preliminary (Simulation)

√s = 14 TeV: (Ldt=300 fb⁻¹; (Ldt=3000 fb⁻¹

Self coupling

t, b

(a)

t. b

lle

t, b

- Needs observation of Higgs pairs
 - Thats a tall order!
- - Need to prove triple **Higgs involved**
 - negative interference :(
- bbyy allows 3σ HH observation

W.Murray STFC/RAL

- ATLAS+CMS, more channels, may give 3σ coupling measurement

t, b

2220

000

t, b

t, b

t, b

(c)

t, b

leon

t, b

MSSM Higgs

- No sign of MSSM Higgs
- If this is heavy Higgs then H+ mass should be below top
 - Maybe a second discovery soon?

W.Murray STFC/RAL

Summary

- After 48 years we have found something remarkably like the SM Higgs boson:
 - 'A Higgs boson'; Rolf Heuer
 - $-Mass 126.0 \pm 0.4 \pm 0.4$
- We need to establish what we have
 - We will know more by Christmas for sure
- The ATLAS is performing superbly
- In 2012 LHC is working remarkably well
 - We have twice the discovery data already
 - By 2021, 300fb⁻¹ at 14TeV will allow precise studies

SLHC as Higgs factory

- Increasing luminosity, factor 10, to 10³⁵cm⁻²s⁻¹
 - New proton linac & focus elements needed
 - Pileup increases by similar factor, 300 events/BX?
 - New trackers, calorimetry readout, TDAQ needed to cope
- Beams are rapidly 'burnt-off'
 - It may be helpful to limit luminosity early on
 - Extends beam lifetime, limits pileup
- Going from 300fb⁻¹ to 3000fb⁻¹ at 14 TeV
 - H \rightarrow ZZ go from 300 to 3000
 - Improved measurements clear in ZZ, γγ,
 - $H \rightarrow \mu \mu$ and Zy can be measured
 - WW, bb, ττ will be improved but systematics hard to know
 - Self-coupling in HH \rightarrow bbyy and bbtt looks just possible
 - Again, estimates of systematics difficult

