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The Standard Model

The 'Standard Model' has been 
remarkable successful
– 3 forces
– 2→3 families of quarks/leptons
But the Higgs sector remained 
unknown...until now
A Higgs-like boson has been 
discovered
– What do we know?
– What more can we learn?
Is it alone?
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History of the search

1964 Brout & Englert, Higgs, Gouralnik, Hagen & Kibble, 
– Not taken too seriously until...
1967 Used in the formulation of the 'Standard Model'
– Proven to be self-consistent in 1971
1973 Experimental acceptance of the 'Standard Model'
1983 Discovery of W and Z bosons
– Closely linked to the Higgs boson
1993 LEP studies Z's and rules out m

H
<53 GeV

– And indirectly excludes m
H
>300GeV

2000 LEP limits reach 114.4 GeV
– Hint of production at 115?
2011 LHC excludes 130-550GeV, Tevatron 156-175
– Some indications for a particle at 125?
4th July 2012 New particle found at 126GeV
– Consistent with the Higgs
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ATLAS

Detector emphasis: robust lepton and jet measurement
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Hunting the Higgs Boson



 7W.Murray STFC/RAL

Never forget background

LHC backgrounds!

Every event at a lepton 
collider is physics; 
every event at a 
hadron collider is 
background

Sam Ting

1010
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Detailed studies, huge samples

The rate of jets as 
a function of  p

T

20-2000GeV 
tested
Rate falls off by 
thirteen orders of 
magnitude
We need to 
understand the 
common process 
extremely well 
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Trigger strategies 2012

Single muon p
T
>24GeV llll, lνlν

Single electron p
T
>24GeV llll, lνlν

Muon pair p
T
 > (13,13) GeV llll

Asymmetric Muon pair p
T
 > (18,8) GeV llll

Electron pair P
t
 > (12,12) GeV llll

Photon pair P
t
 > (12,12) GeV γγ

The llll analysis maximises trigger efficiency
The WW however emphasizes comprehensibility
The two-photon efficiency is over 99%
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W/Z/top measurements
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Higgs production 

The three most common modes
– Others also exist: ttH, tH , bbH...
Gluon fusion dominated the discovery
– The loop allows not only virtual top quarks in principle
Vector boson fusion and associated also used
– Can be used to tag process
– Improves the purity 

Associated

VBF

Gluon fusion
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Higgs decay modes used

H→ZZ
– ZZ→llll: Golden mode
– ZZ→llνν: Good High mass
– ZZ→llbb: Also high-mass
H→WW
– WW→lνlν: Most sensitive
– WW→lνqq: highest rate
H→γγ
– Rare, best for low mass
H→ττ 
– Uses VBF, low mass
H→bb
– ttH, WH, ZH useful but hard
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Rates by channel at 125GeV

Data to June 2012
From 10s to 100000 
events per channel
– Easy!
But total pp events:

 8x1014

20 Higgs to llll events
Needs incredible 
background rejection
– The green channels 

end up the most 
sensitive
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Data collection 

LHC delivered 5fb-1 in 2011
– Gave first hints for SM Higgs

√s raised 7→8TeV in 2012
Luminosity already triple 2011
– 6 fb-1 allowed Higgs discovery

Great effort by LHC team!
We hope for still more by 
Christmas
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Pileup passing design

In 2011 9 
collisions per 
bunch 
crossing
Changed to 
20 in 2012
– Peak 35+
– Design: 23
That is how 
LHC 
increased the 
data rate....
– So we learn 

to cope
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Pileup in 2012

Example: Z→μμ
Has multiple 
overlayed 
interactions
– 25 seen here
Tracker can 
distinguish them by 
position
Calorimetry suffers
– Degrades isolation
– E

t
Miss

We are finding 
solutions
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So what do 2012 data say?

Papers submitted 31st July by CMS and ATLAS
– Both claiming observation of a new particle
Focus on region 117-129GeV left from 2011
ATLAS used only 3 strongest channels:
– γγ
– ZZ
– WW
Others will come
when they are
ready

L    
E    
P    
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 H→γ γ

Rare decay, 
– 2 per mille
– 110<m

H
<150

Drove ECAL design
– Pointing geometry
To measure mass 
need to know vertex 
position
– Pileup hurts!
– But pointing reduces 

impact 
Good jet rejection 
also essential 
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Influence of pileup

Extrapolate photon directions to beam position
– Measure the difference between positions to check resolution
– Matches simulation, pileup effects small
Estimated resolution therefore ~μ independent
– A Likelihood including vertices is used to pick best one
– But getting it right is normally not crucial
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H→γγ mass resolution

Higgs resolution 
assesed in classes:
Understood using 
Z→ee
– Z with needs to be 

unfolded
– Material effects on e/γ 

scale taken from MC
Checked with Z→llγ
– Statistics limited
– Will be improved with 

more data
– Scale already limits m

H
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H→γγ sample makeup

Measure sample composition in data: γγ, γj or jj?
– Plus small Drell-Yan
– Use isolation sidebands
Samples are dominated by real di-photon.
– We did reject 99.99% of jets!
– Little gain from better signal purity
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H→γγ analysis method

In principle look at the m(γγ) spectrum for a bump
But signal/background and resolution depend upon other 
variables
Split into several categories:
– p

Tt
, 

– barrel/forward, 
– converted/unconverted
2-jet category sensitive to VBF added too
– 2 jets, p

T
>25GeV

•  if |η|>2.5 require >50% associated track p
T 
from primary vertex 

•  if 2.5<|η|>4.5 p
T
>30GeV

– Δη
jj
>2.8

– m
jj
>400

But..20 is too many plots to take in
– So weight categories and add them up.
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 H →γγ mass

Simple sum of events (top)
Weighted by ln(s+b)/b 
(bottom)
See significant peaks 
around 125
– Weighted sum clearer
– As it should be if real
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  Background Compatibility

Peak near 126, both years
Local excess 4.5σ
– Best single channel 

evidence there is....
Strength exceeds 
expectation



 25W.Murray STFC/RAL

H →ZZ→llll

The golden mode
Good energy measurement like γγ
– But know production point
Very low backgrounds
– Dominated by real ZZ→llll
But signal rate low
– Z→ee or μμ Br only 3%
– Challenge is to maximise efficiency
– ATLAS improved low-p

T
 electrons w.r.t 2011

• New tracking algorithm, allowing for bremsstrahlung
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H →ZZ→llll

The golden mode
Good energy 
measurement like 
γγ
– But know 

production point
Very low 
backgrounds
– Dominated by 

ZZ→llll
But signal rate low
– Z→ee or μμ br only 

3%
– Need to maximise 

efficiency
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Basic analysis steps

Find events with 4 leptons (e/μ) in them
Request a pair is in region of the Z mass
The second is allowed to be much lower in mass
– Kinematics requires one Z is forced to be off-shell, lighter

Major background:
– ZZ→llll (where Z's are not to do with the Higgs)

• 'irreducible'
– Zqq (Zbb)
– tt→WbWb→νlbνb
Two prompt leptons plus b quarks are important, so:
– Require isolation
– Require leptons from primary 

Minimum lepton p
T

7Gev (e)  / 6 GeV (μ)

Mass Z
1

50 - 106

Mass, Z
2

17.5 - 115
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Background Measurement

Remove isolation from 1st or 2nd Z candidate
– Left is low mass ee candidates
– Right high mass μμ
Also detailed studies of electron take rates

No isolation

Fail isolation
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Mass distribution

Background shapes matches expectation
– Note peaks at 90 and >180 (1 real Z, 2 real Z's)
– Small peak at 125 GeV seen too...
Check Z

12
 and Z

34
 masses for candidates
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Background compatibility

ATLAS expects about 
2.7sigma at 126GeV
Observe 3.6σ excess at 
125
Consistent with a Higgs
– A little high, but not 

significant 
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H→WW→lνlν

The 
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WW→lνlν

The most sensitive channel for 130<m
H
<200

– Still one of the 3 most important at 125GeV
– But poor mass information due to 2 undetected neutrinos 
Good trigger, reasonable rate
– Largest background is non-resonant WW

• Also top when looking at WW+1 jet
– Backgrounds measured from control regions
Request two leptons
– 15,25 GeV 
– ATLAS only uses e-μ pairs in 2012 (ee/μμ have more bkgd.)
Require missing E

T
 (E

t
rel) and p

T
(ll) for WW

Select signal area with Δφ and m
ll
 selections

– ATLAS prefers cut-based selections
Many backgrounds need estimation from data - tricky
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WW background extraction

Backgrounds are (almost) all found in control regions
– ATLAS same-sign (left) check W+jets
– ATLAS WW control (right) from high m

T
 events

• Integrals must match data/MC by contruction.
• But scale factors are near 1.

Same-sign WW control
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WW signal region

Treat 0/1/2 jets separately
– VBF selection has no relevant candidates
Delicate analyses, complex data/MC mix
Distinct excess seen in 0+1 jets
– In the region signal is expected
– But not well localised
– 2.8σ in ATLAS
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WW limits

Set bad limits...
2.8sigma excess around 125GeV
Two neutrinos means mass not well measured
– So broad excess seen
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Fermion couplings?

ATLAS has released no 
2012 fermionic Higgs 
decay results
– These are important but 

delicate
Unique is ttH, H→bb 
which is fermions in both 
production and decay
– Recent 2011 results right:
– ATLAS-CONF-2012-135
– Will benefit from higher 

energy
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Combined limits

Excludes nearly all mass range at high confidence
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Combined p-value

dd

Probabilities 2x10-9 or 5.9σ...we got it
– Just outside 1σ band for signal
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But what did we get?
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Rate versus Mass

2D fits of rate and mass reduce model dependence
– m

H
=126±0.4±0.4

These channels all have consistent solutions.
– 1 particle assumed from now on
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The Combined Results

dd

For a signal at 126 (or 125.3):
– ATLAS just over a sigma above SM rate, 1.4±0.3 @126
This is consistent with a SM Higgs



 42W.Murray STFC/RAL

Channel results

Above zero in all 5 channels (just)
– More powerful ones (WW,ZZ,γγ) certainly do.
– Is there too much γγ? Not really
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Open Parenthesis
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Limitation of current method

Pick an m
H
 hypothesis

Fit for signal strength at that m
H

– Compare with expectations for a signal at that mass
Plot the results as a function of m

H

So what is wrong?
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Limitation of current method

Pick an m
H
 hypothesis

Fit for signal strength at that m
H

– Compare with expectations for a signal at that mass
Plot the results as a function of m

H

So what is wrong?
– Nothing.
– Unless you then use the results to select and report one mass

The above procedure assumes 
m

H
tested≡m

H
true

So lets start with that....
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Dummy experiment

Like ATLAS search
– 22K background and 55 signal
– Two categories

• 90% signal, 99% bkd.
• 10% signal, 1% bkd.

– Mass resolution 1.7GeV

A bit like the ATLAS 2011 γγ search 
– but just a dummy designed following their papers
– Parameters designed to have 1.4σ expected sensitivity
Make toy MC investigations with a signal
– Inject signal
– Constrain μ to be non-negative
– Fit with mass fixed or floating to compare results
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Fitted Mass distribution

ML fit in minuit
– Fit 2 background slopes and 

rates and 1 signal rate
– Scan 115-135 first
Quite often the best fit has 
NOTHING to do with the 
signal
– RMS 3.7 (in this window!)
RED selects 'lucky' 
experiments with 2.5-3σ 
observed excess
– 2xexpected, as ATLAS/CMS
– Cluster around the signal
– But RMS still 2.6GeV

ATLAS+CMS were compatible!
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OK, so m
H

fitted ≠ m
H

true

The resolution on m
H
 is worse than the per-event 

resolution!
– The statistics is dominated by background fluctuations

Imagine a 'perfect' (Asimov) signal
Add a fluctuating background under it
– Just above and just below peak gives 2 chances to fluctuate
– Odds are one of them fluctuates up
– The signal gets pulled to that point
– And grows in size!
This is not included in the ATLAS/CMS 'expected p-values 
for signal' because they assume m

H
fitted = m

H
true 
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How large is effect on μ?

Red injects at 125 and tests at 125 – as expts. Do
– 4% bias, coming from μ≥0
Green injects at 125 and fits with m

H
 free

– 43% bias!

Signal size Signal significance
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Bias versus significance

Vary:
– Lumi
– Signal rate
– both
Bias seem to 
be given by 
expected 
significance
Universal 
curve?
– Need thought
<σ> <3 raises 
alarm bells!

December 
2011

July 2012
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Test of Predictions 

I predicted 6 months ago that the gamma-gamma signals 
from ATLAS and CMS would converge in mass and 
reduce in rate

Expected about 0.3 drop, see about 0.2
– Pretty much as expected
ATLAS' mass remains stubbornly high

ATLAS CMS

January Peak 
Mass

126.5 123.5

mu 2.0 1.7

ICHEP mass 126.5 125 (124)

mu 1.8 1.5

World Average 125.7
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End Parenthesis



 53W.Murray STFC/RAL

Interpreting couplings

WE want to test whether what we have is the Higgs boson
– Like the EW fits done at LEP
Need 'pseudo observables' that allow fits: 
– http://arxiv.org/abs/arXiv:1209.0040
The LHC cannot measure the total width
– There are always impossible decays like H→gluons 
– So some assumption is need
Many couplings accessible eventually:
– ZZ, WW, γγ, bb, tt, gg, ττ, μμ?, invisible?
– Note gg/γγ are effective coupling through loops
Too many to fit all at once
Simplify by grouping the couplings
– e.g. Bosons  and fermions

http://arxiv.org/abs/arXiv:1209.0040
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κ
V
κ

F
 couplings

Top right:
– W/Z scaled via κ

V
 

– Fermions  by κ
F

– Assume no invisible decay
Sign of fermion coupling 
tested in photon decay loop
– We will have some 

sensitivity to sign with 
more data

Measuring single top+Higgs 
would help this
Bottom right tests W v Z
– Custodial symmetry
– 1.07+0.35

-0.27
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New particle search

Another possibility is to 
ASSUME a SM Higgs
– But allow the loops to have 

unknown particles
– ggF, H→γγ
Top assumes no invisible 
decay
– (1,1) is the SM strength
– compatible with this
Bottom tests for invisible 
branching ratio
– Cannot all be invisible as we 

see it!

We test many other 
possibilities ... all look like SM
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So what do we know?

Higgs Mass Measured – agrees with SM rough prediction

Spin Should be 0. We know it is integer, and not 1

Parity (mirror symmetric?) Should be symmetric. Unknown

Charge Zero, as it should be

Lifetime Unknown, but narrow resonance and no obvious flight, OK.

Interaction with W,Z Rates in WW,ZZ look as expected. 

Interaction with matter 
(quarks/leptons)

ATLAS information weak here
(But Tevatron has around 3σ evidence  - twice expected)  

Interaction with gluons Total rates suggest this as expected

Interaction with photons  1.8±0.5 (ATLAS) This is less than 2σ high

It is consistent with the SM Higgs
– With reasonable statistical fluctuations
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What does 125-126 tell us?

In SM m
H
=94+29

-24
GeV 

– So observed mass fits SM with no additions
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How many neutrinos?

LEP proved 3 light neutrinos
– hence 3 generations?
Now we know neutrinos have 
mass maybe 2m

ν
>m

Z
 ?

– Could be a heavy neutrino
But Higgs production is 
mostly through gluon fusion
– Virtual top in a loop
– A new heavier quark would 

increase the rate a lot
– Whatever mass the quark had
Much harder to believe in a  
4th generation today. 
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Dark Matter?

If this is a Higgs, in 
many models it 
couples strongly to 
dark matter
5-50GeV dark 
matter will be 
tested if Higgs 
decays as 
expected
Not yet, but the 
blue area will be 
constrained
– SUSY prediction 

OK!

Xenon plot from ArXiv: 1005.0380v3

SUSY prediction from: JHEP 0812:024,2008
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What about the Higgs field?

A unique prediction of the Higgs mechanism is the vacuum 
energy density
– Unlike the forces, it exists without a source
The energy density of this field conflicts with cosmology
– It is 120 orders of magnitude larger than dark energy – and the 

opposite sign
So how do we persuade people it is there?

Of course we need a quantum theory of gravity
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Evidence: H to ZZ 

The measured HZZ rate is about 10xHγγ
– After allowing for Br,
– So HZZ must be singe vertex, not a loop
The Z interacts  with weak charge
– But Z is neutral (Charge and weak charge)
 ZZH vertex shows the H must be weak charged 
– But in H→ZZ where does the charge go?
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Evidence: H to ZZ 

The measured HZZ rate is about 10xHγγ
– After allowing for Br,
– So HZZ must be singe vertex, not a loop
The Z interacts  with weak charge
– But Z is neutral (Charge and weak charge)
 ZZH vertex shows the H must be weak charged 
– But in H→ZZ where does the charge go?
It is really a 4-point coupling
– One leg 'grounded' in the vacuum
The ZZ decay shows vacuum
participates
– With a (weak) charge!
The apparent 3 point couplings come
 from            expanded about v
There IS a field

∂μ ϕ∂μϕ
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Quid nunc for Higgs?

The mass is 
just great
LHC targets 5 
modes
– ZZ
– WW
– γγ 
– bb 
– ττ 
More coming 
one day?
– Zγ
– μμ
– χχ
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Full 2012 data

How will we do?
– The following GUESSES assume SM rates
– They also assume a lot of work

Gluon fusion VBF VH ttH

ZZ 5σ 1σ 0 0

WW 3σ 1σ 0 0

γγ 4σ 2σ 0.5σ 0

bb 0 0 2σ 0.5σ

ττ 0 2.5σ 0.5σ 0

If true we see 5 decays and 3 production mechanisms
Pretty good for the discovery year!
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Spin/parity

We know integer spin, not 1 
– To reasonable confidence
We can establish from ZZ/WW/γγ
– ~3σ 0+ v 0-

– ~3σ 2+ v 0+

But there are caveats:
– Spin 2 assumes the production/ helicity structure

• Why make those?
• There are some very hard to separate

– The bosonic decay projects out 0+ from a mixed state
• We are not sensitive to mixed (CP violating) systems

So..we WILL learn something
– But most theorists are not expecting surprises here
– The rates match too well the 0+ model...
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Whither LHC?

25fb-1 by end of year
300fb-1 by end of 2021
– With Energy 13+ TeV
– ~50 times the Higgs events reported on so far....
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HL-LHC and ATLAS

LHC runs to 2022
300fb-1 at 14TeV expected
– SLHC is proposed thereafter - 3000fb-1

ttH,H→γγ and H→μμ are two interesting studies

But in general Higgs couplings must gain from factor 10 
more data!
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HL-LHC Higgs projections
Only subset of channels 
studied
– But impressive 

performance possible
LHC can never measure 
Higgs width
– But ratios of couplings at 

O(20%) level 
But systematic errors are 
approximate in these 
estimates
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Self coupling

Needs observation 
of Higgs pairs
– Thats a tall order!
But it is not enough
– Need to prove triple 

Higgs involved
– negative 

interference :(
 bbγγ allows 3σ 
HH observation
– ATLAS+CMS, more 

channels, may give  
3σ coupling 
measurement
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MSSM Higgs

gg

No sign of MSSM Higgs
If this is heavy Higgs then H+ mass should be below top
– Maybe a second discovery soon?
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Summary

After 48 years we have found something 
remarkably like the SM Higgs boson:
– 'A Higgs boson'; Rolf Heuer
– Mass 126.0±0.4±0.4
We need to establish what we have 
– We will know more by Christmas for sure
The ATLAS is performing superbly
In 2012 LHC is working remarkably well
– We have twice the discovery data already
– By 2021, 300fb-1 at 14TeV will allow precise 

studies 
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SLHC as Higgs factory

Increasing luminosity, factor 10, to 1035cm-2s-1

– New proton linac & focus elements needed
– Pileup increases by similar factor, 300 events/BX? 
– New trackers, calorimetry readout, TDAQ needed to cope
Beams are rapidly 'burnt-off' 
– It may be helpful to limit luminosity early on
– Extends beam lifetime, limits pileup
Going from 300fb-1 to 3000fb-1 at 14 TeV
– H→ZZ go from 300 to 3000
– Improved measurements clear in  ZZ, γγ,

• H→μμ and Zγ can be measured
– WW, bb, ττ will be improved – but systematics hard to know
– Self-coupling in HH →bbγγ and bbττ looks just possible

• Again, estimates of systematics difficult
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