# Prospects and Blind Spots for Neutralino Dark Matter



Cliff Cheung, Lawrence Hall, David Pinner, JTR 1211.xxxx





# the plan

- I. experimental status
- 2. neutralino DM in SUSY
- 3. bino-higgsino
- 4. bino-wino-(higgsino)

### The XENON Dark Matter Program experimental status Dark Matter Project





# types of scattering:

1. spin independent:  $\overline{\chi}\chi \overline{N}N$ 

 $y \, \overline{\chi} \chi h$ 

$$\sigma_{SI} \approx 8 \times 10^{-45} \,\mathrm{cm}^2 \left(\frac{y}{0.1}\right)^2$$



# types of scattering:

1. spin independent:  $\bar{\chi}\chi\bar{N}N$ 

 $y \, \overline{\chi} \chi h$ 

$$\sigma_{SI} \approx 8 \times 10^{-45} \,\mathrm{cm}^2 \left(\frac{y}{0.1}\right)^2$$



2. spin-dependent:  $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \bar{N}\gamma_{\mu}\gamma^{5}N$ 

$$c\,\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\,Z_{\mu}$$

$$\sigma_{SD} \approx 3 \times 10^{-39} \,\mathrm{cm}^2 \left(\frac{c}{0.1}\right)^2$$



### spin independent status



### spin independent status



### spin independent status



#### what about the strange quark?



• Giedt, Thomas, Young 0907.4177

### spin dependent status



### spin dependent status



### spin dependent status



# indirect



# indirect



# collider

LEP:

#### LHC:



 $m_{\chi^+} \gtrsim 100 \text{ GeV}$  $\mu, M_2 \gtrsim 100 \text{ GeV}$ 

# neutralino DM in SUSY



# fermionic dark matter

•  $SM + \tilde{B}, \tilde{W}, \tilde{H}$ 

- assume scalar superpartners can be decoupled when computing:  $\sigma_{\chi N}, \Omega$
- assume CP
- parameters:

 $M_1, M_2, \mu, \tan eta$ 

# is the weak scale natural?

 $m_h$  –











neutralino DM interesting for both!

# fermionic DM in unnatural SUSY

- the LSP is at the weak scale to avoid overclosure  $\Omega \sim \frac{1}{\sigma} \sim m_{\tilde{N}}^2$ 
  - the DM mass is crucial for LHC observability

 $m_{\tilde{g}} > m_{\chi}$ 

# fermionic DM in natural SUSY

- fermionic DM is a simplified limit of natural SUSY  $\left(\frac{m_Z}{\tilde{m}}\right)^4$ 
  - we assume any physics that raises the Higgs mass does not modify DM properties

$$\theta_{\tilde{N}_1\tilde{S}}\ll 1$$

• DM mass is important for naturalness:

$$\mu \gtrsim m_{\chi} \qquad \longrightarrow \qquad \Delta \gtrsim \frac{2m_{\chi}^2}{m_h^2}$$

0

# $\Omega$

#### in this talk I'll consider two cases:

# I. non-thermal $\Omega_{freezeout} \neq \Omega_{dm}$

**2. thermal**  $\Omega_{freezeout} = \Omega_{dm}$ 

## pure eigenstate DM

• bino overcloses

• higgsino  $m_{\tilde{H}} \approx 1 \text{ TeV}$ 



• wino  $m_{\tilde{W}} \approx 2.7 \; {\rm TeV}$ 

# well-tempered neutralino



#### N.Arkani-Hamed, A. Delgado, G. Giudice 0601041.

# well-tempered neutralino



N.Arkani-Hamed, A. Delgado, G. Giudice 0601041.







I. purity

$$\chi \to \tilde{B}, \tilde{W}, \tilde{H}$$
  
 $y_{\chi\chi h} \to 0$ 

turn off mixing by decoupling higgsinos or gauginos



I. purity

$$\chi \to \tilde{B}, \tilde{W}, \tilde{H}$$
  
 $y_{\chi\chi h} \to 0$ 

decouple higgsinos or gauginos

#### 2. blindspots

 $y_{\chi\chi h} = 0$ 

due to cancellation

# purity

 tree-level Higgs coupling vanishes for pure higgsino or Wino



- Hisano, Ishiwata, Nagata, Takesako 1104.0228
  - Hill, Solon 1111.0016
$$y_{\chi\chi h} = 0$$

 $y_{\chi\chi h} = 0$ 

• bino

 $m_{\chi} = M_1$ 

 $M_1 + \sin 2\beta \,\mu = 0$ 

 $y_{\chi\chi h} = 0$ 

- bino  $m_{\chi} = M_1$   $M_1 + \sin 2\beta \mu = 0$ 2  $\tan \beta = 1$
- higgsino

 $m_{\chi} = -\mu$ 

 $\tan \beta = 1$ sign( $\mu$ ) = -sign( $M_1$ )

 $y_{\chi\chi h} = 0$ 

| • bino                       | $m_{\chi} = M_1$  | $M_1 + \sin 2\beta \mu = 0$                                               |
|------------------------------|-------------------|---------------------------------------------------------------------------|
| <ul> <li>higgsino</li> </ul> | $m_{\chi} = -\mu$ | $2 \tan \beta = 1$ $\operatorname{sign}(\mu) = -\operatorname{sign}(M_1)$ |
| • wino                       | $m_{\chi} = M_2$  | <b>3</b> $M_2 + \sin 2\beta  \mu = 0$                                     |
|                              |                   | $4 \qquad M_1 = M_2$                                                      |

 $4 \quad M_1 = M_2$  $\operatorname{sign}(\mu) = -\operatorname{sign}(M_{1,2})$ 

# bino-higgsino

# bino-higgsino

• decouple wino

$$\begin{pmatrix} M_1 & -\frac{g'\cos\beta}{\sqrt{2}}v & \frac{g'\sin\beta}{\sqrt{2}}v \\ -\frac{g'\cos\beta}{\sqrt{2}}v & 0 & -\mu \\ \frac{g'\sin\beta}{\sqrt{2}}v & -\mu & 0 \end{pmatrix}$$

• parameters

 $M_1, \mu, \tan \beta$ 

 $\tan \beta = 2$ 





 $\tan \beta = 2$ 





#### $\Omega (M_1, \mu, \tan \beta) = \Omega_{DM}$

#### solve for:

 $M_1(\mu, \tan\beta)$ 















### target



### target



#### target





# bino-wino-(higgsino)

# bino-wino-(higgsino)



parameters

$$M_1, M_2, \mu, \tan\beta$$



$$\tan \beta = 2$$
$$u = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$u = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$u = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$u = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$\mu = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$u = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$\mu = 750 \text{ GeV}$$



$$\tan \beta = 2$$
$$\mu = 750 \text{ GeV}$$
$$\Omega (M_1, M_2, \mu, \tan \beta) = \Omega_{DM}$$

#### solve for:

 $M_1(M_2,\mu,\tan\beta)$ 

# bino/wino coannihilation



# bino/wino coannihilation



how heavy can the higgsino be?

# bino/wino coannihilation



how heavy can the higgsino be?

#### coannihilation:

$$\langle \sigma_{eff} v \rangle = \frac{\sum_{i,j} w_i w_j \langle \sigma_{ij} v \rangle}{\left(\sum_i w_i\right)^2} \qquad w_i = \left(\frac{m_i}{m_1}\right)^{3/2} e^{-x\left(\frac{m_i}{m_1} - 1\right)}$$



$$\tan\beta = 2$$



























$$\tan\beta = 2$$



 $\tan\beta=2$ 





# take away points

- direct detection is finally probing neutralino DM
- large parameter space remains
- blindspots with small spin-independent cross-section evade XenonIT

# backup

