NEGLECTED SUSY;
A PERSPECTIVE ON CURRENT SEARCHES

Based on unapproved CMS results, work and several conversations with M. Pierini, G. Rolandi, M. Lisanti, …

(I am the only one to blame)
SUMMARY

- One loophole and one handle
 - Natural SUSY searches
- My view of the future
IS THAT EVEN POSSIBLE?
RELAXING ASSUMPTIONS

- SUSY = MET + X
 (with notable exceptions diphotons, SS dileptons and multileptons)
RELAXING ASSUMPTIONS

- SUSY = MET + X
 (with notable exceptions diphotons, SS dileptons and multileptons)

- New physics = high scale = hard objects
RELAXING ASSUMPTIONS

- SUSY = $\not{E_T} + X$

 Reminder: $\not{E_T} = p_T$ of the stable particle

- New physics ~ high scale ~ hard objects or many soft objects
gluino AND stops AND higgsinos
NATURALNESS

gluino AND stops AND higgsinos

\[M_3 \lesssim 1.3 \text{ TeV} \sin \beta \left(\frac{\log \Lambda/\text{TeV}}{3} \right)^{-1} \left(\frac{m_h}{125 \text{ GeV}} \right) \sqrt{\frac{10\%}{\Delta^{-1}}} \]

\[\frac{\sigma(m_{g}=1.5 \text{ TeV})}{\sigma(m_{g}=1 \text{ TeV})} \sim 10^{-2} \]
gluino AND stops AND higgsinos

\[t\bar{t}t\bar{t} + \chi^0\chi^0 \quad \leftrightarrow \quad b\bar{b}b\bar{b} + \chi^0\chi^0 \]

\[\ldots, t\bar{t}b\bar{t}b + X, \ldots \]
gluino AND stops AND higgsinos

$\bar{t}s\bar{t}s\bar{b},qqqqqqq,...$
• SUSY configurations with low MET
 • RPV
 • Cascade decays or moderately squeezed spectrum
 • For very small mass splittings (for instance chargino-neutralino) p_T(mother) $\sim p_T$(daughter)
 • Partly visible decays of the lightest MSSM neutralino (NMSSM, gravitino LSP)
- SUSY configurations with low MET
 - RPV
 - Cascade decays or moderately squeezed spectrum
 - Partly visible decays of the lightest MSSM neutralino (NMSSM, gravitino LSP)
- High multiplicities
 - Jets from RPV, extra W's, Z's, h's, extra steps in the cascades
- Rare objects: leptons (details of the spectrum are important), photons
IT IS SO TYPICAL (HADRONIC)

- We are not always doing our best, even before ISR becomes important

<table>
<thead>
<tr>
<th>Signal region</th>
<th>H_T [GeV]</th>
<th>E_T^{miss} [GeV]</th>
<th>N_{bjets}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b-loose 1BL</td>
<td>> 400</td>
<td>> 250</td>
<td>≥ 1</td>
</tr>
<tr>
<td>1b-tight 1BT</td>
<td>> 500</td>
<td>> 500</td>
<td>≥ 1</td>
</tr>
<tr>
<td>2b-loose 2BL</td>
<td>> 400</td>
<td>> 250</td>
<td>≥ 2</td>
</tr>
<tr>
<td>2b-tight 2BT</td>
<td>> 600</td>
<td>> 300</td>
<td>≥ 2</td>
</tr>
<tr>
<td>3b 3B</td>
<td>> 400</td>
<td>> 250</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

CMS, $L_{\text{int}} = 4.98 \, \text{fb}^{-1}$, $\sqrt{s} = 7 \, \text{TeV}$

$p p \rightarrow \bar{q} q, \bar{q} \rightarrow t\bar{t} + \text{LSP}; m(\bar{q}) > m(q)$

~ $1/10$ in efficiency
We are not always doing our best, even before ISR becomes important.
We are not always doing our best, even before ISR becomes important.
ONE HANDLE
TWO HANDLES
IN THE MATRIX

<table>
<thead>
<tr>
<th>Leptons</th>
<th>Jets</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>WHY NOT</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>IN PROGRESS</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>NEED EXTRA DISCRIMINATION (b-tagging)</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>≥ 9</td>
</tr>
</tbody>
</table>

\[(N_l', N_J', N_b) \]
CAN IT WORK?

- Multi-jet background
 - Berends-Giele scaling + phenomenological correction from the Tevatron (essentially a fit to the data)
 - Prerequisite: separate W from Z from tt from QCD
 - Byproduct: first measurement of the scaling for tt
- Multi-b background
 - Assume MC has the p_T and η of the jets (almost) right
 - Correct MC for efficiencies measured on data (p_T-rel template fit)
MY VIEW OF THE FUTURE
EDEN

- Theory input
 - Dedicated searches to pursue outside of the grid
 - New dimensions for the grid
 - Simplified understanding of classes of models
EDEN

• Theory input
 • Dedicated searches to pursue outside of the grid
 • New dimensions for the grid
 • Simplified understanding of classes of models

• Experimental output
 • New physics discovery
EDEN

- **Theory input**
 - Dedicated searches to pursue outside of the grid
 - New dimensions for the grid
 - Simplified understanding of classes of models

- **Experimental output**
 - $N_{bkg}, \sigma_{bkg}, N_{data}$ (for each point in the grid) + public simulation
 - Likelihood (where doable)
THE PURGATORY

- Theory input
 - Dedicated searches to pursue outside of the grid
 - Ok: stops, long lived, ...
 - New “dimensions” for the grid
 - Ok: α_τ, jet substructure, ...
 - Simplified understanding of classes of models
 - Done for vanilla SUSY, but missing RPV, long lived and heavy colored objects travelling inside the detector
THE PURGATORY

● Experimental output
 - N_{bkg}, σ_{bkg}, N_{data} (for each point in the grid) + public simulation
 - Strong opposition inside the collaborations
 - Next-to-ideal: fill the grid (not even analyses, just counting experiments) and give detector to generator curves → Razor example

● Likelihood (where doable)
 - “I'd be dead before [LHC experiment] releases a likelihood”. Anonymous
CONCLUSIONS

- There is a blind spot in our searches, but no fundamental obstacles (i.e. trigger) in front of us.
- In terms of discovery potential we are doing a great job, also thanks to cross feedback between theorists and experimentalists, but ...
- The future can be a much better place.
GLUINO 7 TeV

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections
CMS Preliminary, $\sqrt{s} = 8$ TeV, $L_{\text{int}} = 3.95$ fb$^{-1}$

Same Sign dileptons with btag selection

Exclusion $\sigma^{\text{prod}}_{\text{Exclusion}} = \sigma^{\text{NLO+NLL}} \pm 1\sigma$
SRs FOR THE EXAMPLE ANALYSES

ATLAS 1-2lepton

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Single electron or muon (+jet)</th>
<th>Missing E_T</th>
<th>Single electron or muon (+jet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{lep}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p_T^e (GeV)</td>
<td>> 25 (20)</td>
<td>> 25 (20)</td>
<td>7 to 25 (6 to 20)</td>
</tr>
<tr>
<td>p_T^μ (GeV)</td>
<td>< 10</td>
<td>< 10</td>
<td>< 7 (6)</td>
</tr>
<tr>
<td>N_{jet}</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 2</td>
</tr>
<tr>
<td>p_T^{jet} (GeV)</td>
<td>> 100, 25, 25</td>
<td>> 80, 80, 80, 80</td>
<td>> 130, 25</td>
</tr>
<tr>
<td>$p_T^{\text{add jet}}$ (GeV)</td>
<td>< 80</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E_T^{miss} (GeV)</td>
<td>> 250</td>
<td>> 250</td>
<td>> 250, 300</td>
</tr>
<tr>
<td>m_T (GeV)</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100, 100</td>
</tr>
<tr>
<td>E_T^{miss}/m_{eff}</td>
<td>> 0.3</td>
<td>> 0.2</td>
<td>> 0.3</td>
</tr>
<tr>
<td>$m_{T_{\text{inc}}}$ (GeV)</td>
<td>> 1200</td>
<td>> 800</td>
<td>—</td>
</tr>
</tbody>
</table>

ATLAS 1lepton+4jets

<table>
<thead>
<tr>
<th>Pre-selection</th>
<th>Signal Region name</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>no leptons, at least three jets, $p_T(j1) > 130$ GeV, $p_T(j2,j3) > 50$ GeV, $E_T^{miss} > 130$ GeV, $E_T^{miss}/m_{eff} > 0.25$, $\Delta\phi_{\text{min}} > 0.4$</td>
<td>SR0-A1</td>
<td>at least one b-tag, $m_{eff} > 500$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[0, \infty]$</td>
<td>SR0-B1</td>
<td>at least one b-tag, $m_{eff} > 700$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[150, 200]$</td>
<td>SR0-C1</td>
<td>at least one b-tag, $m_{eff} > 900$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[200, 275]$</td>
<td>SR0-A2</td>
<td>at least two b-tags, $m_{eff} > 500$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[275, 375]$</td>
<td>SR0-B2</td>
<td>at least two b-tags, $m_{eff} > 700$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[375, 500]$</td>
<td>SR0-C2</td>
<td>at least two b-tags, $m_{eff} > 900$ GeV</td>
</tr>
<tr>
<td>M_{T2} $[500, \infty]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| one lepton, at least four jets $p_T(j1) > 60$ GeV, $p_T(j2,j3,j4) > 50$ GeV, $E_T^{miss} > 80$ GeV, $m_T > 100$ GeV, at least one b-tag | SR1-D | $m_{eff} > 700$ GeV |
| | SR1-E | $m_{eff} > 700$ GeV, $E_T^{miss} > 200$ GeV |
ATLAS MULTIJET

Signal region

<table>
<thead>
<tr>
<th>7j55</th>
<th>8j55</th>
<th>9j55</th>
<th>6j80</th>
<th>7j80</th>
<th>8j80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolated leptons (e, μ)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet p_T</td>
<td>> 55 GeV</td>
<td></td>
<td>> 80 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet $</td>
<td>\eta</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of jets</td>
<td>≥ 7</td>
<td>≥ 8</td>
<td>≥ 9</td>
<td>≥ 6</td>
<td>≥ 7</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} / \sqrt{H_T}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>