Higgs studies at the LHC: what's the ultimate precision?

GGI Institute on

"Understanding the TeV scale through LHC data,

DM and other experiments"

November 2 2012

Michelangelo L. Mangano

TH Unit, Physics Department, CERN

michelangelo.mangano@cern.ch

From the 2002 SLHC study (Gianotti, Mangano, Virdee et al, EPJC, hep-ph/0204087)

(b) Need to reassess $tt+H \rightarrow bb$

(c) Assumed to be TH-systematics limited (in particular, no improvement at SLHC). Review syst_{TH}, also in view of forthcoming LHC data

More recent assessments

M.Peskin, http://arxiv.org/abs/1207.2516v1

Using Duhrssen, ATLAS report ATL-PHYS-2003-030

Observable	Expected Error (experiment \oplus theory)
LHC at 14 TeV with 300 fb^{-1}	
$\sigma(gg) \cdot BR(\gamma\gamma)$	$0.20 \oplus 0.15$
$\sigma(WW) \cdot BR(\gamma\gamma)$	$0.55 \oplus 0.10$
$\sigma(gg) \cdot BR(ZZ)$	$0.21 \oplus 0.15$
$\sigma(WW) \cdot BR(WW)$	$0.27 \oplus 0.10$
$\sigma(WW) \cdot BR(\tau^+\tau^-)$	$0.22 \oplus 0.10$
$BR(\tau^+\tau^-)/BR(ZZ)$	0.38
$BR(\gamma\gamma)/BR(ZZ)$	0.21
$BR(\gamma\gamma)/BR(WW)$	0.21
$\sigma(Wh) \cdot BR(b\overline{b})$	$0.25 \oplus 0.20$
$\sigma(Wh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$
$\sigma(Zh) \cdot BR(b\overline{b})$	$0.25 \oplus 0.20$
$\sigma(Zh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$
$\sigma(t\bar{t}h) \cdot BR(b\bar{b})$	$0.25 \oplus 0.30$
$\sigma(t\bar{t}h) \cdot BR(\gamma\gamma)$	$0.27 \oplus 0.20$
$\sigma(WW) \cdot BR$ (invisible)	$0.2 \oplus 0.24$

Table 1: Input data for the fits to Higgs couplings from LHC measurements.

with $d(\Lambda)$ defined by	
with d(A) defined by	$\frac{g(hAA)}{(IAA)} = 1 + d(A)$
	$g(hAA) _{SM}$
Program	1σ Confidence interval for $d(X)$
LHC at 14 TeV with 300 fb^{-1}	
$h \rightarrow WW$	(-0.075, 0.000)
$h \rightarrow ZZ$	(-0.087, 0.000)
$h \rightarrow b\overline{b}$	(-0.221, 0.067)
$h \rightarrow gg$	(-0.129, 0.137)
$h \rightarrow \gamma \gamma$	(-0.098, 0.052)
$h \rightarrow \tau^+ \tau^-$	(-0.120, 0.151)
$h \rightarrow c\overline{c}$	_
$h \rightarrow t\bar{t}$	(-0.164, 0.139)
$h \rightarrow \text{invisible}$	(-0.000, 0.232)
ILC at 250 GeV with 250 fb ⁻¹	
$h \rightarrow WW$	(-0.051, 0.000)
$h \rightarrow ZZ$	(-0.009, 0.000)
$h \rightarrow bb$	(-0.048, 0.026)
$h \rightarrow gg$	(-0.076, 0.037)
$h \rightarrow \gamma \gamma$	(-0.059, 0.044)
$n \rightarrow \tau^+ \tau^-$	(-0.056, 0.033)
$h \rightarrow cc$	(-0.064, 0.038)
$n \rightarrow tt$	(-0.178, 0.096)
$n \rightarrow \text{invisible}$	(-0.000, 0.058)
ILC at 500 GeV with 500 fb ^{-1}	
$h \rightarrow WW$	(-0.006_0.000_)
$h \rightarrow ZZ$	(-0.007, 0.000)
$h \rightarrow b\bar{b}$	(-0.007, 0.000)
$h \rightarrow aa$	(-0.025, 0.025)
$h \rightarrow \gamma \gamma$	(-0.040, 0.049)
$h \rightarrow \tau^+ \tau^-$	(-0.015, 0.026)
$h \rightarrow c\bar{c}$	(-0.013, 0.028)
$h \rightarrow t\bar{t}$	(-0.096, 0.066)
$h \rightarrow \text{invisible}$	(-0.000, 0.047)

3

More recent assessments

ATLAS submission to Strategy Group,

https://indico.cern.ch/contributionDisplay.py?contribId=174&confld=175067

	with theory systematics	without theory systematics
$H \rightarrow \mu \mu$	0.525	0.505
$ttH, H \rightarrow \mu\mu$	0.733	0.719
$VBF, H \rightarrow \tau \tau$	0.227	0.189
$VBF, H \rightarrow \tau \tau$ (extrap)	0.146	0.114
$H \rightarrow ZZ$	0.156	0.093
$VBF, H \rightarrow WW$	0.668	0.662
$H \rightarrow WW$	0.289	0.259
$VH, H \rightarrow \gamma \gamma$	0.769	0.768
$ttH, H \rightarrow \gamma\gamma$	0.551	0.537
$VBF, H \rightarrow \gamma\gamma$	0.336	0.309
$H \rightarrow \gamma \gamma (+j)$	0.160	0.120
$H \rightarrow \gamma \gamma$	0.145	0.081

Oncer taillies on the signal strength, Soo ID	U	Incertainties	on	the	signal	strength	, 300	fb ⁻
--	---	---------------	----	-----	--------	----------	-------	-----------------

	with theory systematics	without theory systematics
Γ_Z/Γ_g	0.523	0.479
Γ_t/Γ_g	0.519	0.485
$\Gamma_{\tau}/\Gamma_{\mu}$	0.669	0.659
$\Gamma_{\tau}/\Gamma_{\mu}$ (extrap)	0.591	0.576
Γ_{μ}/Γ_{Z}	0.448	0.448
Γ_{τ}/Γ_{Z}	0.417	0.404
Γ_{τ}/Γ_{Z} (extrap)	0.283	0.255
Γ_W/Γ_Z	0.254	0.254
Γ_{γ}/Γ_Z	0.110	0.110
$\Gamma_g \bullet \Gamma_Z / \Gamma_H$	0.156	0.093

Relative uncertainties, **300 fb⁻¹**

	$300 fb^{-1}$	$3000 fb^{-1}$	
ĸv	3.0% (5.6%)	1.9% (4.5%)	In ():
κ_F	8.9% (10%)	3.6% (5.9%)	with TH syst

	with theory systematics	without theory systematics
$H \rightarrow \mu \mu$	0.207	0.164
$ttH, H \rightarrow \mu\mu$	0.260	0.230
$VBF, H \rightarrow \tau \tau$	0.202	0.160
$H \rightarrow ZZ$	0.134	0.047
$VBF, H \rightarrow WW$	0.581	0.574
$H \rightarrow WW$	0.289	0.259
$VH, H \rightarrow \gamma \gamma$	0.253	0.251
$ttH, H \rightarrow \gamma\gamma$	0.206	0.174
$VBF, H \rightarrow \gamma \gamma$	0.160	0.105
$H \rightarrow \gamma \gamma (+j)$	0.119	0.054
$H \rightarrow \gamma \gamma$	0.126	0.040

Uncertainties on the signal strength, **3000 fb⁻¹**

	with theory systematics	without theory systematics
Γ_Z/Γ_g	0.284	0.220
Γ_t/Γ_g	0.230	0.153
$\Gamma_{\tau}/\Gamma_{\mu}$	0.251	0.230
Γ_{μ}/Γ_{Z}	0.142	0.142
Γ_{τ}/Γ_{Z}	0.206	0.181
Γ_W/Γ_Z	0.225	0.225
Γ_{γ}/Γ_Z	0.029	0.029
$\Gamma_g \bullet \Gamma_Z / \Gamma_H$	0.132	0.047

Relative uncertainties, **3000 fb⁻¹**

Also **HH** \rightarrow **bb** $\gamma\gamma$: 260 events/3000fb⁻¹, 3 σ evidence/expt Expect 30% uncertainty on λ_{HHH} , adding also other decay channels, and combining ATLAS+CMS

More recent assessments

CMS submission to Strategy Group,

https://indico.cern.ch/contributionDisplay.py?contribId=177&confld=175067

	Uncertainty (%)			
Coupling	300	fb ⁻¹	3000	fb ⁻¹
	Scenario 1	Scenario 2	Scenario 1	Scenario 2
κ_{γ}	6.5	5.1	5.4	1.5
κ_V	5.7	2.7	4.5	1.0
κ_g	11	5.7	7.5	2.7
κ_b	15	6.9	11	2.7
κ_t	14	8.7	8.0	3.9
$\kappa_{ au}$	8.5	5.1	5.4	2.0

Plus $H\mu\mu$ coupling to better than 5% at 3000 fb^-I

Scenario 1: same systematics as 2012 (TH and EXP) Scenario 2: half the TH syst, and scale with 1/sqrt(L) the EXP syst

Note: assume no invisible Higgs decay contributing to the Higgs width

Note: results of scenario 1 @ 300/fb are \sim consistent with Peskin's estimates

Note: results of scenario 2 @ 3000/fb are almost as powerful as ILC@500GeV !!

TGC's precision: any significant probe of Higgs anomalous couplings?

coupling	LHC	HL-LHC	HE-LHC
g_1^Z	0.0030	0.0019	0.0013
λ_{γ}	0.0009	0.0004	0.0004
λ_Z	0.0023	0.0014	0.0014
κ_{γ}	0.026	0.016	0.019
κ_Z	0.037	0.031	0.022

H coupling ~ N(events) / [Lum x σ_{TH} (coupling=1) x efficiency (selection cuts)]

I 4 TeV	δ(pert. theory)	δ(PDF, α _s)
gg→H	± 10 %	± 7%
VBF (₩₩→H)	± %	± 2%
qq→WH	± 0.5 %	± 4%
(qq,gg)→ZH	± 2 %	± 4%
(qq,gg)→ttH	± 8 %	± 9%

Theoretical uncertainties on production rates

Theoretical uncertainties on modeling of selection cuts.

Ex. jet veto efficiency, required to reduce bg's to $H \rightarrow WW^*$

Banfi, Monni, Salam, Zanderighi, arXiv: 1206.4998

Why is it reasonable to expect progress?

To put it in perspective, W/Z physics started like this, from a score of events:

Looking forward to the first measurement of $p_T(gg \rightarrow H \rightarrow ZZ^*)$ with the 15-20 events that you will have by the end of 2012!

Much will be learned to improve our QCD modeling of Higgs production, form the thousands of $(gg \rightarrow H \rightarrow ZZ^*)$ events that will become available in the future

p_T(H) in qq → qq H

рт(peak)~60 GeV

$p_T(H)$ in gg $\rightarrow H$

рт(peak)~10 GeV

TH systematics for $p_T(H)$ in $gg \rightarrow H$

Studies of jet activity in final states with dijets at large Δy

ATLAS, JHEP 1109 (2011) 053

Use LHC data to improve knowledge of PDFs

8TeV/7TeV and I4TeV/8TeV cross section ratios: the ultimate precision

MLM and J.Rojo, arXiv:1206.3557

E_{1,2}: different beam energies X,Y: different hard processes

$$R_{E_2/E_1}(X) \equiv \frac{\sigma(X, E_2)}{\sigma(X, E_1)} - \frac{\sigma(X, E_2)}{\sigma(X, E_1)}$$

- TH: reduce parameters' systematics: PDF, m_{top} , α_s , at E_1 and E_2 are fully correlated
- TH: reduce MC modeling uncertainties
- EXP: reduce syst's from acceptance, efficiency, JES,

$$R_{E_2/E_1}(X,Y) \equiv \frac{\sigma(X,E_2)/\sigma(Y,E_2)}{\sigma(X,E_1)/\sigma(Y,E_1)} \equiv \frac{R_{E_2/E_1}(X)}{R_{E_2/E_1}(Y)}$$

- TH: possible further reduction in scale and PDF syst's
- EXP: no luminosity uncertainty
- EXP: possible further reduction in acc, eff, JES syst's (e.g. X,Y=W⁺,W⁻)

Following results obtained using best available TH predictions: NLO, NNLO, NNLL resummation when available

<u>8 TeV / 7 TeV:</u> NNPDF results

CrossSection	$r^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	δ_{lpha_s} (%)	$\delta_{ m scales}~(\%)$
$t\bar{t}/Z$	1.231	0.28	-0.23 - 0.24	0.17 - 0.33
$tar{t}$	1.432	0.25	-0.15 - 0.20	0.14 - 0.33
Z	1.163	0.08	-0.04 - 0.08	0.05 - 0.09
W^+	1.148	0.08	-0.01 - 0.06	0.06 - 0.08
W^-	1.167	0.09	-0.03 - 0.06	0.06 - 0.07
W^+/W^-	0.983	0.08	0.00 - 0.02	0.00 - 0.02
W/Z	0.994	0.03	-0.02 - 0.02	0.02 - 0.00
ggH	1.273	0.11	-0.04 - 0.06	0.24 - 0.16
$ggH/tar{t}$	0.889	0.22	-0.15 - 0.11	0.41 - 0.22
$t\bar{t}(M_{tt} \ge 1 \text{TeV})$	1.807	0.73	0.00 - 0.00	0.61 - 0.54
$t\bar{t}(M_{ m tt}\geq 2{ m TeV})$	2.734	3.60	0.00 - 0.00	0.00 - 1.45
$\sigma \text{jet}(p_T \ge 1 \text{TeV})$	2.283	1.02	0.00 - 0.00	5.89 - 0.91
$\sigma \mathrm{jet}(p_T \geq 2\mathrm{TeV})$	7.386	4.70	0.00 - 0.00	2.33 - 1.08

- δ<10⁻³ in W[±] ratios: absolute calibration of 7 vs 8 TeV lumi
- $\delta < 10^{-2}$ in $\sigma(tt)$ ratios
- $\delta_{scale} < \delta_{PDF}$ at large p_T^{jet} and M_{tt} : constraints on PDFs

12

<u>8 TeV / 7 TeV:</u> NNPDF vs MSTW vs ABKM

Ratio	$r^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	$r^{ m th,mstw}$	$\delta_{ m PDF}(\%)$	$\Delta^{mstw}(\%)$	$r^{\mathrm{th,abkm}}$	$\delta_{\rm ABKM}(\%)$	Δ^{abkm} (%)
$t\bar{t}/Z$	1.231	0.28	1.227	0.24	0.37	1.247	0.55	-1.20
$tar{t}$	1.432	0.25	1.428	0.24	0.34	1.452	0.55	-1.35
Z	1.163	0.08	1.163	0.09	-0.02	1.165	0.08	-0.15
W^+	1.148	0.08	1.149	0.10	-0.06	1.150	0.07	-0.18
W^-	1.167	0.09	1.167	0.09	0.02	1.170	0.08	-0.23
W^+/W^-	0.983	0.08	0.984	0.05	-0.08	0.983	0.04	0.05
W/Z	0.994	0.03	0.994	0.02	-0.02	0.994	0.03	-0.04
ggH	1.273	0.11	1.274	0.17	-0.05	1.240	0.16	2.65
$ggH/tar{t}$	0.889	0.22	0.000	0.00	0.00	0.000	0.00	0.00
$t\bar{t}(M_{tt} \ge 1 \mathrm{TeV})$	1.807	0.73	1.791	0.66	0.95	1.855	1.02	-2.61
$t\bar{t}(M_{ m tt}\geq 2{ m TeV})$	2.734	3.60	2.645	2.84	3.61	2.645	4.04	3.61
$\sigma \text{jet}(p_T \ge 1 \text{TeV})$	2.283	1.02	2.290	1.99	0.13	2.268	2.03	1.08
$\sigma \text{jet}(p_T \ge 2 \text{TeV})$	7.386	4.70	7.915	4.29	-7.59	7.695	4.92	-4.59

• Several examples of 2-2.5 σ discrepancies between predictions of different PDF sets

Diboson cross section ratios

8 over 7 TeV	$R^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	δ_{scales} (%)	
WW	1.223	± 0.1	-0.4 - 0.2	
$gg \to WW$	1.330	± 0.2	-0.0 - 0.0	(scale errors missing)
WW/W	1.057	± 0.1	-0.3 - 0.2	
WZ	1.209	± 0.4	-1.2 - 0.4	
ZZ	1.165	± 0.4	-0.6 - 1.1	
$gg \to ZZ$	1.218	± 1.2	-0.0 - 0.0	(scale errors missing)
ZZ/Z	1.000	± 0.4	-0.5 - 1.1	
WW/WZ	1.012	± 0.4	-0.2 - 1.0	
WW/ZZ	1.050	± 0.4	-0.9 - 0.7	
WZ/ZZ	1.038	± 0.5	-1.7 - 0.4	

Xsection ratios as probes of BSM contributions

Assume the final state **X** receives both SM and BSM contributions:

$$\sigma^{exp}(pp \to X) = \sigma^{SM}(pp \to X) + \sigma^{BSM}(pp \to X)$$

Define the ratio:

$$R_{7/8}^X = \frac{\sigma^{exp}(pp \to X; 7 \text{ TeV})}{\sigma^{exp}(pp \to X; 8 \text{ TeV})} = \frac{\sigma_X^{exp}(7)}{\sigma_X^{exp}(8)}$$

We easily get:

$$R_{7/8}^X \sim \frac{\sigma_X^{SM}(7)}{\sigma_X^{SM}(8)} \times \left\{ 1 + \frac{\sigma_X^{BSM}(7)}{\sigma_X^{SM}(7)} \, \Delta_{7/8} \left[\frac{\sigma_X^{BSM}}{\sigma_X^{SM}} \right] \right\}$$

where:

$$\Delta_{7/8} \left[\frac{\sigma_X^{BSM}}{\sigma_X^{SM}} \right] = 1 - \frac{\sigma_X^{BSM}(8) / \sigma_X^{SM}(8)}{\sigma_X^{BSM}(7) / \sigma_X^{SM}(7)} \sim 1 - \frac{\mathcal{L}_X^{BSM}(8) / \mathcal{L}_X^{BSM}(7)}{\mathcal{L}_X^{SM}(8) / \mathcal{L}_X^{SM}(7)} = \Delta_{7/8} \left[\frac{\mathcal{L}_X^{BSM}}{\mathcal{L}_X^{SM}} \right]$$

Therefore:

E.g., assuming $\sigma_{SM}(pp \rightarrow X) = \sigma(gg \rightarrow X)$ and $\sigma_{BSM}(pp \rightarrow X) = \sigma(qq \rightarrow X)^{(*)}$

$$\Delta_{7/8} \left[\frac{\mathcal{L}_X^{BSM}}{\mathcal{L}_X^{SM}} \right] = \Delta_{7/8} \left[\frac{\mathcal{L}^{q\bar{q}}(M)}{\mathcal{L}^{gg}(M)} \right]$$

^(*) e.g. SM: $gg \rightarrow tt$ and BSM: $qqbar \rightarrow Z' \rightarrow tt$

Examples of E-dependence of luminosity ratios

Given the sub-% precision of the SM ratio predictions, there is sensitivity to BSM rate contributions at the level of few% (to be improved with better PDF constraints, especially for 8/14 ratios)

14 TeV / 8 TeV: NNPDF results

CrossSection	$r^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	δ_{lpha_s} (%)	$\delta_{ m scales}$ (%)
$t\bar{t}/Z$	2.121	1.01	-0.84 - 0.75	0.42 - 1.10
$t \overline{t}$	3.901	0.84	-0.51 - 0.66	0.38 - 1.07
Z	1.839	0.37	-0.10 - 0.34	0.28 - 0.18
W^+	1.749	0.41	-0.03 - 0.27	0.31 - 0.18
W^-	1.859	0.39	-0.08 - 0.26	0.32 - 0.13
W^+/W^-	0.941	0.28	0.00 - 0.05	0.00 - 0.04
W/Z	0.976	0.09	-0.07 - 0.04	0.04 - 0.02
ggH	2.564	0.36	-0.10 - 0.09	0.89 - 0.98
$ggH/tar{t}$	0.657	0.75	-0.56 - 0.41	1.38 - 1.05
$t\bar{t}(M_{tt} \ge 1 \text{TeV})$	8.215	2.09	0.00 - 0.00	1.61 - 2.06
$t\bar{t}(M_{ m tt}\geq 2{ m TeV})$	24.776	6.07	0.00 - 0.00	3.05 - 1.07
$\sigma \text{jet}(p_T \ge 1 \text{TeV})$	15.235	1.72	0.00 - 0.00	2.31 - 2.19
$\sigma \text{jet}(p_T \ge 2 \text{TeV})$	181.193	6.75	0.00 - 0.00	3.66 - 5.76

- δ<10⁻² in W[±] ratios: absolute calibration of 14 vs 8 TeV lumi
- $\delta \sim 10^{-2}$ in $\sigma(tt)$ ratios
- $\delta_{scale} < \delta_{PDF}$ at large p_T^{jet} and M_{tt} : constraints on PDFs

14 TeV / 8 TeV: NNPDF vs MSTW vs ABKM

Ratio	$r^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	$r^{\mathrm{th,mstw}}$	$\delta_{ m PDF}(\%)$	$\Delta^{mstw}(\%)$	$r^{\mathrm{th,abkm}}$	$\delta_{\rm ABKM}(\%)$	Δ^{abkm} (%)
$t\bar{t}/Z$	2.121	1.01	2.108	0.95	0.93	2.213	1.87	-3.99
$tar{t}$	3.901	0.84	3.874	0.91	0.97	4.103	1.87	-4.90
Z	1.839	0.37	1.838	0.41	0.04	1.855	0.34	-0.87
W^+	1.749	0.41	1.749	0.49	0.03	1.767	0.30	-0.98
W^-	1.859	0.39	1.854	0.42	0.21	1.879	0.32	-1.11
W^+/W^-	0.941	0.28	0.943	0.19	-0.19	0.940	0.13	0.13
W/Z	0.976	0.09	0.976	0.10	0.03	0.977	0.10	-0.14
ggH	2.564	0.36	2.572	0.57	-0.30	2.644	0.66	-3.12
$ggH/tar{t}$	0.657	0.75	0.000	0.00	0.00	0.000	0.00	0.00
$t\bar{t}(M_{tt} \ge 1 \text{TeV})$	8.215	2.09	7.985	2.02	3.12	8.970	3.58	-8.83
$t\bar{t}(M_{ m tt}\geq 2{ m TeV})$	24.776	6.07	23.328	4.32	6.05	23.328	4.93	6.05
$\sigma \text{jet}(p_T \ge 1 \text{TeV})$	15.235	1.72	15.193	1.62	-1.33	14.823	1.84	1.13
$\sigma \mathrm{jet}(p_T \geq 2\mathrm{TeV})$	181.193	6.75	191.208	3.34	-6.52	174.672	4.94	2.69

• Several examples of 3-4 σ discrepancies between predictions of different PDF sets, even in the case of W and Z rates

Worth exploring in more detail the possible implications of precise measurements of energy (double-)ratios

E.g.

(|) $\sigma_{VBF}(H)$ grows with E differently than $\sigma_{gg}(gg \rightarrow H)$ or $\sigma_{qq}(VH)$: is there something to be learned from

 $R_{H}(8)/R_{H}(14)$

for $R_H = \sigma(gg \rightarrow H) / \sigma_{qq}(VH)$ or $\sigma(gg \rightarrow H) / \sigma_{VBF}(H)$?

- (2) Study ratios of asymmetries at different energies (lepton charge asym, t vs tbar asymm in single-top production, etc)
- (3) Study ratios in different rapidity ranges, or with different kinematical cuts, to increase sensitivity to particular x-ranges of PDF, or to particular dynamical regimes

Things to think through

- Estimates of precision on Higgs couplings are based on fully independent treelevel and loop-induced couplings.
 - What constraints among these, emerging from well motivated BSM scenarios, are worth considering? How does the precision of the measurements improve? (e.g. impact of no-invisible H decays)
- Explore in more detail the correlations between deviations from SM Higgs couplings and direct manifestations of the models causing them.
 - what is "typically" more effective at the LHC: looking for deviations of Higgs couplings or for more direct signatures (VBF scattering, resonances, TGC?)?
 - Define few benchmark scenarios for either situation, to explore in more detail
- Extrapolations to 3000fb⁻¹ typically assume tighter, less efficient, cuts, to reduce bg's due to pile-up.
 - How aggressive can one be, assuming important upgrades of detector/ trigger technologies? Review in particular prospects for VBF and high mass WW scattering studies
 - Optimize luminosity vs detector performance?

Higgs rates at high energy

	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WH	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	<mark>6.8</mark>	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
нн	33.8 fb	<mark>6</mark> .1	8.8	18	29	42

 $R(E) = \sigma(E \text{ TeV})/\sigma(14 \text{ TeV})$