Two Higgs at LEP, Tevatron and the LHC?

Genevieve Bélanger
LAPTH, Annecy-le-Vieux

GB, U. Ellwanger, J.Gunion, Y.Jiang, S. Kraml (1208.4952)

Firenze, November 2012
Introduction

• Higgs discovery at LHC raises many questions
 – Is the new boson the SM Higgs
 – Deviations from SM couplings?
 – A probe of BSM
 – Is it lightest Higgs in MSSM? fine tuning problem
 – Are there more light Higgeses?

• Here consider two possibilities
 – 125GeV Higgs is the heavy Higgs - another one at 100GeV
 – LHC/Tevatron might not have seen the same Higgs: 125-135GeV

• No sign (yet) of supersymmetry at LHC

• Supersymmetry offers a good DM candidate, strong evidence for DM - motivation for beyond standard model
Outline

• Higgs at LHC and LEP
• Higgs in the NMSSM
• Two light Higgses
 – implications for LHC, DM ...
• Two Higgses at Tevatron and LHC
Higgs at LHC

- July 4th 2012: ATLAS and CMS reported a signal consistent with a Higgs boson with mass
 - \(m_h = 125.3^{+/-0.4+/-0.5}\text{GeV} \) (CMS)
 - \(= 126.0^{+/-0.4+/-0.4}\text{GeV} \) (ATLAS)
- Such a mass can be reached in MSSM require large mixing in stop sector, fine-tuning
- Also measure the signal strength in various production/decay channels: give indication whether the new particle is a SM Higgs
- Results not precise enough yet: indications that signal strength is larger than expected in two-photon mode
- If this result is confirmed: precious information/constraints on physics beyond the standard model, e.g. challenge for MSSM
CMS - Higgs results

m_H = 125 GeV

CMS Preliminary
\(\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \)
\(\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1} \)

H \rightarrow bb (VH tag)
H \rightarrow bb (ttH tag)
H \rightarrow \tau\tau (0/1 jet)
H \rightarrow \tau\tau (VBF tag)
H \rightarrow \tau\tau (VH tag)
H \rightarrow \gamma\gamma \text{ (untagged)}
H \rightarrow \gamma\gamma \text{ (VBF tag)}
H \rightarrow WW (0/1 jet)
H \rightarrow WW (VBF tag)
H \rightarrow WW (VH tag)
H \rightarrow ZZ

Best fit \(\sigma/\sigma_{SM} \)

123 124 125 126 127 128 129
m_x (GeV)

\(\sigma/\sigma_{SM} \)

\(\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \)
\(\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1} \)

Combined
H \rightarrow \gamma\gamma \text{ (untagged)}
H \rightarrow \gamma\gamma \text{ (VBF tag)}
H \rightarrow ZZ

gg fusion ; vector boson fusion

lundi 19 novembre 2012
ATLAS - Higgs results

- Also has an excess in two-photon mode
- Results for signal strength relative SM combining all production modes

![ATLAS 2011 - 2012 Higgs Results Diagram](attachment:image.jpg)
LEP results

- Small excess in $e^+e^- \rightarrow Zbb$ ($\sim 2\sigma$) at LEP with $M_h \sim 98\text{GeV}$.
- How can it be consistent with bound $M_h > 114 \text{GeV}$? coupling to ZZ must be much weaker than in SM, only 0.1-0.25 SM
- Could that be a second Higgs h'?
- h' can mix with h and shift its properties, e.g. mixing with h' can suppress hbb, $\text{Br}(h\rightarrow \gamma\gamma)$ can be modified because total width is suppressed
 - $\text{Br}(h\rightarrow \gamma\gamma) \sim \Gamma(h\rightarrow \gamma\gamma)/\Gamma(h\rightarrow bb)$
SUSY Higgs at LEP

- Characteristics of the LEP ‘signal’ at 100GeV
 - e.g. Drees (hep-ph/0502075) the light Higgs of MSSM with suppressed couplings to ZZ (MSSM in non-decoupling limit)

- Is the LHC Higgs the lightest Higgs?
 - This question was addressed in framework of MSSM
 - Heinemeyer et al, 1112.3026
 - Hagiwara et al, 1207.0802
 - Drees, 1210.6507

- As an example of a model that can be consistent with both LEP and LHC observations (including enhanced two-photon) here we will consider NMSSM
NMSSM

- MSSM with additional singlet superfield

\[W_{\text{NMSSM}} = W_F + \lambda \hat{H}_u \cdot \hat{H}_d \hat{S} + \frac{1}{3} \kappa \hat{S}^3, \]

\[V_{\text{NMSSM}}^{\text{soft}} = \tilde{m}_u^2 |H_u|^2 + \tilde{m}_d^2 |H_d|^2 + \tilde{m}_S^2 |S|^2 + (A_\lambda \lambda S H_u \cdot H_d + \frac{A_\kappa}{3} \kappa S^3 + h.c.). \]

- \(\mu \) parameter is related to vev of singlet
 - naturally of order of weak scale

- Higgs sector: 3 CP-even, 2 CP-odd + charged Higgs
 - much richer phenomenology than in MSSM
 - one singlet CP-even scalar + one singlet CP-odd scalar

- Also extra neutralino \(\rightarrow \) singlino
 - can impact dark matter properties
Higgs mass in NMSSM

- Light Higgs mass: new contribution at tree level
- Increase in Higgs mass \(m_h^2 < M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta \)
- largest increase is for low values of \(\tan\beta \)
- Easier to reach 125GeV even without very large stop corrections (Ellwanger et al JHEP1109.105; Hall et al 1112.2703)

- Fine tuning:
 \[
 m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_t^2}{m_i^2} + \frac{X_t^2}{m_i^2} \left(1 - \frac{X_t^2}{12m_i^2} \right) \right].
 \]
 \[
 M_Z^2 \approx -2\mu^2 + \frac{2(m^2_{H_u} - \tan^2 \beta m^2_{H_u})}{\tan^2 \beta - 1}.
 \]
 \[
 \delta m^2_{H_u} = -\frac{3y_t^2}{8\pi^2} \left(m_Q^2 + m_{u_3}^2 + |A_t|^2 \right) \ln \left(\frac{\Lambda}{m_t} \right)
 \]
 - in NMSSM with lambda~1 stop mass/mixing not so large
 - fine-tuning reduced in CNMSSM (Ellwanger et al 1107.2472)

- Doublet singlet mixing - the lightest Higgs scalar can be very light escape LEP bounds
• Mixing can lead to reduce hbb, reduced total width--> increased branching ratios

\[H_1 = S_{1,d} H_d + S_{1,u} H_u + S_{1,s} S \]

\[c_{D_i} = \frac{S_{i,d}}{\cos \beta}, \quad c_{U_i} = \frac{S_{i,u}}{\sin \beta}, \quad c_{V_i} = \cos \beta S_{i,d} + \sin \beta S_{i,u} \]

• Possible to increase branching ratios in two photons.
 – Ellwanger, 1012.1201,1112.3548
 – Does not require light sparticles

\[R_{gg}^{h_i}(X) \equiv \frac{\Gamma(h_i \rightarrow gg) \ BR(h_i \rightarrow X)}{\Gamma(h_{SM} \rightarrow gg) \ BR(h_{SM} \rightarrow X)}, \quad R_{VBF}^{h_i}(X) \equiv \frac{\Gamma(h_i \rightarrow WW) \ BR(h_i \rightarrow X)}{\Gamma(h_{SM} \rightarrow WW) \ BR(h_{SM} \rightarrow X)} \]

• \(R_{gg}(\gamma \gamma) > 1 \) for \(m_H = 125 \text{GeV} \), when \(\lambda \) large (determines singlet-doublet mixing), \(\tan \beta \) small
• $R_{gg\gamma\gamma}>1$ - associated with small μ, light charginos because singlet mass light

$$m_S^2 = \kappa \mu / \lambda (A_\kappa + 4\kappa \mu / \lambda)$$

• Signal strength for Higgs in different channels

• Complete independent set of R^h

$$R^h_{gg}(WW), \ R^h_{gg}(bb), \ R^h_{gg}(\gamma\gamma), \ R^h_{VBF}(WW), \ R^h_{VBF}(bb), \ R^h_{VBF}(\gamma\gamma).$$

• Note for LEP : $R_{VBF}(bb)$
• Can one explain $M_{h1} \sim 100 + M_{h2} \sim 125$ with $R_{gg\gamma\gamma} > 1$ in NMSSM?

• Framework: NMSSM with semi-unified GUT scale soft SUSY breaking
 – $m_{1/2}, m_0, A_0, m_{2_{Hu}}, m_{2_{Hd}}, m_S, A_\lambda, A_\kappa, \tan\beta$

• Take into account Higgs constraints in NMSSMTools + B physics, DM (WMAP upper bound and Xenon100), g-2

• Note that g-2 does not explain discrepancy with SM
Higgs signal strength

- Two Higgses at 98GeV+125GeV

- For discovery of light Higgs in bb channel need to increase current LHC sensitivity (R~1) by a factor 4-10 -> higher luminosity LHC run

- h_1 in two-photon very small R~0.02
Other NMSSM particles

- Other particles below TeV scale: pseudoscalars, neutralino, chargino, stop

![Graphs showing mass distributions for different particles](image_url)
Dark matter issues

- 5 neutralinos
 - LSP either higgsino or singlino
 - higgsino annihilate into W pairs -\(\Omega h^2 \sim 0.1\) because just below threshold
 - Singlino component annihilate via singlet Higgs exchange
Direct detection

- Searches for DM scattering with nuclei in large detectors - best limits from Xenon100 (2012)

- DM direct detection: from just below Xenon to quite a bit suppressed

This division is clearly seen in Figlv. We note that to a reasonable approximation the singlino fraction of the \(\chi_0^1\) is given by minus the Higgsino fraction plotted in the left-hand window of the figure. Dark matter eDMf properties for the surviving NMSSM parameter points are summarized in Figlv. Referring to the figure, we see a mixture of blue circle points (those with \(\Omega h^2 < n_x^f\)) and orange diamond points (those with \(n_x^f < \Omega h^2 < n_x^f\)), i.e. in the WMAP window. The main mechanism at work to make \(\Omega h^2\) too small for many points is rapid \(\chi_0^1\) annihilation to \(W^+W^-\) due to a substantial Higgsino component of the \(\chi_0^1\). Indeed, the relic density of a Higgsino LSP is typically of order \(\Omega h^2 \approx 10^{-4}\) - 10^{-5}\.

As the Higgsino component declines, \(\Omega h^2\) increases and except for the strongly overlapping points with \(m_{\chi_0}^1 < m_W\) for which \(\chi_0^1\) annihilation is below threshold, it is the points for which the LSP is dominantly singlino that...
Indirect detection

- Annihilation of pairs of DM into SM particles: decay products observed
- FermiLAT: Photons from Dwarf Spheroidal Galaxies probe typical DM annihilation cross section at freeze-out for light DM
 \[< \sigma v > = 3 \times 10^{-26} \text{cm}^3/\text{sec} \]
- Gamma-ray line at 130GeV
 - Weniger, arXiv:1204.2797

\[\langle \sigma v \rangle (\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma) \sim 10^{-27} \text{cm}^3/\text{sec} \]
Photons

- In general NMSSM (no GUT scale unification) gamma-ray line possible (Das, Ellwanger, Mitropoulos, 1206.2639)
 \[\langle \sigma v \rangle (\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow a_1 \rightarrow \gamma \gamma) \]

- If \(2m_{\text{LSP}} \sim m_A \) (extremely fine tuned) can have resonance enhancement at \(v \sim 0.001c \)
 \[
 \nu \sigma(v) \propto \frac{1}{(s - m_A^2)^2 + \Gamma_A^2 m_A^2} = \frac{1}{16 m_\chi^4 (v^2/4 + \Delta)^2 + \Gamma_A^2 (1 - \Delta)/4 m_\chi^2}
 \]

- In semi-unified NMSSM with 98+125GeV Higgs and enhanced two-photon width: gamma-ray line much suppressed and limits from Fermi dSPh’s easily satisfied
Apart from possible signals in future ton-scale direct detection experiments, for the moment no constraints on this scenario from DM observables other than relic density.

How to probe further this scenario?
How to probe further this scenario?

• LHC:
 – h_1 (bb) with high luminosity
 – a_1: light but mostly singlet - low rates
 – a_2: mainly doublet better prospect (no dedicate study yet)
 • $gg \rightarrow a_2 \rightarrow tt$ (~0.01pb for mass 500 GeV)
 • or $a_2 \rightarrow a_1 h_1 \rightarrow 4b$
 • $gg \rightarrow a_2, h_3 \rightarrow \tau\tau$
 • Current limit at 200GeV ~8
 – need high luminosity
• Charged Higgs
 – 20% branching ratio into h_1W
 – possible detection of h_1 with high luminosity

• Higgses from neutralino decays
 – several channels have BR
 ~10% for decay into h_1
... at future colliders

- **ILC**
 - Large rate for Zh$_1$
 - In some cases can detect all 5 neutral Higgses

![Graph showing cross sections for Higgs production at an e$^+$e$^-$ collider as functions of the center of mass energy \sqrt{s} for three illustrative mass spectra as tabulated in Table 1](image.png)

scenario I

For low Higgs masses, the required electron collider could have energy of order m_{Higgs}/v. In the present context, it is of interest to assess the extent to which a $\gamma\gamma$ collider would be able to study the neutral NMSSM Higgs bosons. This is determined by the ratio of the $\gamma\gamma$ coupling squared of the given Higgs boson to that of the SM Higgs. In Figure we present plots of $\sigma_{\gamma\gamma}$ as a function of m_h for $h = h_1, h_2, h_3, a_1, a_2$ for masses below ~ 5 TeV. The fairly SM-like h_2 at ~ 5 GeV can be studied easily at such a collider since its $\gamma\gamma$ coupling is close to SM strength. For example, at an e^+e^- collider with the optimal $E_{ee} = 6$ GeV, a 5 GeV SM Higgs has a cross section of $\sim 10^{-1}$ fb. After two years of operation, equivalent to $L = 5$ fb$^{-1}$, one can measure the $b\bar{b}, W^+W^-$, $\gamma\gamma$...
... at future colliders(2)

• Photon collider
 – h_2 - SM-like coupling to two-photons: large cross section can measure also $b\bar{b}$/WW partial widths
 – h_1, a_1 - suppressed because singlet but important contribution from light chargino loop
• Possibility of having a Higgs at 98 GeV hidden in LEP data - fits in the NMSSM with distinctive signatures

• LHC can look for it in some standard search channels, and remains to be seen how well new channel can be exploited to search for h_1, a_1

• Note that in NMSSM light singlet can have any mass
Two Higgses at LHC and Tevatron
Could it be that Tevatron and LHC have seen two Higgs bosons?

- At Tevatron enhanced signal in VH,H->bb between 110-140GeV best value, M_H~135GeV,
- \(\tau\tau\) mode: CMS has deficit at 125GeV for VBF-tag mode, excess at 132 GeV
- Can all these small deviations be compatible with two lightest Higgses in NMSSM?
• Signal strength for 125 GeV

\[R_1^{\gamma\gamma}(ggF) \simeq 1.66 \pm 0.36 \quad R_1^{ZZ(*)}(ggF) \simeq 1.02 \pm 0.38 . \]

• Signal strength for 135 GeV

\[R_2^{\gamma\gamma}(ggF) \simeq 0.45 \pm 0.3 \quad R_2^{ZZ(*)}(ggF) \lesssim 0.2 \]

\[R_2^{\tau\tau}(VBF) < 1.81 \quad R_{135}^{bb}(VH) \simeq 3.53 + 1.26 - 1.16 \]
• ‘Fit’ CMS+Tevatron Higgs signal
• Here ignore DM requirement

<table>
<thead>
<tr>
<th>λ</th>
<th>A_s</th>
<th>A_{κ}</th>
<th>A_χ</th>
<th>A_{μ}</th>
<th>A_{χ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>0.253</td>
<td>1.77</td>
<td>1.64</td>
<td>143</td>
<td>337</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>1.77</td>
<td>0.253</td>
<td>0.64</td>
<td>143</td>
<td>337</td>
</tr>
<tr>
<td>M_{H_1}</td>
<td>125</td>
<td>136</td>
<td>289</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>M_{H_2}</td>
<td>136</td>
<td>289</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{H_3}</td>
<td>289</td>
<td>272</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higgs</th>
<th>S_{l_d}</th>
<th>S_{l_u}</th>
<th>S_{d_u}</th>
<th>c_{D_1}</th>
<th>c_{U_1}</th>
<th>c_{V_1}</th>
<th>c_{γ_1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>-0.24</td>
<td>-0.67</td>
<td>0.70</td>
<td>-0.48</td>
<td>-0.77</td>
<td>-0.70</td>
<td>0.77</td>
</tr>
<tr>
<td>H_2</td>
<td>0.54</td>
<td>0.51</td>
<td>0.67</td>
<td>1.09</td>
<td>0.58</td>
<td>0.71</td>
<td>0.54</td>
</tr>
<tr>
<td>H_3</td>
<td>0.81</td>
<td>-0.54</td>
<td>-0.24</td>
<td>1.64</td>
<td>-0.62</td>
<td>-0.07</td>
<td>0.65</td>
</tr>
</tbody>
</table>

- At Tevatron - poor mass resolution in bb + production $H_1 > H_2$
- $R^{bb}(VH) \simeq R^{bb}_{1}(VH) + 1.3 \times R^{bb}_{2}(VH) \sim 1.3$
- Below central value of Tevatron
- More data at LHC ($\gamma\gamma$) will confirm/rule out this possibility
- Search for H_3 - look at decays into light Higgs/ neutralino pairs
CONCLUSION

• Higgs searches at LHC could still provide exciting news

• Important to look for light Higgses - in particular mainly singlet Higgs at 100GeV

• NMSSM is extension of MSSM that provide a Higgs 125 GeV with possibly enhanced di-photon rate and some extra light Higgs state