CP-violating momentum asymmetries at the LHC

Monika Blanke

“Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments”
Galileo Galilei Institute, Firenze
November 14, 2012
Outline

1. CP violation - a quick overview
2. A calculable strong phase
3. CP violating momentum asymmetries
4. Conclusions

What’s so interesting about CP violation?

Think of CP symmetry as a mirror...
What’s so interesting about CP violation?

Think of CP symmetry as a mirror...

This mirror is broken: Image does not match the original!
What’s so interesting about CP violation?

How does Dracula shave?

http://www.derbagger.org/files/14-vampir.jpg
CP violation - a quick overview

Observation of CP violation

\textbf{SM}: single source of CP violation ➤ phase δ of CKM matrix

- CP violation so far only observed in flavor violating K and B decays
- CKM picture works very well
- constraints on new physics (NP) up to scales $\mathcal{O}(10^5 \text{ TeV})$!
- however small tensions in UT fit (ε_K vs. $S_{\psi K_S}$)

➤ Is the CKM phase the end of the story?
Cogito ergo sum

baryon asymmetry of the universe

\[\eta = \frac{\eta_B - \eta_{\bar{B}}}{\eta_\gamma} \sim 6 \cdot 10^{-10} \]

Sakharov conditions for baryogenesis:

1. Baryon number violation
2. C and CP violation
3. Interactions out of thermal equilibrium

all three conditions fulfilled in the SM
however CP violating effects are too small!

➢ NP must introduce additional CP violation
The puzzle

New sources of CP violation must be well hidden from UT fit:

- large NP scale
- flavor alignment, such that effects are hidden from most dangerous observables
- CP violation “decoupled” from flavor sector
New sources of CP violation must be well hidden from UT fit:

- large NP scale ➢ *boring phenomenology*
- flavor alignment, such that effects are hidden from most dangerous observables ➢ *flavor symmetries?*
- CP violation “decoupled” from flavor sector ➢ *non-flavor tests needed!*

➢ different scenarios lead to very distinct signatures
Indirectly: NP contributions to low energy observables
- flavor and CP violating meson decays
- CP violation in the lepton sector
- electric dipole moments
- ...

➢ high precision required, NP effects often hidden by dominant SM contribution, QCD effects
Ways to access new sources of CP violation

1 **indirectly:** NP contributions to low energy observables
 - flavor and CP violating meson decays
 - CP violation in the lepton sector
 - electric dipole moments
 - ...
 - high precision required, NP effects often hidden by dominant SM contribution, QCD effects

2 **directly:** CP violation at colliders
 - NP particle production cross-section
 - NP particle decays
 - high energies required, but SM background can often be reduced to a large extent
Ways to access new sources of CP violation

1. **indirectly:** NP contributions to low energy observables
 - flavor and CP violating meson decays
 - CP violation in the lepton sector
 - electric dipole moments
 - ...
 ➢ high precision required, NP effects often hidden by dominant SM contribution, QCD effects

2. **directly:** CP violation at colliders
 - NP particle production cross-section
 - NP particle decays
 ➢ high energies required, but SM background can often be reduced to a large extent
Requirements for observing CP violation

CP symmetry relates particles and anti-particles
➢ CP violation can manifest itself through

\[\Gamma(A \to f) \neq \Gamma(\bar{A} \to \bar{f}) \]

necessary conditions:

1. two contributions of comparable size to decay amplitude \(A_f \)
2. different “weak” CP violating phases
3. different “strong” CP conserving phases
More explicitly...

\[\mathcal{A}_f = |a_1|e^{i(\delta_1 + \phi_1)} + |a_2|e^{i(\delta_2 + \phi_2)} \]

\[\bar{\mathcal{A}}_{\bar{f}} = |a_1|e^{i(\delta_1 - \phi_1)} + |a_2|e^{i(\delta_2 - \phi_2)} \]

- **CP violating phases** \(\phi_i \) result from complex parameters in the Lagrangian \(\Rightarrow \) appear with opposite sign in \(\mathcal{A}_f \) and \(\bar{\mathcal{A}}_{\bar{f}} \)

- **CP conserving phases** \(\delta_i \) stem from contributions of (strong) final state interactions or intermediate on-shell particles (propagator) \(\Rightarrow \) no sign change under CP conjugation

\[a_{\text{CP}} = \frac{\Gamma(A \rightarrow f) - \Gamma(A \rightarrow \bar{f})}{\Gamma(A \rightarrow f) + \Gamma(A \rightarrow \bar{f})} \approx -\frac{2|a_1||a_2|}{|a_1|^2 + |a_2|^2} \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) \]
Strong phase from intermediate state propagation

general structure:

\[A = \mathcal{V}_1 \frac{1}{q^2 - m^2 + im\Gamma} \mathcal{V}_2 \]
A calculable strong phase

Strong phase from intermediate state propagation

general structure:

$$A = \mathcal{V}_1 \frac{1}{q^2 - m^2 + im\Gamma} \mathcal{V}_2$$

- $\mathcal{V}_{1,2}$ contain Lagrangian parameters \Rightarrow weak phase

$$\phi = \text{arg} (\mathcal{V}_1 \mathcal{V}_2)$$
A calculable strong phase

Strong phase from intermediate state propagation

general structure:

$$ A = V_1 \frac{1}{q^2 - m^2 + im\Gamma} V_2 $$

- $V_{1,2}$ contain Lagrangian parameters ➢ **weak phase**

$$ \phi = \arg (V_1 V_2) $$

- phase of Breit-Wigner denominator is CP even ➢ **strong phase**

$$ \delta = \arg \left(\frac{1}{q^2 - m^2 + im\Gamma} \right) $$
Conditions for CP violation

Observable CP violation \(\Rightarrow \) two interfering diagrams

1. \(|A_1| \sim |A_2|\)
2. different weak phases \(\phi_1 \neq \phi_2\)

\(\Rightarrow\) “easy” to obtain from different (combinations of) Lagrangian parameters
Conditions for CP violation

Observable CP violation ➞ two interfering diagrams

1. \(|A_1| \simeq |A_2| \)
2. different weak phases \(\phi_1 \neq \phi_2 \)

➢ “easy” to obtain from different (combinations of) Lagrangian parameters

1. different strong phases \(\delta_1 \neq \delta_2 \) from propagating particles with

\[
\delta_i = \arg \left(\frac{1}{q_i^2 - m_i^2 + im_i \Gamma_i} \right)
\]

- different mass and/or width: distinct particles
 ➢ e.g. meson oscillations, several overlapping resonances
- different amount of virtuality: possible for identical particles
 ➢ case we focus on now!
theory of scalar particles $X_{1}\pm$, $X_{0,3}^{0}$, Y^{\pm} with interaction Lagrangian

$$\mathcal{L}_{\text{int}} = -aX_{0}^{0}X_{1}^{+}Y^{-} - bX_{3}^{0}X_{1}^{+}Y^{-} + \text{h.c.}$$

complex couplings a, b, universal for $X_{1}\pm$ and $X_{2}\pm$

one physical CP violating phase: $\varphi = \arg(ab^*)$

➢ any CP violating process must involve both couplings a and b
A calculable strong phase

The decay $X_0^0 \rightarrow X_1^+ X_1^- X_3^0$

$A_1 = a^* b \frac{1}{q_{23}^2 - m_Y^2 + i m_Y \Gamma_Y}$

$A_2 = ab^* \frac{1}{q_{13}^2 - m_Y^2 + i m_Y \Gamma_Y}$

- different weak and strong phases due to different orderings of final states!
- decay is its own CP conjugate \Rightarrow integrated CP asymmetry vanishes trivially
A calculable strong phase

Differential decay rate – Dalitz plot

\[X_0^0 \rightarrow X_1^+ X_1^- X_3^0 \]

\[q_{13}^2 = (p_3 + p_+)^2 \]
\[q_{23}^2 = (p_3 + p_-)^2 \]

benchmark parameters

\[m_0 = 400 \text{ GeV} \]
\[m_Y = 2/3m_0 \]
\[\Gamma_Y = 1/10m_Y \]
\[m_1, m_3 = 0 \]

CP violation = difference between \(X_1^+(p) \) and \(X_1^-(p) \)

\[A_{\text{CP}} = \frac{N(q_{13}^2 > q_{23}^2) - N(q_{13}^2 < q_{23}^2)}{N} \]
The ideal asymmetry

\[q_{13}^2 = (p_3 + p_+)^2 = (p_0 - p_-)^2 = m_0^2 - 2m_0 p_{RF} \]
\[q_{23}^2 = m_0^2 - 2m_0 p_{RF} \]

Dalitz plot asymmetry can be reduced to momentum asymmetry in the rest frame of \(X_0 \)

\[A_{CP}^{RF} = \frac{N(p_-^{RF} > p_+^{RF}) - N(p_+^{RF} > p_-^{RF})}{N} \]

Our benchmark parameter point: \(A_{CP}^{RF} = 0.405 \)

In a realistic hadron collider environment:
- loss of kinematic information (\(X_0 \) rest frame often unknown)
- combinatorics
- energy smearing effects
Survey of observables

Study three scenarios for X_0 production in pp collisions

- resonant production
- pair production
- production via decay

and identify observables that best reproduce the ideal asymmetry

Technical details

- pp collisions at $\sqrt{s} = 14$ TeV
- 10^5 signal events simulated with MadGraph5
- parton level analysis with no cuts, no background
- energy smearing for X_1^\pm like muons at CMS

$$\frac{\Delta p_T}{p_T} = 0.08 \frac{p_T}{1 \text{ TeV}} \oplus 0.01$$

- assume that X_3^0 escapes detection
Resonant production

\[pp \rightarrow X_0^0 \rightarrow X_1^+ X_1^- X_3^0 \]

\(X_0 \) rest frame unknown due to longitudinal boosts \(\geq p_T \) asymmetry

\[
A_{CP}^{p_T} = \frac{N(p_T, - > p_T, +) - N(p_T, + > p_T, -)}{N}
\]

For our benchmark point:

- \(A_{CP}^{p_T} = 0.209 \) (compared to \(A_{CP}^{RF} = 0.405 \))
- no significant suppression by energy smearing effects

Note that triple product asymmetries vanish trivially!
Pair production

Extend toy model by a neutral scalar S

$$pp \rightarrow S \rightarrow X_0^0 X_0^0 \rightarrow (X_1^+ X_1^- X_3^0)(X_1^+ X_1^- X_3^0)$$

Cross section largest near X_0^0 threshold \Rightarrow small $p_T(X_0^0)$ expected

Monte Carlo: average $p_T(X_0^0) \sim 200$ GeV

Consider again p_T asymmetry

$$A_{CP}^{p_T} = 0.127$$

no significant suppression by combinatoric effects
Production via decay

\[pp \rightarrow S \rightarrow \Phi\Phi \, , \quad \Phi \rightarrow \phi X_0^0 \rightarrow \phi X_1^+ X_1^- X_3^0 \]

enhanced cross-section possible, as \(\Phi, \phi \) may be colored

If \(\Phi \) is boosted, its momentum is aligned with \(\phi \) and \(X_0^0 \)

\(\begin{align*}
\mathcal{A}_{\text{CP}}^{\phi_T} &= \frac{N(p_T, -\phi > p_T, +\phi) - N(p_T, +\phi > p_T, -\phi)}{N}, \\
p_{T,ij} &\equiv \frac{|p_i \times p_j|}{|p_j|}
\end{align*} \)

With \(m_\Phi = 1 \text{ TeV}, m_\phi = 0 \) and CMS jet energy smearing for \(\phi \):

\[\mathcal{A}_{\text{CP}}^{\phi_T} = 0.122 \]

close to the pair production case!
The impact of spin

What if X_0^0, X_1^\pm and X_3^0 were chiral fermions?

$$L_{\text{int}} = -\lambda_1 Y^+ \bar{X}_0^0 P_L X_1^- - \lambda_2 Y^+ \bar{X}_3^0 P_L X_1^- + \text{h.c.}$$

helicity flip on the X_0 and X_3 line required

➢ chiral suppression of asymmetry by $\frac{m_3}{m_0}$
A supersymmetric example

\[\chi_2^0 \rightarrow \mu^+ \mu^- \chi_1^0 \] sensitive to relative phase of the gaugino masses \(M_1 \) and \(\tilde{M}_1 \) (relevant for MSSM baryogenesis)

Ideal asymmetry \(A_{\text{CP}}^{\text{RF}} \lesssim 1\% \) even in favored region of parameter space (chiral suppression and small smuon width...)

\begin{align*}
\chi_2^0 & \rightarrow \mu^- \mu^+ \chi_1^0 \\
\tilde{\mu} & \rightarrow \mu^+ \mu^- \chi_1^0 \\
\chi_2^0 & \rightarrow \mu^- \mu^+ \chi_1^0 \\
\tilde{\mu} & \rightarrow \mu^- \mu^+ \chi_1^0
\end{align*}
Majorana neutrino decay

Type-I seesaw model with weak scale RH neutrino

\[\mathcal{L}_{N_1} = i \bar{N}_1 \phi N_1 - \left(\frac{1}{2} \bar{N}_1 m_{N_1} N_1^C + \text{h.c.} \right) - \left(Y_\nu \bar{N}_1 \tilde{\phi}^\dagger l_L + \text{h.c.} \right) \]

similar pattern, but with different intermediate resonances

- no chiral suppression
- \(A_{\text{CP}}^{RF} \lesssim 5\% \) for \(m_{N_1} = 90 \text{ GeV} \)
- decreases quickly for larger \(m_{N_1} \)
Summary

1. new physics at the TeV scale generally introduces new sources of CP violation

2. momentum asymmetries provide an alternative tool to access CP violation at the LHC
 - identify direction in which parent particle is boosted
 - construct momentum asymmetry transverse to that direction

3. depending on the NP scenario and the production mechanism, sizable effects are possible