ON A CANONICAL QUANTIZATION OF PURE 3D ADS GRAVITY

Work in progress with Jihun Kim

OUTLINE

- CLASSICAL ADS GRAVITY AS as CHERN-SIMONS SL(2,R)XSL(2,R)
- CLASSICAL PHASE SPACE OF SL(2,R)
 CONTAINS TEICHMULLER SPACE
- HOLOMORPHIC QUANTIZATION: WHICH NORM?
- A CONNECTION WITH CFTs

- GLOBAL DIFFEOMORPHISMS AND THE MODULAR GROUP ACTION ON WAVE FUNCTIONS
- NORMALIZABILITY OF THE WAVE FUNCTION
- AN IMPROVED CONNECTION WITH CFTs: HOLOGRAPHY AS SUPERSELECTION PROJECTION
- THE CASE OF c<I
- TENTATIVE CONCLUSIONS

CLASSICAL GRAVITY AS CHERN-SIMONS $A = e/l - \omega, \qquad \tilde{A} = e/l + \omega$ $S_E = S(A) - S(\tilde{A})$ $S = \frac{k}{4\pi} \int \operatorname{tr} (AdA + \frac{2}{3}AAA), \qquad k = \frac{l}{4G}$

CLASSICAL GRAVITY AS CHERN-SIMONS

$$A = e/l - \omega, \qquad \tilde{A} = e/l + \omega$$

$$S_E = S(A) - S(\tilde{A})$$

$$S = \frac{k}{4\pi} \int \operatorname{tr} (AdA + \frac{2}{3}AAA), \qquad k = \frac{l}{4G}$$

IN CANONICAL QUANTIZATION 3D SPACE IS

$$M = \Sigma \times R$$

CONSTRAINT EQUATION (GAUSS LAW)

$$F|_{\Sigma} = 0 \to A = dUU^{-1}$$
 (locally)

THE SPACE OF FLAT CONNECTIONS MODULO GAUGE TRANSFORMATIONS IS A DIRECT PRODUCT OF TWO SPACES: (EQUIVALENCE CLASSES OF) BOUNDARY GAUGE TRANSFORMATIONS TIMES A FINITE DIMENSIONAL SPACE

GEOMETRICALLY:

FINITE DIMENSIONAL SPACE WITH SEVERAL CONNECTED COMPONENTS.

WHEN ALL HOLONOMIES ARE HYPERBOLIC AND MANIFOLD HAS ONE BOUNDARY COMPONENT THIS SPACE IS

FINITE DIMENSIONAL SPACE WITH SEVERAL CONNECTED COMPONENTS.

WHEN ALL HOLONOMIES ARE HYPERBOLIC AND MANIFOLD HAS ONE BOUNDARY COMPONENT THIS SPACE IS

 $T_{\Sigma} \times \widehat{SL}(2,R)/S_1$

RESTRICT
$$A|_{\partial \Sigma} = \begin{pmatrix} 0 & L(t+\phi) \\ 1 & 0 \end{pmatrix}$$

MODULI SPACE IS $T_{\Sigma} \times Diff(S_1)/S_1$

THIS SPACE ADMITS A KAHLER STRUCTURE AND A KAHLER FORM: THE WEYL-PETERSSON FORM

THE WEIL-PETERSSON FORM HAS A KAHLER POTENTIAL WHICH ALLOWS TO QUANTIZE THE TEICHMULLER SPACE IN HOLOMORPHIC QUANTIZATION. THE RESULT IS JUST A (SUM OF PRODUCT) HILBERT SPACES

$\mathcal{H} = \sum_L V_L \otimes H_T,$

 H_T = holomorphic functions on T, tr exp $D = 2 \cosh L$

 $V_L =$ Irrep of Virasoro

THE WEIL-PETERSSON FORM HAS A KAHLER POTENTIAL WHICH ALLOWS TO QUANTIZE THE TEICHMULLER SPACE IN HOLOMORPHIC QUANTIZATION. THE RESULT IS JUST A (SUM OF PRODUCT) HILBERT SPACES

$\mathcal{H} = \sum_L V_L \otimes H_T,$

 H_T = holomorphic functions on T, tr exp $D = 2 \cosh L$

 $V_L =$ Irrep of Virasoro

HOW DO STATE VECTORS

 $\psi \in H_T$

TRANSFORM UNDER THE MODULAR GROUP?

 $\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$

NORM:

$$\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$$

MODULAR TRANSFORMATIONS ACT AS UNITARY TRANSFORMATIONS.

NORM:

$$\langle \psi_I | \psi_J \rangle = \int_T \bar{\psi}_I \exp K \psi_J$$

MODULAR TRANSFORMATIONS ACT AS UNITARY TRANSFORMATIONS.

SINCE

 $K \to K + F + \overline{F}, \qquad F = \text{holomorphic}$

THEN

$$\psi_I \to U_I^J e^{-F} \psi_J, \qquad U_I^L U_L^J = \delta_I^J$$

THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

THIS CORRECTION IS THE HOLOMORPHIC ANOMALY OF CFTs THE KAHLER POTENTIAL FOR THE WEYL PETERSSON FORM OF THE TEICHMULLER SPACE FOR PUNCTURED SURFACE IS KNOWN: ZOGRAF AND TAKHTAJAN PROVED THAT IT EQUALS THE (REGULARIZED) LIOUVILLE ACTION COMPUTED ON SHELL:

$$K_0 = S_L|_{on \ shell} + H(t, \bar{t})$$

THIS CORRECTION IS THE HOLOMORPHIC ANOMALY OF CFTs

FOR THE PUNCTURED SPHERE THIS IS THE POLYAKOV CONJECTURE (TAKTAJAN, ZOGRAF, MENOTTI,..)

THE SYMPLECTIC FORM FOR A RIEMANN SURFACE WITH A BOUNDARY OF LENGTH L IS (CO-HOMOLOGOUS TO) THE SUM OF THE SYMPLECTIC FORM FOR A SURFACE WITH A PUNCTURE PLUS THE FIRST CHERN CLASS OF THE TANGENT BUNDLE AT THE PUNCTURE (MIRZAKHANI, USING DUISTERMAAT-HECKMAN)

$$\omega_L \approx \omega_0 + \frac{1}{2}L^2 c_1(T)$$

ITS KAHLER POTENTIAL IS THEN (SEE ALSO DIJKGRAAF, VERLINDE, VERLINDE, 1990)

$$K_L = K_0 + \frac{1}{2}L^2 \log g_{z\bar{z}}|_{z=w}$$

THE MEASURE THAT WE GET FROM THE KAHLER NORM THAT WE FIND IS

$$e^{K} = \left. e^{-S_{L}^{-6k} + 2h\phi + H(t,\bar{t})} \right|_{\phi} |F|^{-2}$$

THE MEASURE THAT WE GET FROM THE KAHLER NORM THAT WE FIND IS

THE MEASURE THAT WE GET FROM THE KAHLER NORM THAT WE FIND IS

$$e^{-S_L^{26-c}+2h\phi+H(t,\bar{t})}\Big|_{\phi}|F|^{-2} \to \langle \int_{\Sigma} e^{2\alpha\phi} \rangle_{26-c}^L Z^{bc} (\det \Im\Omega_{ij})^{c/2} Z_c^S$$

PARTITION FUNCTION OF bc SYSTEM

$$e^{-S_L^{26-c}+2h\phi+H(t,\bar{t})}\Big|_{\phi}|F|^{-2} \to \langle \int_{\Sigma} e^{2\alpha\phi} \rangle_{26-c}^L Z^{bc} (\det \Im\Omega_{ij})^{c/2} Z_c^S$$

THIS PRODUCT FACTORIZES INTO

 $e^{H(t,\bar{t})}|F|^{-2}$

(QUILLEN)

REDEFINE THE WAVE FUNCTION $\chi_I = \psi_I/F,$

UNDER MODULAR TRANSFORMATIONS:

$$dz^{kL^2/2}\chi_I \to dz^{kL^2/2}U_I^J\chi_J$$

SCALAR PRODUCT

$$\langle \chi_I | \chi_J \rangle = \int_T \langle \int_\Sigma e^{2\alpha\phi} \rangle_{26-c}^L Z^{bc} e^{H(t,\bar{t})} \bar{\chi}_I \chi_J$$

REDEFINE THE WAVE FUNCTION $\chi_I = \psi_I/F,$

UNDER MODULAR TRANSFORMATIONS:

$$dz^{kL^2/2}\chi_I \to dz^{kL^2/2}U_I^J\chi_J$$

SCALAR PRODUCT

$$\langle \chi_I | \chi_J \rangle = \int_T \langle \int_\Sigma e^{2\alpha\phi} \rangle_{26-c}^L Z^{bc} e^{H(t,\bar{t})} \bar{\chi}_I \chi_J$$

OBTAINED BY H.VERLINDE IN '89 BY QUANTIZING FIRST CS SL(2,R),THEN SOLVING THE CONSTRAINTS

REDEFINE THE WAVE FUNCTION $\chi_I = \psi_I/F,$

UNDER MODULAR TRANSFORMATIONS:

$$dz^{kL^2/2}\chi_I \to dz^{kL^2/2}U_I^J\chi_J$$

SCALAR PRODUCT

$$\langle \chi_I | \chi_J \rangle = \int_T \langle \int_\Sigma e^{2\alpha\phi} \rangle_{26-c}^L Z^{bc} e^{H(t,\bar{t})} \bar{\chi}_I \chi_J$$

OBTAINED BY H.VERLINDE IN '89 BY QUANTIZING FIRST CS SL(2,R),THEN SOLVING THE CONSTRAINTS

THE WAVE FUNCTIONS χ_I TRANSFORM AS ONE-POINT CONFORMAL BLOCKS OF LIOUVILLE THEORY (VERLINDE, TESCHNER)

QG IN 3D ADS IS DEFINED BY SL(2,R)XSL(2,R) SO WE NEED TO COMBINE TOGETHER THE MODULI SPACES OF BOTH CS

 $\Psi_{QG} = \chi_I(t)\chi_J(\bar{t}')?$

NO:THE WAVE FUNCTION OF QG MUST BE INVARIANT ALSO UNDER GLOBAL DIFFEOMORPHISMS

QG IN 3D ADS IS DEFINED BY SL(2,R)XSL(2,R) SO WE NEED TO COMBINE TOGETHER THE MODULI SPACES OF BOTH CS

 $\Psi_{QG} = \chi_I(t)\chi_J(\bar{t}')?$

NO:THE WAVE FUNCTION OF QG MUST BE INVARIANT ALSO UNDER GLOBAL DIFFEOMORPHISMS

UNDER GLOBAL DIFFS $\phi: \Sigma \to \Sigma$

 $\operatorname{tr} Pe^{\oint_{\gamma} A} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \phi_* A}$ $\operatorname{tr} Pe^{\oint_{\gamma} \tilde{A}} \in \bar{T}' \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \phi_* \tilde{A}}$

DIAGONAL ACTION ON

 $T \times T'$

 $\operatorname{tr} Pe^{\oint_{\gamma} A} \in T \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \phi_* A}$ $\operatorname{tr} Pe^{\oint_{\gamma} \tilde{A}} \in \overline{T}' \to \operatorname{tr} Pe^{\oint_{\phi^{-1}(\gamma)} \phi_* \tilde{A}}$

 $T \times \bar{T}' \to T \times \bar{T}'/M$

IN SECOND ORDER (METRIC) FORMULATION, THE TEICHMULLER SPACES LABEL INITIAL AND FINAL 2D METRICS. HOMOLOGY CANNOT CHANGE UNDER A 3D DIFFEOMORPHISM THAT EXTENDS TO

$\Sigma \times R$

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$dz^h d\bar{z}^{\bar{h}} \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$dz^h d\bar{z}^h \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

ALL ONE-POINT FUNCTIONS OF CFT BELONG TO THIS SPACE I.E. HILBERT SPACE IS TARGET SPACE OF CFT'S ONE POINT FUNCTIONS (SEE WITTEN '07)

SO THE WAVE FUNCTION IS

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

 $dz^h d\bar{z}^h \Psi$ INVARIANT UNDER DIAGONAL MAPPING CLASS GROUP

ALL ONE-POINT FUNCTIONS OF CFT BELONG TO THIS SPACE I.E. HILBERT SPACE IS TARGET SPACE OF CFT'S ONE POINT FUNCTIONS (SEE WITTEN '07)

ACTUALLY ANALYTIC CONTINUATION TO INDEPENDENT LEFT AND RIGHT MODULI (SEE WITTEN '07, SEGAL)

NEW RESTRICTIONS COME FROM NORMALIZABILITY

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$$\left\langle \sum_{IJ} \chi_I \bar{\chi}_J N^{IJ} \right| \sum_{KL} \chi_K \bar{\chi}_L N^{KL} \right\rangle < \infty$$

DANGEROUS REGIONS: DEGENERATING RIEMANN SURFACES

NEW RESTRICTIONS COME FROM NORMALIZABILITY

$$\Psi = |v\rangle \sum_{IJ} \chi_I^h(t) \bar{\chi}_J^{\bar{h}}(\bar{t}') N^{IJ}, \qquad |v\rangle \in V_h \otimes V_{\bar{h}}$$

$$\left\langle \sum_{IJ} \chi_I \bar{\chi}_J N^{IJ} \right| \sum_{KL} \chi_K \bar{\chi}_L N^{KL} \right\rangle < \infty$$

DANGEROUS REGIONS: DEGENERATING RIEMANN SURFACES

z = qw, |q| < |z| < 1, |q| < |w| < 1, $q = e^{2\pi i \tau}$

NEAR A NODE THE KAHLER FORM AND CERTAIN MODULAR TRANSFORMATIONS ARE KNOWN AND SIMPLE

 $(\tau, \tau') \rightarrow (\tau + 1, \tau' + 1)$ (Dehn Twist)

NEAR A NODE THE KAHLER FORM AND CERTAIN MODULAR TRANSFORMATIONS ARE KNOWN AND SIMPLE

 $(\tau, \tau') \rightarrow (\tau + 1, \tau' + 1)$ (Dehn Twist)

INVARIANCE UNDER THE DIAGONAL DEHN TWIST:

$$\Psi = |v\rangle \times \langle V^{h,\bar{h}}\rangle, \qquad \langle V^{h,\bar{h}}\rangle = \sum_{n} \int d\mu_n(\Delta) q^{\Delta - c/24} \bar{q}'^{\Delta + n - c/24}$$

NORMALIZABILITY OF THE WAVE FUNCTION IMPOSES NEW CONSTRAINTS

DEFINE:

$$\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$$

$$||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int^\infty d\rho \int^\infty d\rho' \int_{-\infty}^\infty d\zeta \int d\mu_n(\Delta) d\mu_n(\Delta') e^{-2\pi\rho(\Delta+\Delta'-\frac{c-1}{12})} e^{-2\pi\rho'(\Delta+\Delta'+2n-\frac{c-1}{12})} e^{i\zeta(\Delta-\Delta')}$$

NORMALIZABILITY OF THE WAVE FUNCTION IMPOSES NEW CONSTRAINTS

DEFINE:

$$\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$$

$$||\langle V^{h,\bar{h}}\rangle||^{2} \approx \sum_{n} \int^{\infty} d\rho \int^{\infty} d\rho' \int_{-\infty}^{\infty} d\zeta \int d\mu_{n}(\Delta) d\mu_{n}(\Delta') e^{-2\pi\rho(\Delta+\Delta'-\frac{c-1}{12})} e^{-2\pi\rho'(\Delta+\Delta'+2n-\frac{c-1}{12})} e^{i\zeta(\Delta-\Delta')}$$
CONVERGENCE IMPLIES $\Delta, \Delta + n > (c-1)/24$

NORMALIZABILITY OF THE WAVE FUNCTION IMPOSES NEW CONSTRAINTS

DEFINE:

$$\tau = i\rho + (\theta + \zeta)/2\pi, \qquad \tau' = i\rho' + (\theta - \zeta)/2\pi$$

 $||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum \int_{-\infty}^{\infty} d\rho \int_{-\infty}^{\infty} d\rho' \int_{-\infty}^{\infty} d\zeta \int d\mu_n(\Delta) d\mu_n(\Delta') e^{-2\pi\rho(\Delta+\Delta'-\frac{c-1}{12})} e^{-2\pi\rho'(\Delta+\Delta'+2n-\frac{c-1}{12})} e^{i\zeta(\Delta-\Delta')}$ CONVERGENCE IMPLIES $\Delta, \Delta + n > (c-1)/24$ **INTEGRATION OVER REAL LINE IMPLIES**

NORM PROPORTIONAL TO DIRAC DELTA: CONTINUOUS SPECTRUM

 $||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum \int d\mu_n(\Delta) d\mu_n(\Delta') F(\Delta,n) \delta(\Delta - \Delta')$

NORM PROPORTIONAL TO DIRAC DELTA: CONTINUOUS SPECTRUM

$$||\langle V^{h,\bar{h}}\rangle||^2 \approx \sum_n \int d\mu_n(\Delta) d\mu_n(\Delta') F(\Delta,n) \delta(\Delta - \Delta')$$

SO HILBERT SPACE OF PURE 3D ADS GRAVITY IS TARGET SPACE FOR CFTs WITH CONTINUOUS SPECTRUM AND STATES WITH CONFORMAL WEIGHT

$$\Delta > (c-1)/24$$

SPACE OF SUCH CFTs IS NONEMPTY ONE SOLUTION: LIOUVILLE CFT

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

NO: E.G. THE CONFORMAL BLOCKS OF A FREE BOSON DO NOT SAY ANYTHING ABOUT ITS RADIUS OF COMPACTIFICATION

DIDN'T WE KNOW IT FROM THE FACT THAT WAVE FUNCTIONS OF SL(2,R) TRANSFORM AS CONFORMAL BLOCKS OF LIOUVILLE?

NO: E.G.THE CONFORMAL BLOCKS OF A FREE BOSON DO NOT SAY ANYTHING ABOUT ITS RADIUS OF COMPACTIFICATION

IN PARTICULAR THEY ARE THE SAME FOR THE UNCOMPACTIFIED BOSON (CONTINUOUS SPECTRUM) AND FOR THE COMPACT BOSON (DISCRETE SPECTRUM)

HILBERT SPACE IS TOO LARGE

$$H_{CQG} = V_h \otimes V_{\bar{h}} \otimes \sum_g H_g$$

INFINITE MULTIPLICITY FOR ANY VIRASORO IRREP.

HILBERT SPACE IS TOO LARGE

$$H_{CQG} = V_h \otimes V_{\bar{h}} \otimes \sum_g H_g$$

INFINITE MULTIPLICITY FOR ANY VIRASORO IRREP.

PROPOSAL: CFTs AS SUPERSELECTION SECTORS

CLOSED UNDER OPE

$$O_{\alpha}: V_{\beta} \to V_{\gamma}$$

$$O_{\alpha}v_{\beta} = \sum_{v_{\gamma}} C_{\alpha v_{\beta} v_{\gamma}}v_{\gamma}$$

COEFFICIENTS OF OPE (FUISON RULES)

COEFFICIENTS OF FUSION RULES FIXED UP TO AN OVERALL CONSTANT

$$V_{h,\bar{h}} \to \lambda V_{h,\bar{h}} \Rightarrow C_{\alpha \ v_{\beta} \ v_{\gamma}} \to \lambda C_{\alpha \ v_{\beta} \ v_{\gamma}}$$

COEFFICIENTS OF FUSION RULES FIXED UP TO AN OVERALL CONSTANT

$$V_{h,\bar{h}} \to \lambda V_{h,\bar{h}} \Rightarrow C_{\alpha \ v_{\beta} \ v_{\gamma}} \to \lambda C_{\alpha \ v_{\beta} \ v_{\gamma}}$$

COEFFICIENTS OF FUSION RULES FIXED UP TO AN OVERALL CONSTANT

$$V_{h,\bar{h}} \to \lambda V_{h,\bar{h}} \Rightarrow C_{\alpha \ v_{\beta} \ v_{\gamma}} \to \lambda C_{\alpha \ v_{\beta} \ v_{\gamma}}$$

SO $\langle V_{h,\bar{h}} \rangle_{\Sigma_g}$ SCALES AS $\lambda^{2g-1} \langle V_{h,\bar{h}} \rangle_{\Sigma_g}$

NEW RULE: ASSOCIATE STATE IN CFT TO SPECIAL VECTOR IN HILBERT SPACE OF CQG BY:

 $w \in H_{h,\bar{h}}^{CFT} \to \Psi = v \times (\langle V_{h\bar{h}} \rangle_{\Sigma_1}, \langle V_{h\bar{h}} \rangle_{\Sigma_2}, \langle V_{h\bar{h}} \rangle_{\Sigma_3}, \dots), \qquad v \in V_h \otimes V_{\bar{h}}$

$$||\Psi||^2 = \sum_g ||\langle V_{h\bar{h}}\rangle_{\Sigma_g}||^2 \propto \sum_g a_g \lambda^{4g-2} \qquad \text{(finite near } \lambda = 0\text{)}$$

NEW RULE: ASSOCIATE STATE IN CFT TO SPECIAL VECTOR IN HILBERT SPACE OF CQG BY:

 $w \in H_{h,\bar{h}}^{CFT} \to \Psi = v \times (\langle V_{h\bar{h}} \rangle_{\Sigma_1}, \langle V_{h\bar{h}} \rangle_{\Sigma_2}, \langle V_{h\bar{h}} \rangle_{\Sigma_3}, \dots), \qquad v \in V_h \otimes V_{\bar{h}}$

 $||\Psi||^2 = \sum_g ||\langle V_{h\bar{h}}\rangle_{\Sigma_g}||^2 \propto \sum_g a_g \lambda^{4g-2} \qquad \text{(finite near } \lambda = 0\text{)}$

LIOUVILLE-LIKE CFTs HAVE NO VACUUM STATE BAD FOR PURE GRAVITY!

ALSO CONTINUOUS SPECTRUM=INFINITE ENTROPY

NEW RULE: ASSOCIATE STATE IN CFT TO SPECIAL VECTOR IN HILBERT SPACE OF CQG BY:

 $w \in H_{h,\bar{h}}^{CFT} \to \Psi = v \times (\langle V_{h\bar{h}} \rangle_{\Sigma_1}, \langle V_{h\bar{h}} \rangle_{\Sigma_2}, \langle V_{h\bar{h}} \rangle_{\Sigma_3}, \dots), \qquad v \in V_h \otimes V_{\bar{h}}$

 $||\Psi||^2 = \sum_g ||\langle V_{h\bar{h}}\rangle_{\Sigma_g}||^2 \propto \sum_g a_g \lambda^{4g-2} \qquad \text{(finite near } \lambda = 0\text{)}$

LIOUVILLE-LIKE CFTs HAVE NO VACUUM STATE BAD FOR PURE GRAVITY!

ALSO CONTINUOUS SPECTRUM=INFINITE ENTROPY

ANY DISCRETIZATION GIVES EFFECTIVE CENTRAL CHARGE

$$c_{eff} = c - 24\Delta_{min} = c - 24\frac{c-1}{24} = 1$$

MULTIPLICITY OF STATES NOT ENOUGH TO GIVE BEKENSTEIN-HAWKING ENTROPY

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

ALSO FOR MINIMAL MODELS THERE EXISTS A SUBGROUP OF THE MODULAR GROUP THAT ACTS TRIVIALLY ON ALL ONE-POINT CONFORMAL BLOCKS (BANTAY, GANNON)

THIS SUBGROUP \mathcal{N} IS NORMAL, FINITE INDEX

FOR c<1 (HIGHLY CURVED ADS) SL(2,R) INVARIANT VACUUM IS ALLOWED

$$\Delta = 0 > \frac{c-1}{24}$$

ALSO FOR MINIMAL MODELS THERE EXISTS A SUBGROUP OF THE MODULAR GROUP THAT ACTS TRIVIALLY ON ALL ONE-POINT CONFORMAL BLOCKS (BANTAY, GANNON)

THIS SUBGROUP \mathcal{N} IS NORMAL, FINITE INDEX

 $T/\mathcal{N} =$ finite cover of \mathcal{M}

 $(T/\mathcal{N} \times \bar{T}'/\mathcal{N})/M$

HAS FINITE VOLUME= DISCRETE SPECTRUM FOR c<1 MINIMAL MODELS WE CAN GET A REASONABLE THEORY, WITH DISCRETE SPECTRUM AND A DUAL TO THE ADS VACUUM IF WE IMPOSE A NEW NON-GEOMETRICAL GAUGE SYMMETRY THAT ACTS ON THE MODULI SPACE AS THE NORMAL, FINITE INDEX KERNEL OF THE MODULAR GROUP

(SEE CASTRO ET AL.)

TENTATIVE CONCLUSIONS

- A CANONICAL QUANTIZATION OF PURE GRAVITY IN 3D ADS YIELDS A HILBERT SPACE THAT CAN BE INTERPRETED AS THE TARGET SPACE FOR LIOUVILLE-LIKE CFTs
- CFTs APPEAR IN THE HILBERT SPACE AS SUPERSELECTION SECTORS CLOSED UNDER FUSION RULES
- FOR c>I THERE ARE SEVERAL PROBLEMS WITH THIS PICTURE SUCH AS ABSENCE OF THE DUAL TO ADS SPACE AND CONTINUOUS SPECTRUM
- FOR c<I WE FOUND THAT IMPOSING A NEW, NON GEOMETRIC GAUGE SYMMETRY GIVES A REASONABLE PICTURE (DISCRETE SPECTRUM, VACUUM)

MANY OPEN QUESTIONS

- DOES ALL THIS MAKE SENSE?
- CAN ONE EXTEND THE MINIMAL MODEL PICTURE TO HIGH SPIN 3D ADS THEORIES, OR SL(N,R)XSL(N,R) CS? (ANY RCFT ADMITS A NONTRIVIAL KERNEL OF THE MODULAR GROUP)
- IS c>I DOOMED? MAYBE WE CAN MAKE SENSE OF LIOUVILLE-LIKE CFTs: LIOUVILLE THEORY POPS UP TOO MANY TIMES IN 3D PURE GRAVITY TO BE JUST BACKGROUND NOISE!