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Introduction

@ The interacting theory of higher spin fields was constructed by Misha
Vasiliev in late 80th. [Fradkin & Vasiliev 87, Vasiliev 88-89]

@ Misha’s interacting massless h-spin theory is formulated with the use of
noncommutative star product and has quite a complicated structure.

@ Not so many exact solutions of this theory are known. The known action
principle [P. Sundell, N. Boulanger, N. Colombo] is quite unusual. Some
properties are to be clarified.

@ This stimulates not only its extensive study, but also a search for
alternative frameworks to reformulate it/to construct interacting higher
spin theories.

@ One of such frameworks is provided by 'tensorial superspace’.
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Introduction

@ The interacting theory of higher spin fields was constructed by Misha
Vasiliev in late 80th. [Fradkin & Vasiliev 87, Vasiliev 88-89]

@ Misha’s interacting massless h-spin theory is formulated with the use of
noncommutative star product and has quite a complicated structure.
@ Not so many exact solutions of this theory are known. The known action

principle [P. Sundell, N. Boulanger, N. Colombo] is quite unusual. Some
properties are to be clarified.

@ This stimulates not only its extensive study, but also a search for
alternative frameworks to reformulate it/to construct interacting higher
spin theories.

@ One of such frameworks is provided by 'tensorial superspace’.
@ |ts brief review will be the subject of the present talk.
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@ Flat tensorial superspace x("("+1)/2In)

@ 4D Tensorial superspace (1014 -
n(n+
@ Higher D tensorial superspace ("2 "

. . n(n+1)
@ Preonic superparticle in tensorial superspace £(" 2 1"
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4D Tensorial superspace

5(10/4)

@ Fronsdal [1985]: tensorial space

z(10|0) {X ymn} ymn _ _ynm m,n= 0, 1 ’ 273

is the natural space for the 4D massless (=)conformal higher spin
theories.

@ The reason is clearer if we notice that

g0 — (x%, X=X a,f=1,.4

X = XP% o X = Xy 2yt

@ The first dynamical model in the superspace generalization of ¥('°I%,

OO — %™ y™ 9} = {X*P 67}, a,B=1,.,4

was constructed in 1998 [I.B. + J. Lukierski MPLA 1999].

@ lts quantization [I.B. + J. Lukierski + D. Sorokin 1999] gave the tower of
conformal massless higher spin fields in D=4.
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Higher D tensorial superspace

@ Actually this ‘generalized superparticle model’ [I.B.+ J. Lukierski 1999]
was formulated in

(n(n+1

)
z 2 In):{XaB70a}? 067/[3:1,..’”
where nis dim. of a min. spinor representation in D dimensions.
e ltis D dimensional as far as x™ =oc I7;X*?, m=0,1,...,(D - 1).
@ The additional tensorial coordinates y™ ™ =oc [}, X*#

@ correspond to tensorial central charges of most general D-dim SUSY
algebra, {Q., Qz} = Pap = FQBPm + rzg/'@‘)'mpzmp..mp-

© Only Zn,...m, With p, D obeying I'\;"™ = " .\™ are present. Hence

D n n(n2+1) _ #:f:a(r:;g;ral Zm1.4.mp y y...Mp
4 4 10=4+6 Zmn y’""
6 8  36=6+30 Zyon 2 v,
10 16 136 = 10 + 126 Zm1,,,m5 y’"""’"5

11 32 528 =11 + 517 Zmn,Zm1,‘,m5 ymnyym14.4m5

@ The action of [I.B.+ J.L. 1999]: S = [ drAaAs(XP(7) — i6\“9)
@ contains a huge amount of additional coordinate functions in X*# (7).
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Preonic superparticle

Preonic superparticle action

@ In addition to coordinate functions X*# = X*#(7), 6> = §*(r),

S= /drﬁ = /dmaxg(xaﬁ — i6\*g?y = /Aaxﬁnaﬁ
N’ = ax*® —ido"“9” , n*’(r):=drng’

contains auxiliary bosonic spinor Ao = Ao (7).

oL
aXxaB

(n+1)

< 'twistorial dimensional reduction’: momentum d.o.f.s: %= — n.

4D: 10— 4,6D: 36 — 8,10D: 136 — 16, 11D : 528 — 32,
In D=4,6,10 (but not in D=11) we have also another two effects

@ The canonical momentum P,z :=

is expressed through A,

Pm x Pasle? = AT m\ is light-like, pmp™ = 0. < famous rervéa _ g,

@ pmp™ = 0 suggests that the spectrum of the quantum states of the
model consists of masseless particles.

@ But to this end one has to prove the spectrum is discreet.
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Preonic superparticle

Spectrum of D=4,6,10 preonic superparticle

@ In D=4,6,10, this is the case due to 'twistorial compactification’:
e the spaces {\}/{p"}p,pr—0 = S?°°/SP~2 is isomorphic to
SP=3 = (S, %, S7) spheres (Hopf fibrations): ‘ /AP puprzo = SP~ 3‘

@ In D= 11 pnp™ = 0 is nonvanishing (arbitrary!) nor S3' /S (nor
S%/S%) is known to be a sphere (or a compact space).

@ The interest to this case was due to an M-theoretical perspective (BPS
preons’ [I.B., J. de Azcarraga, J. Izquierdo, J. Lukierski, 2000] ).

@ In D = 4,6, 10 the space of additional momentum variables is compact,
sP3 (S1 S®,S7), which implies that the spectrum of corresponding
coordinate variables is discreet.

@ These are helicity in D = 4 and its generalizations in D = 6 and 10.

@ This implies that quantum state spectrum of the D=4,6,10 'tensorial’
superparticle S = [ drAaAs(X*?(1) — i0*0”)) is given by the complete
tower of massless higher spin fields. [.B, J. Lukierski and D.Sorokin 99].

@ Also the equations of motion for higher spin fields in = " ") can be obtained by
quantizing S = [ drAaAg(X2P — i§(xgP)).

@ But to lighten the representation, we will go another way.




Hspin eqgs in TSSP

Outline

© Higher spin equations in tensorial superspace ("("1)/2Im
@ Higher spin equations in 4D tensorial superspace
@ Higher spin equations in 10D tensorial superspace
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4D Higher spin equations

Higher spin equations in tensorial superspace

@ Free equations of motion for all the field strengths of all bosonic and
fermionic higher spin fields can be collected in [M. Vasiliev 2001]

OafpOy1s B(X) =0 & (Oap0ys — Oay0Ops) b(X) =
appt)(X) =0 & (Japh(X) — Dayfs(X)) =0.
© where dup = 35505 and f3(X) = f3(X*’) is fermionic.
@ In D=4 {X*P} = {x™ y™}

b(X, y) = ¢(X) +ym1n1 Fm1n1 (X) +ym1n1 ym2n2 "Aqm1”1,m2”2(x) +
+ Y Yy e Binyny, - mang (X)) 5
(X, ) = 0™ (X) + Y™ Riy o, (X) +
1N

m 1 A
oo mq n- S—5 S—35 [e3
+Zs=%y11”'y 2 2Rm1n1,.-<,m 1N 1(X)'

- 2

. a[ank]—O 8[”—, mymo] e = 0,
° 8&[587]5[3()()_0 = {D¢(X)_0 aman —3 1 ﬁl]hnzhmzmnz =0..

Oajpf)(X) =0 = {@y =0,.
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4D Higher spin equations

Higher spin equations in 4D tensorial superspace

@ In a more schematic notation @ ;== _rm. 2y ._[mn]
2
b(x, y) = ¢(x) + [2](X)+y y ’ H[2]1[2]2(X)+
2 @ls p
Jrzs 3 y 1 H[2]1---[2]5(X):
- so B Bs1/2 54
FO6Y) =900 +y" RV + X2y vy TR ()

@ and egs. for higher spin curvatures are (with D = 4)

_ m .
a[”ﬁ Rmz mlnp [2l3---[2]g = 0, 0 Rm1 my, 2y [2lg = 0.
— _0..0
[mymy nylng [213--[2s — 0 & R= 0.0
~——

s

A A AA

O & Ry ,muns = O+ 058 oAby + GG

@ where symmetric spin-tensor Ca, ... o A, - Ay and its c.c. obey the
Bargmann-Wigner equations

aBBCBA1 < Aos_q (X) =0 ) aBBCBA1
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10D Higher spin equations

Higher spin equations in 10D tensorial superspace

@ |In D=10 we denote [5] ::[mnklp]; [5]4 ::[m1 nikihpi]

5] 5l1 82 &
b(x,y) =o(X)+y Fg(x)+y 'y Rgq,(X)+
oo 5] [5ls A
+ 25:3 y T R[5]1~-~[5]s (X) )
2 5 oo M8l Bls_1/2 =
fa(va):wa(X)+y Ra[sl(X)JFZS:g y ! Yy Ro‘[5]1“'[5]s_1/2(x)'

@ and egs. for higher spin curvatures are (with D = 10)

Otme R, 121,12, = O 0" Rty p51,-151, = 0-

ER ......

(6l (2 1813+ [ 2] [my...ms mlnp...ns Bl [ 8] oo

s

@ & | 040415 b(X) =0 |; fermionic counterparts < | Ou13f,(X) = 0|

v
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10D Higher spin equations

On relation with preonic superparticle

@ How to see the relation with preonic (tensorial superparticle)?
S= /dT.c = /dma,\ﬁ()'(”“’ — 69"y = /)\a/\gl'laﬁ

@ This produces the generalization of the Cartan-Penrose relation:

° ‘80[567]5 b(X)=0 ‘in the momentum representation reads
PaisP1s b(p) = 0

@ = b(p) # 0 when rank(pasg) = 1 < pas = AaAp for some A,.

@ = 0,305 b(X) = 0 is solved by b(X) = [ d"A®(X, \), where

\ (Bap — Mas)®(X,\) =0 \

@ Fermionic 9,5f,;(X) = 0 is solved by fo(X) = [ d"AXa®(X, A).

@ "Preonic wave function” (X, A) = 0 is not exactly wavefunction: it
depends on both coordinates and momenta variables (pas = AaAg)-
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10D Higher spin equations

4D. Preonic equation and unfolding equations.

0 InD=4 X\, = (Aa, ), y™ = (6!"5™) a5y”8 + c.cC. and

= — iAadg) P(X,¥; A A) =0,
ayAB —idadg ) (X, ¥; M) =0,

W — XAg) O(X,yi A X) =0,

a
8

\ (Bap — Mas)®(X,\) = o\ .

@ Misha Vasiliev prefers to work with a Fourier transfrom
C(X,y*)= [ d"xe*= Y* (X, \) which obeys the unfolded egs.

o 49 9 )C(x,y;Y,Y)=0,

) m YA gyB
oY« 8Y5)C(X =0 « ayAB +I6YA6?/B Cx,y;Y,Y)=0,

2} e} . V) —
8yAB + 1/ maﬁ C(X,y, Y, Y)) —0,

(804B a4 f—

@ One can show [Vasiliev 2001] that in
C(X,y) =b(X)+ fa(X)y* + 3725 Cay-ican(X) y*1 - - - y*n the only
dynamical fields are scalar b(X) and spinor (or ‘svector’) f.(X) which
satisfy 0,(30,15 b(X) = 0 and 0y, (X) = 0.
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10D Higher spin equations

Superfield generalization

i)

Do = 9/00% +i0° 5., {Da, D3} = 2iBap -
@ The (manifestly) GL(n) covariant eq. [I.B., Pasti, Sorokin, Tonin 2004]
Dy Dgd(X,0) =0

@ = in O(X?,07) = b(X) + £a(X) 0% + 7, Gaq-ay(X) 071 -+ 6% the
only dynamical fields are scalar b(X) and spinor (or ‘svector’) f,(X)
which satisfy d,39,15 b(X) = 0 and d,f,;(X) = 0.

@ Actually this equation possesses OSp(1 |2n) invariance (OSp(1|8) for
D=4), like S = [ AaXs(dX*? — id6> 9”)) does [I.B., Lukierski 98].
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10D Higher spin equations

Superfield generalization

@ The (manifestly) GL(n) covariant eq. [I.B., Pasti, Sorokin, Tonin 2004]

DDy ®(X,0) =0, {Da,Ds} = 2idug

= in &(X*P,07) = b(X) + f.(X) 67,
® Ja[p0y15 b(X) = 0 and sty (X) = 0.

@ Actually this equation possesses OSp(1 |2n) invariance (OSp(1|8) for
D=4), like S = [ AaXs(dX*? — id6> 6?)) does [I.B., Lukierski 98].

@ lts quantization [I.B., Lukierski, Sorokin 1999]: wave function is a Clifford
superfield (xx = 1, x0 = —0x)

T(Xvea A?X) = gO(X7 6, )‘) + IXg1 (Xaaa A) = T(Xva) _A7 _X))

obeying ‘ (Do — x Aa)T(X,0, X, x) =0. ‘
® = (DaDs+ Aa)g) go(X,0,X) =0= DioDg go(X,0,\) =0.
@ O(X,0) = [ d"Ago(X,0,)) = b(X) + f(X) 6%,
X) = [ d"Ago(X,0, ),
fo(X) = [ d"X Da go(X, 6, N)|6=0,
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Outline

@ 05p(1, n) as AdS generalization of ¥ ("("+1)/2In)
@ AdS HSpin equations on OSp(1|n) supergroup manifold
@ AdS HSpin equations on Sp(n) group manifold
@ Preonic superparticle on OSp(1, n) supergroup manifold
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AdS HS egs. on OSp(1|n)

AdS higher spin equations. Superfield form

@ Thus all the free massless conformal higher spin egs. in D=4,6,10 can
be collected in one scalar eq. in £(* 10 with n = 4,8, 16:

(X°%,07) = b(X) + £.(X) 6 ,
aa[ﬂavlé b(X) =0, aa[ﬁ ’Y]( )=0

@ Can we do this with (massless conformal) AdS higher spin equations’7
2 |n)g

| DDy (X, 0) = 0 \:>{

@ 1) What is the AdS generalization of the tensorial superspace ¥

n(n+1)
2

@ [I.B., Lukierski, Preitschopf, Sorokin 2000]: | AdS(™2 1" = OSp(1|n)

In particular, | AdSU%* = OSp(1|4)
Indeed, it is natural as far as AdS,; = Sp(4)/SO(1, 3).
N = 1 AdS superspace is AdS“*) = OSp(4)/SO(1, 3).

Abelian algebra of Z,, can be considered as a contraction of so(1, 3)
algebra.
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AdS HS egs. on OSp(1|n)

AdS higher spin equations. Superfield form

@ Thus all the free massless conformal higher spin egs. in D=4,6,10 can
be collected in one scalar eq. in ("% 210 with n — 4,8, 16:

(X, 07) = b(X) + fa(X) 0°
Bafayys B(X) = 0, Bagafy(X) = 0

| DDy ®(X,6) =0 | = {

@ Can we do this with (massless conformal) AdS higher spin equations?

!7 n+1

1) [1.B., Lukierski, Preitschopf, Sorokin 2000]: | AdS = OSp(1|n)

2) Free conformal AdS higher spin equations can be collected in

(v[avg] i

4caﬁ) d(X,0) =0

where ¢ < g, Cag = —Cja is the Sp ‘metric’ and the OSp(1(n)
covariant derivatives V., V.3 obey the osp(1|n) superalgebra

{vcu V,ﬁ} = Zlvaﬁ 9 [vozozly VB] =9 Cﬂ(ava/)7
[Vas, Vsl = <Ca(y Vs + $Cp(r Vi)a
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AdS HS egs. on Sp(n)

AdS higher spin equations. Component form on Sp(n) space

° ‘ (ViaVg +i5Cap) ®(X,0) =0 ‘:> ‘component equations on Sp(n)
[Sorokin, Plyushchay, Tsulaia 2003]

S
VaiaVy1sb(X) = 7 (Cas Vs + CsisVrla = Cs7Vas) b(X) +

2
+15 (CasCov = Cags Cyps) BX),
Vaipha(X) = =5 (Catyf(X) + Cafa(X)) -

where [VQB, sz] = (Ca(ﬂ/v(;)g == (Cﬁ(wv(;)a 0
@ The counterpart of the Clifford superfield eq. (Do — x Aa)T =0,

_ L
(VQ — X Ya)T(Xvea)‘vx) - 07 Yll = Aa 4 CO‘B 8)\5 .

was studied in [Didenko, Valsiliev 2003].
@ To be more precise, they studied its Fourier transform

. 0 S
(Va —x Ya)T(X,0,¥7,x) =0, Y =15 +Cap 4y" -
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AdS HS egs. on Sp(n)

AdS higher spin equations. Component form on Sp(n) space

_ s O
(VQ_XYOL)T(X707)\3X)_O’ Ya_AOé 4 Caﬂ 8)‘ﬁ .
@ It results in an ’AdS preonic’ equation (Y = go + xg1)
- _ o
[Vas = Ya Yol 90(X,0,0) =0, Ya=Xa= 75,
@ and in a more general
is 3}
(VQV;;-&-YgYa)go(X,@,)\):O, YQZ)\Q—*Cagi.
4 OXs
which also includes (Vo Vg + i§Caps) go(X,0,A) =0
@ Then, (X, 0) = [ d"XA go(X, 0, X) obeys the superfield version of the
AdS higher spin equation
\ (Vi V) + i5Cas) ©(X,0) =0 |
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Preonic superparticle on OSp(1|n)

Preonic superparticle on OSp(1|n)

0 (Vo —x Ya)T(X,0,X,x) =0with Yo = Ao — & Cap 52 v (= X *...) can
be obtained by quantization of OSp(1|n) superpartlcle

S— / Aadgfo? = / AT N30, ZMECP(2(7))
1

@ where £%9 = dZMgpf(Z) and £~ = dZM&f(Z) obey

de*? = g nNEP —¢E NE®®C,,
de* = —(CENE’Cs,

o ZM = (X*? 9%) are local coordinates of OSp(1|n) supergroup manifold
@ and Z" = ZM(r) defines the embedding of W' in OSp(1|n).

@ This action possesses rigid OSp(1|2n) symmetry (generalized conformal
symm.) and also (n — 1) local fermionic k—symmetries (3 in D=4):

6. 2Mef(Zy=0,  6.2VEH(Z)Na =0.
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Outline

e Preonic properties and OSp(1|2n) superconformal symmetry of tensorial
superparticle
@ x symmetry and SUSY preserved by preonic BPS state
@ OSp(1|2n) symmetry of £("("1)/2IM and OSp(1|n) superparticles
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 symm. & preserved SUSY

Preonic superparticle on OSp(1|n) and on ¥ ("("+1)/2In)

@ These symmetries survive - and become simpler- in flat SSP limit
OSp(‘] |n)m Z(n(nzﬂ) |n) gcx@ na/)’ — gXB — Ide(a aﬁ), gamde(a,

des
dee

—EXNEP —CEYNEPCs dne? = —ido> A do” |
_CETNESCs b {0 Gy

@ The k—symmetry of the =("™1)/2In) syperparticle action
S= [ Aasl1°% = [dTAaAs(0- X7 — 0.6 0%))  reads
w1

5: X0 = 5,020 | 5,.0°Xa=0.
@ 4,.0% Ao = 0 can be solved in terms of (n — 1) bosonic spinors
‘orthogonal’ to \o: 0.60% = k'uf, ufAa =0, I=1,...,15.
@ This makes clear that we can gauge away all but one component of

0%(7) : | n=0%()\ |Which is k-invariant.

@ This is related to global OSp(1|2n) symmetry of the system
@ but also shows that its ground state preserves all but one SUSY
= is a BPS preon [I.B., de Azcarraga, Izquierdo, Lukierski, 2001].
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 symm. & preserved SUSY

+ symmetry and preserved SUSY, or Why tensorial superparticle is preonic?

S= [ Aasl1%% = [dTAaA5(0-XP —i0.6*67)) s invariant
w1
under k—symmetry 6, X% = i6.0(* 0% | §.0° =K%, KXo =0
and under rigid SUSY 6. X% = —i5.0® 0% | §.6% = *
Thus 60% = §,.0% + 0.0% = K* + €%, K%Aa =0
In the ground state of the system fermions are equal to zero: 6% = 0
so that it can be preserved by symmetries which preserve ¢ = 0, i.e.
which obey 0 = §0% = k® + €%, KA = 0.
This identifies all but one SUSY parameters with nontrivial parameters of

k-symmetry, ¢ = —x® and set to zero only one linear combination of

the components of ¢“: .

Thus all but one target space supersymmetry are preserved by the
ground state of the tensorial superparticle.

This ground state is “'BPS, i.e. BPS in D=4, {2BPS in D=10 and
SBPS in D=11;

this is to say it is a BPS preon [I.B., de Azcarraga, Izquierdo, Lukierski,
2001].
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0OSp(1]2n) symmetry

0Sp(1]2n) symmetry of ("% 17 superparticle

@ S= [ Aagl1®? = f}\a)\ﬁ(dxaﬂ —idd* §”)  can be rewritten as
w1

5= / (Aadp® — pdXa — idxx) ,
wi

[I.B.+Lukierski 98] or equivalently as

o 0 &° 0
= || JF=TE, TE= (‘j ) . Szao=(-6% 0 0],
w X 0 0 '

[I.B.+Lukierski 98]. Here =5q is the OSp(1]2n) 'metric’ T is
orthosymplectic supertwistor
@ carrying the index of the fundamental representation of OSp(1(2n).

® Thus S= [ Xasl1*? = [, dTT=5qT? is manifestly OSp(1[2n)
wi

invariant.
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0OSp(1]2n) symmetry

OSp(1]2n) symmetry of OSp(1|n) superparticle from GL flatness of OSp(1|n)

supergroup manifold
@ The simplest way to show the OSp(1|2n) symmetry of OSp(1(n)
superparticle S = [ Ao \g€” is to use the GL(n) flatness of OSp(1|n)
w1
@ [Plyushchay, Sorokin, Tsulaia 2003]:

£9B — nos gvoz(x7 9) géﬁ(x7 9) ‘ 7 £ — ep(x,@)('Daa _ Ga'Dp)

G (x,0) = (eg —2G](x)© )ea,
G (x) 9" + 557,

9 — eﬁ Gg1a(x)e*/3(@) , eP( =/ r ’f@ﬁ@g,
90{

= df™ — 07 C,3EPY(X,0) = db* — 07 C,5(GT XG)P~ .

@ Hence S= [ AaXsé = [ XaAsM%% with Ao = GL(X,0)\s
wi wi

@ and OSp(1|2n) superconformal invariance of the OSp(1|n) superparticle
follows from the OSp(1]2n) superconformal invariance of the X ("5 1
superparticle.
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e Searching for the interacting theory: Supergravity in tensorial superspace
n(n+1
@ Preonic superparticle and SUGRA constraints in M 21

@ Supergravity in tensorial superspace




SUGRA in TSSP
e0

SUGRA constraints in curved tensorial SSP

Geometry of curved tensorial superspace

@ Tensorial supergravity, a theory dynamical curved tensorial superspace
M™Z2I0 s a natural candidate for interacting higher spin theory.

o ZM — (X% §7)= are local coordinates of M("% 1" We construct the
theory from the objects which are invariant under superdiffeomorphisms,
Z'M = M(ZN): (sdet(df /0ZN) # 0):

@ Supervielbein one forms E4 = (E*# E*) = dZMEj} (2)

E*?(Z) = EP*(Z) = dZVE,,**(2),  E“(Z) = dZ"Ey*(2)
@ And GL(n) connection Q3% := dZMQus* = EAQ45°,
@ The torsion and GL(n) curvature 2—forms

T = DE* =dE*® —2E A QP = %EB AEA Tus%
: %EB NEA Tap®,

R[ja = dQﬁa — Qﬁ’y A Q-Ya =: %EB A E'A RABﬁa

T® = DE*=dE*-E°PANQp° =
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SUGRA constraints in curved tensorial SSP

Superparticle in curved tensorial superspace

@ As in the case of SUGRA in usual SSP we need to restrict the
supervielbein and connection by superspace constriants.

@ Their essential part can be obtained by the condition of preservation of
the k—symmetry of the preonic superparticle in curved tensorial SSP
[I.B., Pasti, Sorokin, Tonin JHEP 2004]

@ ltsaction S = [ /\a)\ﬁli:“ﬂ possesses the k—symmetry
w1
6. ZVERY (2)=0, 6:da=0, 6.ZYER(2)Aa =0, &
& 6 ZMER(2) = p'ki(7), 1=1,.,15, p*Xa =0

provided supervielbein is restricted by torsion constraints
TP = _JE* NEP —2E@ A EPE(Z) + 2E7 A EPP R 5(2) ,

with some fermionic t,(Z) and bosonic R.,s(Z) = —Rs,(Z).

@ As usually, the theory is still reducible and we need to impose also a
number of conventional constraints, counterparts of T,,? = 0 in General
Relativity. One of this can be t,(Z) = 0, but there are a number of
others.
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Supergravity in tensorial superspace

SUGRA constraints and their consequences

@ After imposing the essential and conventional constraints and studying
their consistency conditions given by Bianchi identities

DT’ + EYARP+EP AR, = 0,
DT*+E° AR = 0,
DRga = 0

@ the torsion and curvature 2-forms are expressed by

T? = _E*AEP4+2E"*AEPYR,5(2),
T® = 2E°° AE"Rs, + E*P AEUp,s ,
Rs® = IE" AE*Usys — E*Y A E°(Fspy + DsRay) —

—  EAE(DgUsse + DscRsy) -

@ in terms of ‘'main superfields’ Rso. = —Rap, Usys Us(ys) and
Fapy = 2ilUgyya — iUapy — 2D(3 R, Which obey a number of relations

DiaUsiys = =DrsRap s DaUp)ys = —ID(yFs) ap

Daﬂ U’yéo‘ — Dso U’ya,@ + 2U’ya(oR5)B + 2U—yB(UH6)a = Oa
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Supergravity in tensorial superspace

SUGRA constraints and their sulutions

@ The constraints T*% = —iE* A E® +2E"( A EPY R 5(2),

T 2E** AE"Rg, + E*P ANEUps ,
Rs® = IE" AE*Usys — E*Y A E°(Fsp, + DsRsy) —
E*" A E*(DisUsyse + DocRy) -

n(n+1)

@ have ("2 1" solution: R,s =0 and U,sc =0 (} = F, s = 0).
@ Setting Ras = —5Cas and Uap,(Z) = 0 we find R = 0 = we can
gauge away GL(n) connection (22 = 0) and arrive at

deP = i NEP —CENEPC,;,
dE* = —(CEYNE’Cys.

which are the Maurer—Cartan egs. for OSp(1|n).

@ Thus OSp(1|n) supergroup manifold is also a solution of the TSSP
SUGRA constraints.
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Supergravity in tensorial superspace

Scalar superfield eq. in SUGRA background and reduction of the holonomy group to

SL(n)
@ A natural generalization of the free supen‘ield equations for higher spin

fields to curved TSSP is | Du Dy ® = § s @ |

Its integrability condition results in a qwte complicated equation

@ the known solution of which reduces the holonomy group from GL(n, R)
to SL(n,R) i.e. implies Rs* = 0.

@ Such a reduction simplifies a bit equations for main superfields,
@ but also makes possible to prove [I.B., Pasti, Sorokin, Tonin 2004]:
@ the general solution of supergravity constraints is superconformally
n n+1
equivalent either to OSp(1|n) or to the flat =(*Z 1),
@ Namely, they can be obtained by

E/aﬁ _ Eaﬁ, El® — E~ + Eaﬁ WB
QL = Q% — iE*Ws — E*(Dy Wy + iW, W),

with W5 = —iDg W (and GL(n) gauge transformations, e4,7, if
convenient) from flat or OSp supervielbein and (trivial) GL(n) connection.
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Supergravity in tensorial superspace

Solution of SL(n) SUGRA in TSSP are superconformally OSp or superconformally flat
@ The general solution for the main superfields

Rus = i€~ [i5Cas+ViaVa W+ 3 VaW VW]

Usys = 6_¥ [—I'V-YtsVQ W + Viy WV(;)VB W} .

@ Note: the original OSp solution, R.s = —5Cap and Uas(Z) =0 is
preserved by superWeyl (supplemented by certain GL(n) gauge)
transformations if the superfield parameter W obeys

ViaVaW + 3VaW VW = —5Cups (1 _ e*%)

@ which is an equivalent form of the free eqgs, for the free higher spin fields
in AdS: W = 21n (££2) where a = const > 0 and ®(X, ) obeys

(ViaVar + iy Cas) (X,0) = 0.

@ However, the conclusion is that supergravity in tensorial superspace
is super-Weyl trivial: It does not describe dynamical potentials of
higher spin supergravity and describes, at most, the free higher spin egs.
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Supergravity in tensorial superspace

super-Weyl triviality of SUGRA in TSSP and possible ways out

@ Supergravity in tensorial superspace, as it has been formulated, is
super-Weyl trivial = It does not describe dynamical potentials of higher
spin SUGRA and describes, at most, the free higher spin egs.

@ Some deformation of the theory or introduction of new elements are
needed to continue the search for interacting HSpin theory on this basis.

@ Ex.: current project with Dima Sorokin and Per Sundel. To start form an
a-deformed 4D tensorial superparticle [I.B., J. Lukierski and D. Sorokin
1999]. SUGRA constraints from preservation of its 2 (not 3)
rk—symmetries.

@ Other basis to construct interacting higher spin theories in tensorial SSP.
Tensorial SYM?

@ YM field appears in the multiplets of extended SUSY. =- some interest

superfield theories in extended TSSP. These were studied in [I.B., J. de
Azcérraga, C. Meliveo, 2011].
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HSpin equations in A/'—extended tensorial superspaces

@ Higher spin equations in extended tensorial superspaces

(Man)_ M — af al 057,8:1,...,n,
BTSN =AY e
for even NV [I.B., J. de Azcarraga, C. Meliveo, 2011]
@ is convenient to write in terms of complex fermionic coordinates

09 = J(0°9 — ig*@N/2) = (85), g=1,...,N/2,

. 9 _ 3 ; fe)
8aq ‘= 3009 = poog T ’aga(a+N/2) )

1
2

and complex fermionic covariant derivatives,

Dag = ag + 2i06s05 , Do = 8o +2i0250°7, 8ag = 5q »

{Daq, D} = 4i0apdy |, {Dag, D} =0 = {Daq, D} .

@ The free higher spin equations with extended SUSY read

DIO(X,07,8,) =0,  DysDyp®(X,07,8,)=0.
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HSpin equations with N' = 2—extended supersymmetry

@ The superfield equations
DI®(X,0,80) =0,  DgsD,p®(X,0,8)=0.
@ ForN=2: =
(X, 0,0) = ¢(X1) + 10 Ya(X0)
with X* = X% + 2i0(*87) (notice that n=4 for D=4) and
OalyO5160(X) =0, daphy(X) =0.




HSpin eqgs in extended TSSPs
00000

HSpin equations with N' = 4—extended supersymmetry

@ The superfield equations
Did(X,0,0) =0, DgisD1p®(X,0,0) = 0.

@ ForN=4: =
D(X,09,049) = ¢(XL) + 10*¥pag(XL) + €pg®* IO P Fap(XL)

OalyO05150(X) =0, Oapbyye(X) =0,

and Fop = Fpa 0beying Oup Fss(X) =0

@ It might seem that we have found a tensorial superspace counterparts of
the usual Maxwell equations and Bianchi identities

OngFap =0,  OuFep=0. 1
@ However, the general solution of this tensorial space equation is
Fap = 0apd(X),  Oupy0s1ph(X) = 0.

@ Peccei-Quinn-like symmetry acting on the second scalar field ¢(X):
B(X) — H(X) + const .
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N > 4. HSpin equations with A" = 8—extended supersymmetry

@ In the generic case DLd(X, ©,0) = 0, DysDp®(X,0,0) =0} =

_ N/2
(X, 0,6) = ¢(X1) +10%Waq + 30 O ... 0NN Fuy .y g1-.0r)

For o a1 (X0) = Frar. ) [ar..ad(X0) » X2P = X°P 4 2i@Gf) |

the higher components satisfy 01y Fs)8,...6, g1...q.(XL) = 0 which is
solved in terms of derivatives of new scalar and spinor fields defined up
to Peccei-Quinn-like symmetries.
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N > 4. HSpin equations with N' = 8—extended supersymmetry
@ DId(X,0,0) = Dq[/@DW]pcb(X ©,0) = 0 for N = 8 is solved by
d(X,0,0) = ¢(X1) + i0%%haq + Z 7O I L ONNT o ar.q (XL)
the higher components F.,...q, .. qk(XL) Flag...an) [a1...q Satisfy
BalrF516 10 (X) = 0, afy¥s1s,5°(X) =0, Oafy Fo1058,(X) =0
@ which implies Fos g,g,(X) = OapPg g (X),
80500 (X) = Aayae P8 (X) » Fayoas(X) = 0oy, 0ag00) B(X) -
@ so that the &' = 8 multiplet contains only scalar and s-vector fields
Boy Ds1pp(X) =0, Dagapy(X) =0
Doy 1p0ap(X) =0, Baphy)’(X) =0, da,05pd(X) =0
@ and defined up to a more complicated P-Q like symmetries:

Gap(X) = dgp(X) + agp , "Z’aq(X) = "Z’aq(X) + 8.7,
$(X) = IX)+a+Xaus,
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N > 4. HSpin equations with N = 8—extended supersymmetry

@ Tensorial superspace provides a beautiful basis to describe free
conformal higher spin fields in D = 4,6, 10.

n(n+1)

@ AdS Flat < OSp(1|n), flat < X"z 1" (n = 4,8,16) D, Ds® = 0.
@ (and also exotic BPS states in M-theory- BPS preons (n=32)).

@ OSp(1]2n) superconformal symmetry (OSp(1|8) in D=4, OSp(1|32) in
D=10, OSp(1|64) in D=11).

@ The attempts to describe the HSpin interactions have not succeed (yet?)

@ SUGRA in tensorial superspace, formulated with preservation of

manifest GL(n) symmetry (SL(n) holonomy) was shown to be
n(n+1
superconformally equivalent to either =(*Z 1 or OSp(1|n).

@ A possible way is to search for a deformation which breaks (deforms) the
GL(n) and OSp(1|2n) symmetry.
@ Probably the suggestion will come from studies [Vasiliev, Gelfond, 10,

n(n

13] of the currents in =21 through the hypothetical

o tensorial AdS/CFT = £("Z"I" . OSp(1|2n) correspondence.

n(n+1)

< Flat = (72 1. Its superconf. group = OSp(1|2n) = AdS("n+112m.
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