

(Experimental) Overview of the Higgs Physics at LHC

> Galileo Gallilei Institute for Theoretical Physics

> > Arcetri, Firenze

Marumi Kado LAL and CERN

Disclaimer

The Higgs boson

"The" refers to the one discovered

Entrance of the H⁰ in the PDG this week !

Inaugural entrance of the Higgs boson in the PDG particle listing !

H^0

... One year after the discovery

- New era "under the Higgs lamp post" (T. Han LP 2013)
 - Is it a natural EW theory?
 - Is it composite? Is there an underlying strong dynamic?
 - Does it couple to DM?
- Reshaping the experimental program
 - Focused searches for natural SUSY
 - Supporting measurements to improve precision on the Higgs measurements (EW, top, PDFs, main background processes, etc...)
 - ... of course reappraising the LHC Higgs program

The (Experimental) Outstanding Questions

- 1.- Measuring properties of the H⁰
 - Measure its coupling properties through production and decay
 - Measure it spin and CP properties
 - Measure rare and invisible decays
 - Cross section measurements (differential)
- 2.- Search for additional states of the EWSB breaking sector
 - Simply one additional singlet
 - 2HDMs (all types)
 - MSSM and NMSSM
- 3.- Exotic or unexpected modes
 - Exotic decays (hidden valley pions or Z')
 - Model independent searches
 - Searches for doubly charged Higgs bosons
 - Top FCNC decays cH

The First LHC Run

Three Years of LHC operations at the Energy frontier

The LHC

- Circumference 27 km
- Up to 175 m underground
- Total number of magnets 9 553
- Number of dipoles 1 232
- Operation temperature 1.9 K (Superfluid He)

 $=\frac{N_p^2 k_b f_{rev} \gamma}{4\pi\beta^* \epsilon_m} F$

Parameter	2010	2011	2012	Nominal
C.O.M Energy	7 TeV	7 TeV	8 TeV	14 TeV
Bunch spacing / k	150 ns / 368	50 ns / 1380	50 ns /1380	25 ns /2808
ε (mm rad)	2.4-4	1.9-2.3	2.5	3.75
β* (m)	3.5	1.5-1	0.6	0.55
L (cm ⁻² s ⁻¹)	2x10 ³²	3.3x10 ³³	~7x10 ³³	10 ³⁴

The first LHC run

2010

2012

50 ns inter-bunch spacing

Main H⁰ Channels Mini Review

Overview of Coupling Properties Analyses

Channel	ATLAS			CMS				TeVatron		
categories	ggF	VBF	VH	ttH	ggF	VBF	VH	ttH	VH	ggF
γγ	√	>	√		>	 Image: A set of the set of the	>	1	(inclus	ive) 🗸
ZZ (IIII)	 Image: A second s	>			>	 Image: A second s			~	/
WW (lvlv)	 Image: A second s	>	√		~	 Image: A second s	>		\checkmark	1
ττ	1	1	1		~	 Image: A second s	~		\checkmark	
H (bb)			1	1		 Image: A second s	>	1	\checkmark	
Zγ	(inclusive) 🗸			\						
μμ		(inclus	ive) 🗸	*						
Invisible			1							

- ✓ Channels studied at LHC so far
- ✓ Results completed with full run I luminosity

 $H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

Analysis strategy: four prompt leptons (low p_T is important!) four-lepton mass is the key observable split events into 4e, 4µ, 2e2µ channels: Different resolutions and S/B rates

CMS specificities:

- ME-based discriminant K_D
- Per event (mass) errors

split events further into exclusive categories: untagged (CMS: add a 3rd observable: four-lepton p_T/ m)

di-jet tagged (CMS: add a 3rd observable: $V_D(m_{jj}, \Delta \eta_{jj})$)

Analysis key features:

High S/B-ratio, But small event yield mass resolution = 1-2%

 $H \rightarrow \gamma \gamma$

Analysis strategy:

- Di-photon mass is the key observable
- two isolated high- $\ensuremath{p_{\text{T}}}$ photons

- vertex

- CMS: from recoiling charged particles
- ATLAS: from photon pointing (longitudinal ECAL segmentation)
- split events into exclusive categories:
 - untagged, and further divided into 4/9 classes based on
 - expected mass resolution
 - expected S/B-ratio
 - di-jet tagged (VBF), and further divided into 2 classes based on
 - expected S/B-ratio
 - ATLAS: low mass di-jet tag (VH)
 - MET-tagged (VH)
 - lepton-tagged (VH)
- background: from $m_{\gamma\gamma}$ distribution (in the sidebands)

Key Analysis Features to note:

- Small S/B-ratio,
- High event yield
- di-photon mass resolution = 1-2%

 $H \rightarrow \gamma \gamma$

News :

- CMS estimate of the potential presence of two nearly degenerate states (CMS-PAS-HIG-13-016)

- CMS obs. (exp.) limit on natural width 6.9 (5.9) GeV

- CMS limit on higher mass states (an excess at around 136 GeV <2 s.d. with LEE)

- ATLAS Update of the signal strength from 1.65 \pm 0.33 to 1.55 \pm 0.30 (reappraisal of Dalitz efficiency) Ref. HIGG-2013-02

Digression on the yy Signal Strength

known at NNnLO, still rather large uncertainty O(10%)

A priori potentially large possible enhancements...

 $\neg \land \land \land \land \land \land \land \frown \gamma, \gamma$ ΛΛΛΛ- γ.Z

 $1.6 \times A_w^2 - 0.7 \times A_t A_w + 0.1 \times A_t^2$

... Not so obviously enhanced (e.g. SM4)

Seldom larger yields : e.g. NMSSM (U. Ellwanger et al.) up to x6, large stau mixing (M. Carena et al.), Fermiophobia...

Experimental facts worth noting:

1.- Channel dominated by background systematics (see larger variation of CMS value of the signal strength after recalibration)

2.- It is subject to local "look elsewhere effect", but this effect decreases substantially with at high signal significance.

3.- Systematic on resolution is largest experimental systematic on μ

4.- The resolution is constrained within its error in the fit...

The compatibility in the signal strength parameter between the data and the SM Higgs boson signal plus background hypothesis is estimated with the test statistic $\lambda(\mu)$ with $\mu = 1^4$, and is found to be at the 2.3 σ level.

The results reported above are extracted from a fit in which the mass resolution uncertainty, which is ~20%, is treated as a nuisance parameter with a Gaussian constraint. As a check, the fit was repeated with no constraint on the mass resolution parameter, giving $\mu = 1.49 \pm 0.33$ (1.8 σ compatibility with the SM Higgs boson signal hypothesis). This fit prefers a narrower mass resolution than the nominal one by 1.8 σ , which is better than the resolution corresponding to a perfectly uniform calorimeter. Dedicated studies revealed no indication that the systematic uncertainty on the resolution is underestimated; the large pull in this test fit can also be a statistical effect arising from background fluctuations.

Higher prob. to overestimate μ

Higher prob. To underestimate $\boldsymbol{\mu}$

(Conditionnal) Probability for a fluctuation in the mass also higher (of course not necessarily the case)

Digression on $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$ Combination

Review of mass measurements across channels and experiments

$H \to WW^* \to \ell^+ \upsilon \ell^- \upsilon$

50

100

150

200

m_τ^{∥-∉} [GeV/c²]

250

100

0

200

m_{II} [GeV/c²]

- Analysis strategy:
 - two prompt high- p_T leptons
 - Use spin-0 and V-A structure of W decay
 - MET
 - split events into ee, μμ, eμ channels:
 - different S/B rates: Drell-Yan in ee/µµ !
 - split events further into 0/1-jet:
 - different S/B rates: ttbar in 1-jet !
 - ATLAS: m_T-distribution
 - CMS:
 - Different-flavor: **2D distribution N(m_{II}, m_T)**
 - Same-flavor dileptons: cut-based analysis
 - Backgrounds (for low mass Higgs):
 - WW, tt, W+jets, DY+jets, Wγ: from control regions
 - ZW, ZZ: from MC (very small contribution)

Analysis features to note (m_{H} =125):

- Fair S/B
- Fair signal event yield (200 events)
- Poor mass resolution ≈20%

New:

- CMS: Associated production VH update with hadronic V (combined sensitivity 3.5-4 SM) CMS-PAS-HIG-12-017
- ATLAS: Update for publication HIGG-2013-02

Background Uncertainties Digression

TH uncertainty on the WW background kinematics

 $\mu_{obs} = 1.01 \pm 0.21 \text{ (stat.)} \pm 0.19 \text{ (theo. syst.)} \pm 0.12 \text{ (expt. syst.)} \pm 0.04 \text{ (lumi.)}$ = 1.01 ± 0.31.

NNLO calculation underway

$H \rightarrow \tau^+ \tau^-$

Analysis strategy:

- di-tau candidates: $e\tau_h$, $\mu\tau_h$, $e\mu$, $\mu\mu$, $\tau_h\tau_h$
- MET
- **DiTau mass (including MET)**: key distribution split events into jet categories:
 - 2-jets (VBF-tag): best S/B-ratio
 - 2-jets (VH-tag): best S/B-ratio
 - VH Lepton tag
 - 1-jet (ggF, VH): acceptable S/B-ratio
 - untagged: control region (S/B≅0)
- Split 1-jet events further high/low p_T tau
 - different S/B rates
- Backgrounds:
 - $Z \rightarrow \tau \tau$: $Z \rightarrow \mu \mu$ (data) with embedding
 - $Z \rightarrow ee$, W+jets, ttbar: MC for shapes, data for normalization
 - QCD: from control regions

Key Analysis features:

- poor S/B-ratio
- small signal event yield
- Higgs is on falling slope of Z-decays
- poor mass resolution $\approx 15\%$

$VH \rightarrow Vbb$

Analysis strategy:

- Channels separated in 0 (MET), 1 (MET) and 2 leptons
- With two b-tagged jets (using 0 and 1 for control)
- Further categorize in pT of the V
- Mass reconstruction is Key
- Simulation ISR and gluon splitting is also Key
- Diboson reconstruction also important element
- Main Backgrounds:
 - V+bb and top
 - Uses mainly control regions except

Key Analysis features:

- Rather low S/B-ratio
- small signal event yield
- Higgs is on falling slope of Z-decays
- poor mass resolution ≈15%

New: CMS combination of VBF channel with VH

ttH

 $H \rightarrow \gamma \gamma$

 $H \rightarrow bb$

Key Features:

- Very robust channel
- Will require (very) large statistics

Key Features:

- Will it ever be possible to be sensitive in this channel?
- Relies on the control of the tt+HF background

H⁰ Summary and inputs to the combination

Channel	ATLAS				CMS			
categories	μ (at 125.5 GeV)	Z exp	Z obs	M (GeV)	μ	Z exp	Z obs	M (GeV)
γγ	1.6±0.3	4.1	7.4	126.8±0.2±0.7	0.8±0.3	3.9	6.7	125.4±0.5±0.4
ZZ (IIII)	1.5±0.4	4.4	6.6	124.3±0.5±0.5	0.9±0.3	7.1	3.2	125.8±0.5±0.2
WW (lnln)	1.0±0.3	3.8	3.8	-		5.3	3.9	-
ττ	0.8±0.7	1.6	1.1	-	1.1±0.4	2.6	2.8	125 ⁺⁹ -7
W,Z H (bb*)	-0.4±1.0	1.0	0.0	-		2.1	2.1	-
Combination	1.30±0.20	7.3	10	125.5±0.2±0.6	0.80±0.14	-	-	125.7±0.3±0.3

*CMS also uses ttH in the combination from 1303.0763

H⁰ Summary and inputs to the combination

Channel			ATLAS				CMS		
categories	μ (at 125.5 GeV)	Z exp	Z obs	M (GeV)	μ	Z exp	Z obs	M (GeV)	
γγ	1.5±0.3	4.1	7.4	126.8±0.2±0.7	0.8±0.3	3.9	6.7	125.4±0.5±0.4	
ZZ (IIII)	1.5±0.4	4.4	6.6	124.3±0.5±0.5	0.9±0.3	7.1	3.2	125.8±0.5±0.2	
WW (lnln)	1.0±0.3	3.8	3.8	-		5.3	3.9	-	
ττ	0.8±0.7	1.6	1.1	-	1.1±0.4	2.6	2.8	125 ⁺⁹ -7	
W,Z H (bb*)	-0.4±1.0	1.0	0.0	-		2.1	2.1	-	
Combination	1.30±0.20	7.3	10	125.5±0.2±0.6	0.80±0.14	-	-	125.7±0.3±0.3	

*CMS also uses ttH in the combination from 1303.0763

Evidence for VBF production

From the ratio of individual production signal strengths

Coupling Properties Measurements

Further re-parameterization of the n_s^c yields per categories

- Assuming narrow width approximation
- Assume the same tensor structure of the SM Higgs boson : $J^{CP} = 0^{++}$
- Link to an effective Lagrangian and use scale factors

$$\mathcal{L} = \kappa_W \frac{2m_W^2}{v} W^+_{\mu} W^-_{\mu} H + \kappa_Z \frac{m_Z^2}{v} Z_{\mu} Z_{\mu} H - \sum_f \kappa_f \frac{m_f}{v} f \bar{f} H + c_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^a_{\mu\nu} H + c_\gamma \frac{\alpha}{\pi v} A_{\mu\nu} A_{\mu\nu} H$$

Parametrize μ_i and μ_f as a function of κ 's

For example, the main contribution (ggF) to the gg channel can be written as:

$$\sigma \cdot \text{BR} (\text{gg} \rightarrow \text{H} \rightarrow \gamma \gamma) = \sigma_{\text{SM}}(\text{gg} \rightarrow \text{H}) \cdot \text{BR}_{\text{SM}}(\text{H} \rightarrow \gamma \gamma) \cdot \frac{\kappa_{\text{g}}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\text{H}}^2}$$

Main results I : Probing the coupling to SM particles

- By convention sign on the fermion yukawa strength multiplier (relying on the γγ strength primarily)... ambiguity inspired tH analyses
- Checking the direct and indirect couplings to fermions
- Checks of specific composite models

Main results II : Probing the W to Z ratio (custodial symmetry)

Main results III : Probing physics beyond the Standard Model (In the decays and/or in the loops)

Main results IV : Other Relevant Models

- Illustrating the mass dependence (also Ellis and You vev and critical coef.)
- 3 coupling strength parameter fits κu , κd and κV for MSSM and 2HDM limits

Beyond any reasonable doubt...

The consistency of rates of the three discovery channels and the supporting evidence from the additional channels leaves little doubt about the nature of the particle.

For it NOT to be a Higgs boson would require a very savvy conspiring impostor

- Observation in the diphoton channel implies C = 1
- Observation in the diphoton channel (Landau-Yang theorem) implies $J \neq 1$
- Observation in WW channel favors J=0
- Observation in the ZZ and WW channels disfavors P=-1

This being said we still perform analyses to test the main quantum numbers directly from model independent observables.

Main Quantum Numbers

J^{PC}

A large number of options to probe the spin directly from angular (or threshold behavior) distributions.

- From the associated production modes (VH, VBF or ggF+jets)
- From the production angle $\cos \theta^*$ distribution
- From the decay angles and the spin correlation when applicable

The philosophy of the LHC approach

- Measure the compatibility with the 0⁺ hypothesis in specific framework
- Probe alternative hypotheses simulated using an effective Lagrangian including higher order couplings.

Overview of Spin and Parity Results

	ATLAS				CMS			
J' CL _S	ZZ*(4I)	γγ	WW*	Comb.	ZZ*(4I)	WW*	Comb.	γγ
0-	2.2%	-	-	-	0.16%		0.16%	
0 ⁻ _h	-	-	-	-	8.1%		8.1%	
1-	6.0%	-	-	-				
1+	0.2%	-	-	-				
2 ⁺ m (gg)	16.9%	0.7%	5%	<0.1%	1.5%	14%	0.5%	Not excl.
2 ⁺ _m (qq)	<0.1%	2%	1%	<0.1%	<0.1%		<0.1%	Not excl.
2⁻	<0.1%	-	-	-	<0.1%		<0.1%	

- Most important is the compatibility with 0^+
- No VH or VBF threshold distribution analysis yet at LHC.

Main BSM Channels Nano Review

Overview of BSM Channels (I)

- Charged Higgs
 - Main current analysis H^{\pm} to $\tau\nu$
 - H[±] to cs
 - High mass specific H[±] to AW
 - High mass specific H[±] to tb
- MSSM h, H, and A
 - Main current analysis $\tau\tau$
 - Also searched for in $\mu\mu$
 - Also searched for in bb(b)
 - New open channel in the intermediate-high mass: hh
- NMSSM a (Main search at LHC $\mu\mu$)

Overview of BSM Channels (II)

- Singlet interpretation with unitarity constraint (High mass analyses)
 - ZZ to llnn channel (most powerfull, overlap with invisible search)
 - ZZ to llqq channel (potentially interesting lower mass reach)
 - ZZ to llll: Interesting to fit all h and H simultaneously
 - WW to lvlv can also fit h and H simultaneously
 - WW to lvqq high mass only
 - γγ See latest CMS result and extending mass domain

- 2HDM Interpretation
 - ZZ to llll simultaneous fit
 - WW to InIn simultaneous fit
 - γγ simultaneous fit

LHC future prospects

Made for two scenarios 300 fb⁻¹ and 3ab⁻¹

- Need to investigate more scenarios
- Need to investigate more channels

The LHC timeline

LS1 Machine Consolidation

$LS2 \ {\tt Machine upgrades for high Luminosity}$

- Collimation
- Cryogenics
- Injector upgrade for high intensity (lower emittance)
- Phase I for ATLAS : Pixel upgrade, FTK, and new small wheel

$LS3 \ {\rm Machine\ upgrades\ for\ high\ Luminosity}$

- Upgrade interaction region
- Crab cavities?
- Phase II: full replacement of tracker, new trigger scheme (add L0), readout electronics.

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

LHC	Ctimeline
2009	Start of LHC
	Run 1, 7+8 TeV, ~25 fb ⁻¹ int. lumi
2013/14	Prepare LHC for LS1 design <i>E</i> & lumi
	Collect ~30 fb ⁻¹ per year at 13/14 TeV
↓ 2018	Phase-1 upgrade ultimate lumi LS2
	Twice nominal lumi at 14 TeV, ~100 fb ⁻¹ per year
~2022	Phase-2 upgrade LS3 to HL-LHC
	~300 fb ⁻¹ per year, run up to > 3 ab ⁻¹ collected
~2030	

38

HL-LHC Beam Parameters

 $\mathcal{L} = \frac{N_p^2 k_b f_{rev} \gamma}{4\pi \beta^* \epsilon_n} F$

Two HL-LHC scenarios

Parameter	2012	Nominal	HL-LHC (25 ns)	HL-LHC (50 ns)
C.O.M Energy	8 TeV	13-14 TeV	14 TeV	14 TeV
N _p	1.2 10 ¹¹	1.15 10 ¹¹	2.0 10 ¹¹	3.3 10 ¹¹
Bunch spacing / k	50 ns /1380	25 ns /2808	25 ns /2808	50ns /1404
ε (mm rad)	2.5	3.75	2.5	3.0
β* (m)	0.6	0.55	0.15	0.15
L (cm ⁻² s ⁻¹)	~7x10 ³³	10 ³⁴	7.4 10 ³⁴	8.4 10 ³⁴
Pile up	~25	~20	~140	~260

Pile up is a crucial issue!

CMS event with 78 reconstructed vertices

ATLAS Higgs Physics Program: Main Couplings

Couplings Projections Only a sample of analyses

Only indirect (however not negligible) constraint on the total width Necessary to use assumptions or measure ratios: Precision down to 5% level

Reaching ttH Production in (robust) rare modes

Analyses not relying on more intricate decay channels (bb, tt and WW)

- γγ channel: more than 100 Events expected with s/b~1/5
- μμ channel: approximately 30
 Events expected with s/b~1

μμ decay mode should reach more than 5 standard deviation

Self Couplings

Determination of the scalar potential, essential missing ingredient : self couplings !

Are they as predicted : $\lambda_3 \sim m_H^2/(2v)$, $\lambda_4 \sim m_H^2/(8v^2)$

 λ_4 : hopeless in any planed experiment (?)

 λ_3 : very very hard in particular due to the double H production, which also interferes with the signal...

Beyond LHC Programs

	LHC(300)	LHC (3000)	ILC (250+350+500)	TLEP (240+350)
Δm _H (MeV)	~100	~50	~30	~7
$\Delta\Gamma_{\rm H}/\Gamma_{\rm H}(\Delta\Gamma_{\rm inv})$			5.5(1.2)%	1.1(0.3)%
H spin	\checkmark	\checkmark	✓	\checkmark
Δm _W (MeV)	~10	~10	~6	<1
Δm _t (MeV)	800-1000	500-800	20	15
$\Delta g_{HVV}/g_{HVV}$	2.7-5.7%*	1-2.7%*	1-5%	0.2-1.7%
$\Delta g_{Hff}^{}/g_{Hff}^{}$	5.1-6.9%*	2-2.7%*	2-2.5%	0.2-0.7%
$\Delta g_{Htt}/g_{Htt}$	8.7%*	3.9%*	~15%	~30%
$\Delta g_{HHH}/g_{HHH}$		~30%	15-20%**	

e⁺e⁻ collider (linear or circular?)

From R. Aleksan

- High-energy pp machine
 - HE-LHC (33 TeV)
 - Something bigger (TLHC 100 TeV)
- Muon collider
- ep, eq and $\gamma\gamma$ Machines investigated as well

Conclusion

- No significant deviations (so far) from the SM Higgs
- LHC Higgs physics program reappraised
 - Exciting vast program to measure as precisely as possible the H⁰ properties
 - Exciting vast program to search for additional states of the EWSB sector

Backup Slides

Completing the Picture WBS

Weak Boson Scattering

Only taking into account the cleanest signals : ZZjj in the 4 leptons final state

m₄₁ [TeV]

Sensitivities for 300 fb⁻¹ and 3 ab⁻¹:

Model (anomalous WBS)	300 fb ⁻¹	3 ab ⁻¹
500 GeV and g=1	2.4 σ	7.5 σ
1 TeV and g=1.75	1.7 σ	5.5 σ
1 TeV and g=2.5	3.0 σ	9.4 σ

Other Higgs Programs

- LEP limits m_H > 114 GeV covering down to 32 MEV
- In general reinterpretation of low mass searches
- PreLEP era
 - Absence of Higgs related effects in Nuclear Physics, neutron stars and neutron scattering experiments $m_{\rm H}{>}20~\text{MeV}$
 - Kaon abd B-Meson decays limits m_H>5 GeV
- LHCb
 - Standard Model H in bb
 - Higgs decays to long lived partices
 - (MSSM) Higgs to $\tau\tau$
- BaBar and Belle search for NMSSM a

Center-of-Mass Energy (Nominal) 14 TeV ?

Center-of-Mass Energy (close to nominal) 13TeV - LHCb

ALICE

Center-of-Mass Energy (2012) 8 TeV

CM

Center-of-Mass Energy (2010-2011)

The (experimental) μ Problem

Unbiased at true mass

Statistical Interpretation

How to read Higgs Search Plots

How to Read Higgs Exclusion Limits Plots

$$\lambda_{\mu} = \lambda(\mu, \theta) = \frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})} \qquad q_{\mu} = -2\ln\lambda_{\mu}$$

Statistical Interpretation How to read Higgs Search Plots

Hypothesis testing using the Profile likelihood ratio...

The ATLAS and CMS Detectors In a Nutshell

Sub System	ATLAS	CMS
Design	ere	g 22 m
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E\sim 10\%/\sqrt{E}\oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim$ 4 $\%~({ m at}~50~{ m GeV}) \sim$ 11 $\%~({ m at}~1~{ m TeV})$	Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\%~({ m at}~50~{ m GeV}) \ \sim 10\%~({ m at}~1~{ m TeV})$