Dilatons and Fine Tuning

John Terning, UC Davis

with Csaba Csáki, Brando Bellazzini, Jay Hubisz, Javi Serra

hep-ph/1209.3299 and 1305.3919

Reducing the cosmological constant

0.0

0.2

0.4

0.6

0.8

 $\frac{y}{1.0}$ yc

Relevant operators cause problems

$$\mathcal{L} = \Lambda + m^2 H^{\dagger} H + \mathcal{L}_{d=4} + \mathcal{L}_{d=4+n}$$

With a consistent effective theory up to scale μ , without tuning coefficients go like:

$$\frac{g^2}{16\pi^2} \left(\begin{array}{cc} \mu^4, & \mu^2, & \ln\mu, & \frac{1}{\mu^n} \end{array} \right)$$

observed values:

 $(10^{-12} \,\mathrm{GeV})^4 \quad (126 \,\mathrm{GeV})^2 \quad \mathcal{O}(1) \qquad < \frac{1}{(10 \,\mathrm{TeV})^n}$

Anthropic Speculations:

The Universe must be such that life can be advanced enough to contemplate the Universe and primitive enough to contemplate the anthropic principle.

Approximate Symmetries can lead to large suppressions

terms can be forbidden to leading order

Pseudo-Nambu-Goldstone bosons can have suppressed masses

Symmetry checklist

we'll explore spontaneously broken CFTs

Effective theory for broken scale invariance

 $\langle \mathcal{O} \rangle = f^n$

Goldstone boson

$$\sigma(x) \to \sigma(e^{\alpha}x) + \alpha f$$

non-linear realization

$$f \to f \, \chi \equiv f \, e^{\sigma/f}$$

$$\mathcal{L}_{eff} = \sum_{n,m \ge 0} \frac{a_{n,m}}{(4\pi)^{2(n-1)} f^{2(n-2)}} \frac{\partial^{2n} \chi^m}{\chi^{2n+m-4}}$$
$$= -a_{0,0} (4\pi)^2 f^4 \chi^4 + \frac{f^2}{2} (\partial_\mu \chi)^2 + \frac{a_{2,4}}{(4\pi)^2} \frac{(\partial \chi)^4}{\chi^4} + \dots$$

a la Callan, Coleman, Wess, and Zumino

Runaway Goldstone Boson

need a flat direction to have spontaneous breaking

still need approximate flat direction QCD-like theories don't have light dilatons, Phys.Lett. B200 (1988) 338

Assuming an approximate flat direction

$$\beta(\lambda) = \frac{d\lambda}{d\ln\mu} = \epsilon\lambda + \frac{b_1}{4\pi}\lambda^2 + \mathcal{O}\lambda^3$$
$$a(\lambda) = (4\pi)^2 \left[c_0 + \sum_n c_n \left(\frac{\lambda}{4\pi}\right)^n\right]$$
$$f' = f^3 \left[4a + \beta a'\right] \approx (4\pi)^2 f^3 \left[4c_0 + \frac{c_1}{4\pi}\lambda_0 \left(\frac{f}{\mu_0}\right)^\epsilon\right]$$
$$f \approx \mu_0 \left(\frac{-16\pi c_0}{\lambda(\mu_0)c_1}\right)^{1/\epsilon}$$

V

need a marginal operator, small β function, and a tuned flat direction

Are there non-SUSY theories with approximate flat directions?

Turn to the AdS/CFT correspondence

 $\langle e^{\int d^4 x \,\phi_0(x)\mathcal{O}(x)} \rangle_{\text{CFT}} \approx e^{-S_{5\text{Dgrav}}[\phi(x,z)|_{z=0}=\phi_0(x)]}$ $ds^2 = \frac{R^2}{z^2} \left(dx^2 - dz^2 \right)$

 $\mathcal{O} \subset \operatorname{CFT} \leftrightarrow \phi \operatorname{AdS}_5$ field, $\phi_0(x)$ is boundary value

With bulk mass $m^2 \phi^2$

$$\phi = \phi_0 \, z^{4-\Delta} + c \, z^{\Delta}$$

source condensate

$$\Delta = 2 + \sqrt{4 + \frac{m^2}{k^2}}$$

CFT operator \mathcal{O} has dimension Δ

how do we spontaneously break the CFT?

Randall-Sundrum is dual to a spontaneously broken CFT

why is there a flat direction without SUSY?

Tuning a flat direction in RS

$$V_{eff} = V_0 + V_1 \left(\frac{R}{R'}\right)^4 + \Lambda_{(5)} R \left(1 - \left(\frac{R}{R'}\right)^4\right)$$

brane tensions

5D cosmo. constant

$$V_{eff} = V_0 + \Lambda_{(5)}R + f^4\chi^4 \left(V_1R^4 - \Lambda_{(5)}R^5\right)$$

UV cosmo. constant quartic coupling

this solution is not stable to perturbations

Csaki, Graesser, Kolda, JT hep-ph/9906513, hep-ph/9911406

$$m^2 = -4 \epsilon k^2$$

 $\Delta \approx 4 - \epsilon$

 $ds^2 = e^{-2A(y)}dx^2 - dy^2 \qquad \phi = \phi_0 e^{\epsilon ky}$

brane potentials

two fine tunings

 $V_{eff} = V_0 + \Lambda_{(5)}R + f^4\chi^4 \left(V_1R^4 - \Lambda_{(5)}R^5\right)$

hep-ph/9907447

brane potentials

brane potentials

brane potentials

now we can parameterize a broken CFT

Reducing the Cosmological Constant

Riccardo Rattazzi

perturbing the CFT and allowing sufficient running allows the IR brane to sit at a location with a vanishing c.c.

Planck conference 2010

Weinberg's No-Go Theorem

You can't have your cake and eat it too!

Exact conformal symmetry can remove the c.c.

but to have a unique vacuum it must be broken.

S. Weinberg Rev. Mod. Phys. 61, 1 (1989)

Back reaction in AdS₅

$$ds^2 = e^{-2A(y)}dx^2 - dy^2$$

$$A'^{2} = \frac{\kappa^{2} \phi'^{2}}{12} - \frac{\kappa^{2}}{6} V(\phi)$$

$$\phi'' = 4A' \phi' + \frac{\partial V}{\partial \phi}$$

$$V_{eff}(y_1) = e^{-4A(y_1)} \left[V_1(\phi(y_1)) + \frac{6}{\kappa^2} A'(y_1) \right]$$

assuming we have fine-tuned the UV contributions

UV behavior with a bulk mass

$$\phi'' - 4A'\phi' + 4\epsilon k^2\phi = 0$$

dominant balance

$$\phi = \phi_0 e^{\epsilon ky}$$

$$A = ky - \frac{\kappa^2 \phi_0^2}{12} \left(e^{2\epsilon ky} - 1 \right)$$

perturbative RG evolution

IR behavior with a bulk mass

Csaki, Erlich, Grojean, Hollowood hep-th/0004133

Boundary Layer Matching

$$y_c = \frac{1}{\epsilon k} \log \left(\frac{c}{\kappa \phi_0} - \frac{\sqrt{3}}{2\kappa \phi_0} \log \left[\frac{1 - (\kappa \phi_0)^4}{1 + (\kappa \phi_0)^4} \right] \right)$$

$$\phi(y) = \phi_0 e^{\epsilon ky} - \frac{\sqrt{3}}{2\kappa} \log\left[\tanh\left(2k(y_c - y)\right)\right] - \phi_0 e^{\epsilon ky_c} + \frac{c}{\kappa}$$

cf. Chacko, Mishra, Stolarski hep-ph/1304.1795

5D Dual of Spontaneously Broken Scale Invariance

$$A'(y) = k \coth \left(4k(y_c - y)\right)$$

$$\phi(y) = \phi_0 e^{\epsilon k y} - \frac{\sqrt{3}}{2\kappa} \log \left(\tanh \left(2k(y_c - y)\right)\right)$$

5D Dual of Spontaneously Broken Scale Invariance

$$A'(y) = k \coth \left(4k(y_c - y)\right)$$

$$\phi(y) = \phi_0 e^{\epsilon k y} - \frac{\sqrt{3}}{2\kappa} \log \left(\tanh \left(2k(y_c - y)\right)\right)$$

 $V \sim \epsilon \,({\rm TeV})^4$

 $m_{\rm dil}^2 \sim \epsilon \,({\rm TeV})^2$

potentially 24 orders of magnitude better than SUSY

Cosmological Constant in TeV⁴

Weinberg's No-Go Theorem

You can't have your cake and eat it too!

 $\epsilon = 0$ can remove the c.c.

but to have a unique vacuum $\ \epsilon \neq 0$

$$\epsilon = 10^{-12} ?$$

Conclusions

we have a new 5D dual of a spontaneously broken CFT

conformal symmetry is better than SUSY for reducing the cosmological constant but not nearly a solution by itself

Soluble Conformal Field Theory

$$\mathcal{L} = \frac{1}{2} \partial^{\nu} \phi \, \partial_{\nu} \phi$$
$$\langle \phi \rangle = v$$

 ϕ is a massless Nambu–Goldstone boson

SUSY 3-2 Model is a Broken CFT

		SU(3)	SU(2)	U(1)	$U(1)_R$
Ģ	5			1/3	1
1	$L \mid$	1		-1	-3
\overline{U}	7		1	-4/3	-8
\overline{I}	D		1	2/3	4

$$W = \frac{\Lambda_3^7}{\det(\overline{Q}Q)} + \lambda \, Q \bar{D}L$$

$$V = \frac{|\frac{\partial W}{\partial Q}|^2 + |\frac{\partial W}{\partial \overline{U}}|^2 + |\frac{\partial W}{\partial \overline{D}}|^2 + |\frac{\partial W}{\partial \overline{D}}|^2 + |\frac{\partial W}{\partial L}|^2}{\approx \frac{\Lambda_3^{14}}{\phi^{10}} + \lambda \frac{\Lambda_3^7}{\phi^3} + \lambda^2 \phi^4}$$

$$\left<\phi\right> = \frac{\Lambda_3}{\lambda^{1/7}}$$

SUSY 3-2 Model is a Broken CFT

	SU(3)	SU(2)	U(1)	$U(1)_R$	
\overline{Q}			1/3	1	
L	1		-1	-3	
\overline{U}		1	-4/3	-8	
\overline{D}		1	2/3	4	

$$\left<\phi\right> = \frac{\Lambda_3}{\lambda^{1/7}}$$

$$m_{\rm dil} = \lambda \langle \phi \rangle = \lambda^{6/7} \Lambda_3$$

$$V_{min} \approx \lambda^2 < \phi >^4$$

Scale invariant action

$$x \to x' = e^{-\alpha} x$$

 $\mathcal{O}(x) \to \mathcal{O}'(x) = e^{\alpha \Delta} \mathcal{O}(e^{\alpha} x)$

$$S = \sum_{i} \int d^4x \, g_i \mathcal{O}_i(x) \longrightarrow S' = \sum_{i} \int d^4x e^{\alpha(\Delta_i - 4)} g_i \mathcal{O}_i(x)$$

invariance requires $\Delta_i = 4$

5 spontaneously broken conformal generators give one Goldstone Boson

 $M_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$ $P_{\mu} = -i\partial_{\mu}$ $K_{\mu} = -i(x^{2}\partial_{\mu} - 2x_{\mu}x_{\alpha}\partial^{\alpha})$ $D = ix_{\alpha}\partial^{\alpha}$

Sydney Coleman, "Aspects of Symmetry" see also Ian Low, hep-th/0110285