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Dilaton dynamics  

•Main point of dilaton: effective action can have non-derivative 
χ4 term - just the cosmological constant in the composite 
sector

• Generically a≠0. Will make SBSI difficult: 

•Need to add additional almost-marginal operator to generate
dilaton potential
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All the rates scale as v2/f 2, and the inclusive modes as well, since all coe⇥cients in Eq. (4.1)
for the dilaton are proportional to v/f , and likewise for |Ctot|. Paying attention to the
individual channels one can gain information on the anomalous dimensions. We show in
Fig. 1 the constraints from the present measurements of three di�erent rates: inclusive higgs
production and decay to ZZ or to ⇥⇥, Rincl.,ZZ andRincl.,�� respectively, and associated vector
boson production and decay to bb̄, RV h,bb. From the left panel one can see the preference of the
data for values of v/f very close to one, as was already suggested by EWPT (also shown as a
vertical strip). This is driven by the measurement of RV H,bb, since we assumed no deviations
in the coupling to the bottom except for the v/f factor. The inclusive measurements Rincl.,ZZ

and Rincl.,�� are instead sensitive to the �-function coe⇥cients. In particular, as shown in

the right panel of Fig. 1, Rincl.,ZZ delimits the preferred values for b(3)UV , while the overlap

with Rincl.,�� does this for b(EM)
UV . We also show in Fig. 2 the prediction for these three

rates as a function of b(3)UV = b(EM)
UV /2 (this choice correspond to the symmetric scenario

b(1)UV = b(2)UV = b(3)UV ), and its overlap with current measurements at 1⇤ CL. Enhancement of
the ZZ and ⇥⇥ rates are easily obtained for both v/f = 1 (left panel) and v/f = 0.8 (right

panel). The di�erence between negative and positive values of b(3)UV is due to the di�erence
in sign of the SM contribution to ĉg and ĉ�. Finally, notice that the bb̄ rate from associated
production is generically suppressed, due to the lack of enhancement in the production cross
section. This conclusion would not be changed by turning on ⇥b ⇤= 0, since the bb̄ channel
already dominates the decay of the higgs for ⇥b = 0.

5 General considerations for the dilaton mass

The main di�erence between a standard Goldstone boson arising from an internal global
symmetry and the dilaton is that scale invariance allows for a non-derivative quartic self
coupling, which plays a crucial role in the discussion of the SBSI:
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•a>0: VEV at f=0, no SBSI

•a<0: runaway vacuum f→∞

•a=0 arbitrary f

dilaton potential
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dilaton
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Review of broken CFT’s

Reducing the 
cosmological constant

New 5D Dual of a 
Spontaneously Broken CFT
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Relevant operators cause problems

With a consistent effective theory up to scale µ,
without tuning coefficients go like:

µ4 µ2 lnµ
1

µn
g2

16⇡2

✓ ◆
, , ,

observed values:

O(1) <
1

(10TeV)n(126GeV)2(10�12 GeV)4

L = ⇤+m2H†H + Ld=4 + Ld=4+n
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The Plan

LHC

understand
the weak scale

string theory

unique vacuum

?

find a bunch of 
new particles

a miracle occurs



Plan B

LHC

we don’t understand
the weak scale

string theory

?

unusual vacuum
one out of e500



The Universe must be such that life can be 
advanced enough to contemplate the Universe and  
primitive enough to contemplate the anthropic principle.

Anthropic Speculations:



Approximate Symmetries can 
lead to large suppressions

terms can be forbidden to leading order

Pseudo-Nambu-Goldstone bosons can have suppressed masses



Symmetry checklist

supersymmetry

m2H†H⇤

little Higgs

X

extra dim. gauge X

conformal XX

X

X

we’ll explore spontaneously broken CFTs



Effective theory for broken 
scale invariance
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non-linear realization

a la Callan, Coleman, Wess, and Zumino



Runaway Goldstone Boson

quartic coupling
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χ4 term - just the cosmological constant in the composite 
sector
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All the rates scale as v2/f 2, and the inclusive modes as well, since all coe⇥cients in Eq. (4.1)
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Perturbation by an almost 
marginal operator

still need approximate flat direction
QCD-like theories don’t have light dilatons, Phys.Lett. B200 (1988) 338

Dilaton dynamics  
•Perturbation:

•Dilaton potential:                                       vacuum energy in
units of f 

•To have a VEV: 

•Dilaton mass: 
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Figure 2: Dilaton predictions for the rates Rincl.,ZZ (green line), Rincl.,�� (orange), and RV H,bb

(blue) as a function of b(3)UV,CFT = b(EM)
UV,CFT/2 for v/f = 1 (left panel) and v/f = 0.8 (right).

Also shown as horizontal bands the current experimental intervals at 1⇤ CL (same color
code).

The presence of this term will make it very di⇤cult to achieve the SBSI. When a ⇧= 0 the
theory is either forced to f ⇤ ⌅ for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the e⇥ective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| � 1, so that the broken phase ⌃⌅⌥ = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

�S =

�
d4x⇥(µ)O (5.2)

gives rise, in general, to an e⇥ective potential for the dilaton of the form

V (⌅) = f 4F (⇥(f)) , (5.3)

where F is a function of ⇥ which parametrizes the explicit breaking of scale invariance as
a non-trivial function of ⌅. This potential is of the Coleman-Weinberg type when ⇥ is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Za⇥aroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while ⇥ remains perturbative over the relevant
range of renormalization group running. In this case F (⇥(f)) can have a minimum at a
scale f ⇥ �s, where �s is the scale where ⇥ would become non-perturbative. Because
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f ⇤ �s, ⇥ stays perturbative and the dilaton remains light, that is scale invariance can be
spontaneously broken. The stationary condition of V is

V � = f 3 [4F (⇥(f)) + �F �(⇥(f))] = 0 (5.4)

which results in a dilaton mass

m2
dil = f 2� [�F �� + 4F � + ��F �] ⌅ 4f 2�F �(⇥(f)) = �16f 2F (⇥(f)) (5.5)

where �� = d�/d⇥. In the second equality we have also assumed that �� ⇥ 1. An explicit
(supersymmetric) example illustrating how this mechanism can work will be presented in
the next section. The Goldberger-Wise stabilization mechanism for the RSI model is also
an example for this mechanism, as we will discuss in detail in Sec. 7.

The main questions related to the naturalness of this mechanism are then why is F ⇥ 1
at the minimum (or, for a perturbative expansion in ⇥, a ⇥ 1) along with � ⇥ 1, and why
are we allowing only almost marginal perturbations. Let us start with F ⇥ 1. The case
F = 0 corresponds to a situation with no potential for the dilaton, and thus an arbitrary
value of f is allowed. This means that there is a flat direction in the theory. The presence of
flat directions is quite natural in supersymmetric theories, however no non-supersymmetric
example of physically inequivalent flat directions is known.7 The closest anyone has been able
to get to this situation were the so-called orbifold gauge theories obtained via projecting out
some of the fields and couplings of an N = 4 SUSY gauge theory [43]. In this case the large-
N limit of the �-functions agrees with those of the SUSY theories, however 1/N corrections
lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are
the only ones that would allow for a light dilaton. This part of the naturalness problem is
thus rephrased in terms of what relevant deformations the CFT supports. If it turns out
that only marginal perturbations are possible then a light dilaton is a natural possibility
(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),
especially chiral ones, give a handle on this because of the non-renormalization theorem:
the relevant deformations (if there are any) can be made naturally small. For the case of
non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a
chance of giving a naturally light dilaton, but even those face the question of the origin of a
flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-
mization condition (5.4) says that for � ⇥ 1 the quartic F must almost vanish. In turn this
ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other
words, if we start with an almost flat direction, F ⇥ 1, then we can easily stabilize it by a
small breaking controlled by �. However, the starting assumption of almost flatness is itself
plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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Assuming an approximate flat direction
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Are there non-SUSY theories 
with approximate flat directions?

Turn to the AdS/CFT correspondence
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With bulk mass 
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Randall-Sundrum is dual to a 
spontaneously broken CFT

why is there a flat direction without SUSY?

IRUV
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Tuning a flat direction in RS

brane tensions
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Goldberger-Wise stabilized RS

brane potentials
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Goldberger-Wise stabilized RS
brane potentials
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Goldberger-Wise stabilized RS
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Goldberger-Wise stabilized RS
brane potentials
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now we can parameterize a broken CFT



Reducing the Cosmological Constant

Riccardo Rattazzi

perturbing the CFT and allowing 
sufficient running allows the IR brane 
to sit at a location with a vanishing c.c.

Planck conference 2010



Weinberg’s No-Go Theorem

You can’t have your cake and eat it too!

Exact conformal symmetry can remove the c.c.

but to have a unique vacuum it must be broken.

S. Weinberg Rev. Mod. Phys. 61, 1 (1989)

http://adsabs.harvard.edu/cgi-bin/bib_query?bibcode=1989RvMP...61....1W&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/bib_query?bibcode=1989RvMP...61....1W&db_key=PHY


Back reaction in AdS5

assuming we have fine-tuned the UV contributions

ds

2 = e

�2A(y)
dx

2 � dy

2

A02 =
2�02

12
� 2

6
V (�)

�00 = 4A0�0 +
@V

@�
(1)

Veff (y1) = e�4A(y1)


V1 (�(y1)) +

6

2
A0(y1)

�



UV behavior with a bulk mass

� = �0 e
✏ky

A = ky � 2�2
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�
e2✏ky � 1

�

�00 � 4A0�0 + 4✏k2� = 0

dominant balance

perturbative RG evolution



IR behavior with a bulk mass
�00 � 4A0�0 + 4✏k2� = 0

dominant balance
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singularity at yc
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log (tanh (2k(yc� y)))

Csaki, Erlich, Grojean, Hollowood hep-th/0004133 



Boundary Layer Matching
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cf. Chacko, Mishra, Stolarski hep-ph/1304.1795 



5D Dual of Spontaneously 
Broken Scale Invariance

A0
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potentially 24 orders of magnitude better than SUSY

V ⇠ ✏ (TeV)4

m2
dil ⇠ ✏ (TeV)2

A0
(y) = k coth (4k(yc � y))

�(y) = �0 e
✏ky �

p
3

2
log (tanh (2k(yc � y)))

5D Dual of Spontaneously 
Broken Scale Invariance



Cosmological Constant in TeV4
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Weinberg’s No-Go Theorem

You can’t have your cake and eat it too!

            can remove the c.c.

but to have a unique vacuum 

✏ = 0

✏ 6= 0

✏ = 10�12 ?



Conclusions

we have a new 5D dual of a 
spontaneously broken CFT

conformal symmetry is better than SUSY 
for reducing the cosmological constant

but not nearly a solution by itself



Backup



Soluble Conformal Field Theory

is a massless Nambu-Goldstone boson

L =
1

2
@⌫�@⌫�

h�i = v

�



SUSY 3-2 Model is a Broken CFT
The 3-2 model

A✏eck, Dine, and Seiberg found the simplest known model of dynamical
SUSY breaking:

SU(3) SU(2) U(1) U(1)R

Q 1/3 1
L 1 �1 �3
U 1 �4/3 �8
D 1 2/3 4

For ⇤
3

� ⇤
2

instantons give the standard ADS superpotential:

W
dyn

= ⇤

7
3

det(QQ)

which has a runaway vacuum. Adding a tree-level trilinear term

W = ⇤

7
3

det(QQ)

+ � QD̄L ,

removes the classical flat directions and produces a stable minimum
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The 3-2 model

estimate the vacuum energy by taking all the VEVs to ⇠ �
For � � ⇤

3

and � ⌧ 1 in a perturbative regime
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SUSY 3-2 Model is a Broken CFT
The 3-2 model

A✏eck, Dine, and Seiberg found the simplest known model of dynamical
SUSY breaking:

SU(3) SU(2) U(1) U(1)R

Q 1/3 1
L 1 �1 �3
U 1 �4/3 �8
D 1 2/3 4
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removes the classical flat directions and produces a stable minimum
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Scale invariant action

invariance requires 

x ! x

0 = e
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x
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5 spontaneously broken conformal 
generators give one Goldstone Boson

Sydney Coleman, “Aspects of Symmetry”
see also Ian Low, hep-th/0110285 

Mµ⌫ = �i(xµ@⌫ � x⌫@µ)

Pµ = �i@µ

Kµ = �i(x2
@µ � 2xµx↵@

↵)

D = ix↵@
↵


