Vector-like Fermions and the Electroweak Phase Transition

Eduardo Pontón

Instituto de Física Teórica -UNESP & ICTP-SAIFR

(Work with H. Davoudiasl & I. Lewis, 1211.3449)

Beyond the SM after the first LHC run, GGI

July 11, 2013

International Centre for Theoretical Physics South American Institute for Fundamental Research

Thursday, July 11, 13

A SM-like Higgs

Overall good agreement with SM expectations... but still room for interesting deviations.

The Nature of the EWPhT

Precise measurement of Higgs properties can illuminate nature of EW phase transition

In the SM, with $m_H = 125 \text{ GeV}$: a smooth crossover $(1^{st}$ -order PT only for $m_H \lesssim 80 \text{ GeV})$ (Rummukainen et. al., hep-lat/9805013)

But deviations (due to new physics) might have potentially important implications

- Baryon Asymmetry of the Universe
- Gravitational wave signals

The EWPhT in the SM

BSM and the EWPhT

New physics required if the EWPhT plays a role in generation of the BAU

``Lore": to strengthen the EWPhT, requires new bosonic degrees of freedom to either

- change the Higgs potential at tree-level (e.g. adding singlets)
- enhance the *E*-term at loop level

Both cases can be thought as relying on effective cubic terms

In light of Higgs discovery:

Cohen, Morrissey & Pierce, 1203.2924 Carena, Nardini, Quirós & Wagner, 1207.6330 Fok, Kribs, Martin & Tsai, 1208.2784 Chung, Long & Wang, 1209.1819 Huan, Shu & Zhang, 1210.0906 Laine, Nardini & Rummikainen, 1211.7344

Typically, new fermions not thought to be particularly useful for this purpose...

... they do not induce a cubic term

Can Fermions Help?

However, I know of one previous example where fermions can help the EWPhT:

- Use the fact that when their mass depends on the Higgs vev, it is different in the broken and unbroken phases.
- Decoupling from thermal bath in broken phase leads to reheating, delaying the phase transition:
 → increase in φ_c/T_c

Higgs Di-photon Rate

Loop-level processes prime suspects for deviations from SM

CTP

Eduardo Pontón

Vector-like Systems

Higgs diphoton rate, normalized to SM

$$R_{\gamma\gamma} \simeq \left| 1 - \frac{F_{1/2}(\tau_1) Q_1^2}{F_{\rm SM}} \frac{\partial \ln m_1(v)}{\partial \ln v} \right|^2$$

Recent interest in *vector-like systems*: appeal to ``level repulsion":

CMQW mechanism: if BSM states electromagnetically charged

Higgs diphoton rate suppressed

But there is a *different mechanism*, that can be consistent with a diphoton *enhancement*, and more intimately connected to fermionic nature of new physics

(Davoudiasl, Lewis & EP, 1211.3449)

A Simple Model

Minimal extension (for illustration):

 $(\psi,\psi^c)\sim(1,2)_{\pm1/2}$ $(\chi,\chi^c)\sim(1,1)_{\mp1}$ (``vector-like leptons")

Mass and Yukawa terms:

$$-\mathcal{L}_m = -m_{\psi}\psi\psi^{c} + m_{\chi}\chi\chi^{c} + yH\psi\chi + y_cH^{\dagger}\psi^{c}\chi^{c} + \text{h.c.}$$

Interesting region for EWPhT when fermion masses hierarchical. Assume $m_\psi \gg m_\chi$

EFT analysis with ψ integrated out: may be more general than simple model

EFT Analysis

(Davoudiasl, Lewis & EP, 1211.3449)

For $m_\psi \gg v, m_\chi$, integrate out " ψ " and obtain EFT for (SM + " χ "):

Light vector-like fermion mass is
$$m_1 = m_{\chi} - \frac{G_m v^2}{1}$$

Light vector-like fermion mass is $m_1 = m_{\chi} - \frac{G_m v^2}{1}$
Light vector-like fermion mass is $m_1 = m_{\chi} - \frac{G_m v^2}{1}$

Interactions of light state with physical Higgs (after EWSB):

$$\mathcal{L}_{\text{Yuk}} = \frac{y_{\text{eff}} h \chi \chi^{c}}{h \text{.c.}}$$

$$y_{\rm eff} = -2G_m v < 0$$

Interesting diphoton enhanc. when $y_{
m eff} \sim \mathcal{O}(1)$ and $m_1 \sim 100 - 200 \; {
m GeV}$

T = **0** Potential in EFT

(Davoudiasl, Lewis & EP, 1211.3449)

However, within the UV model, they are determined...

Matching and Running

(Davoudiasl, Lewis & EP, 1211.3449)

However, within the UV model, they are determined...

 $\bar{\gamma} = \bar{\gamma}_{\rm th} + \bar{\gamma}_{\rm RG}$ $\bar{\delta} = \bar{\delta}_{\rm th} + \bar{\delta}_{\rm RG}$

with threshold contributions

$$\bar{\gamma}_{\rm th} = \frac{Z_{\gamma} y^6}{16\pi^2} \frac{m_{\psi} (m_{\psi}^2 + 7m_{\chi} m_{\psi} - 2m_{\chi}^2)}{(m_{\psi} - m_{\chi})^5} \sim \frac{y^6}{16\pi^2} \frac{1}{m_{\psi}^2}$$
$$\bar{\delta}_{\rm th} = -\frac{Z_{\delta} y^8}{48\pi^2} \frac{7m_{\psi}^3 + 27m_{\chi} m_{\psi}^2 - 4m_{\chi}^3}{(m_{\psi} - m_{\chi})^7} \sim -\frac{7y^8}{48\pi^2} \frac{1}{m_{\psi}^4}$$

$$\begin{pmatrix} Z_{\gamma}, Z_{\delta} = 1 \\ \text{at lowest order} \end{pmatrix}$$

and running contributions

$$\bar{\gamma}_{\rm RG} \approx -\frac{3G_m^3 m_{\chi}}{2\pi^2} \ln\left(\frac{m_{\psi}^2}{\mu^2}\right)$$
$$\bar{\delta}_{\rm RG} \approx \frac{G_m^4}{2\pi^2} \ln\left(\frac{m_{\psi}^2}{\mu^2}\right)$$

Eduardo Pontón

- Determined by EFT only
- This is the only difference with naive CW potential in UV model (actually, just the sign)

Quartic Instabilities?

(Davoudiasl, Lewis & EP, 1211.3449)

RG running of Higgs quartic (below m_{ψ}):

Eduardo Pontón

$$16\pi^2 \frac{d\lambda}{dt} = \lambda \left(6\lambda - 9g_2^2 - 3g_1^2 + 12y_t^2 \right) \underbrace{-6y_t^4 + \frac{3}{8} \left[2g_2^2 + \left(g_2^2 + g_1^2\right)^2 \right] \underbrace{-48G_m^2 m_\chi^2}_{\text{fermionic terms induce ``instability''}}$$

Quartic coupling from effective potential at low and high temperatures:

IF

(Davoudiasl, Lewis & EP, 1211.3449)

• Effective Potential in EFT shows instability at $\sim 600~{\rm GeV} \gg {\rm EW}~{\rm scale}$

(Davoudiasl, Lewis & EP, 1211.3449)

• Effective Potential in EFT shows instability at

 $\sim 600~{\rm GeV} \gg {\rm EW}$ scale

• Effective Potential in EFT shows instability at $\sim 600 \text{ GeV} \gg \text{EW scale}$

(Davoudiasl, Lewis & EP, 1211.3449)

• At T = 0 and
$$\phi \sim \text{EW}: m^2 < 0, \ \lambda > 0$$

Thursday, July 11, 13

Thursday, July 11, 13

Back to the Instability

(Davoudiasl, Lewis & EP, 1211.3449)

- EFT with ψ integrated out: match ϕ correlators and run from m_{ψ} to $m_{\chi} \sim v$
 - \rightarrow captures ``small ϕ " behavior, but not large

(finite radius of convergence of Taylor expansion of effective potential)

- Coleman-Weinberg potential in full UV model suggests instability delayed to multi-TeV scale ($\sim m_\psi$)
- Thus, in non-renormalizable theories one should be careful in interpreting the familiar quartic instability

The Mechanism

Keep it simple by dropping non-crucial terms, e.g. cubic:

$$V(\phi, T) \sim \frac{1}{2} \bar{\mu}^2 \phi^2 + \frac{1}{4} \bar{\lambda} \phi^4 + \frac{1}{6} \bar{\gamma} \phi^6$$
$$\bar{\mu}^2 > 0, \bar{\lambda} < 0, \bar{\gamma} > 0 \qquad \qquad \text{``far away min.'': } \phi \sim \sqrt{-\bar{\lambda}/\bar{\gamma}}$$

Degenerate with min. at origin when $\[\bar{\lambda}^2 \sim 6 \bar{\gamma} \mu^2 \ll 1 \]$ (determines critical temp.)

Also estimate

When

$$\phi_c \sim \sqrt{\mu}/\gamma^{1/4}$$
 \longrightarrow may get sizeable ϕ_c/T_c !

Similar to proposal by Grojean, Servant & Wells. Here, $\lambda < 0\,$ from fermions and finite Temp. $_{\rm (hep-ph/0407019)}$

Eduardo Pontón

EFT Agnostic Analysis

(Davoudiasl, Lewis & EP, 1211.3449)

• Strength of the phase transition (ϕ_c/T_c) in

 $-y_{\rm eff} = 2G_m v$

(coupling of light fermion to Higgs)

versus

 $\bar{\gamma}(\mu = m_{\chi})$

(dim-6 stabilizing operator)

Observations:

- Need sizeable underlying $y, y_c \sim {\rm few}$
- Sensitivity to UV completion through stabilizing higher-dim. operators
- Consistent with important Higgs diphoton rate *enhancement*

Star is a benchmark in UV model with:

 $m_{\psi} = 4 \text{ TeV}$ $m_{\chi} = 300 \text{ GeV}$ $y = y_c = 4$

Green regions: effect of 10% (1%) higher-loop corrections at the matching scale

Eduardo Pontón

EW Precision Tests

In the heavy doublet limit: $m_\psi \gg m_\chi, v$, leading contribution to T from

The S-parameter is less constraining in the same limit:

$$\Delta S \sim \frac{2y^2 v^2}{9\pi m_{\psi}^2} \ [6\ln(m_{\psi}/m_{\chi}) - 7]$$

A Custodial Extension

Two important shortcomings so far:

- In spite of large m_ψ , sizeable T parameter suggests imposing custodial symmetry
- Lightest charged state must decay (so far stable)

Both can be addressed by adding a vector-like ``RH neutrino", (n, n^c)

$$-\Delta \mathcal{L}_m = m_n n n^c + \tilde{y} H^{\dagger} \psi n + \tilde{y}_c H \psi^c \chi^c + \text{h.c.}$$

When $y = \tilde{y}$, $y_c = \tilde{y}_c$ and $m_n = -m_\chi$, can rewrite as $SU(2)_L \times SU(2)_R$ invariant:

$$-\mathcal{L}_{\text{Yuk}} = y\psi\Phi\xi + y_c\psi^c\Phi\xi^c + \text{h.c} \qquad \text{with} \quad \begin{array}{l} \xi^{(c)} \equiv \binom{n^{(c)}}{-\chi^{(c)}} \quad \Phi \equiv \begin{pmatrix} H^{0*} & H^+ \\ -H^- & H^0 \end{pmatrix} \\ (0,2) \quad (2,2) \quad (2,2) \end{array}$$

In this limit T = 0. Need to ensure neutral lightest state, which breaks custodial softly.

A Detailed Example

Input parameters:

$m_{\psi} = 4 \text{ TeV}$	$m_{\chi} = 300 \text{ GeV}$	$m_n = -250 \text{ GeV}$	y = 4	$\tilde{y} = 4$	$y_c = 3.5$	$\tilde{y}_c = 3.5$
----------------------------	------------------------------	--------------------------	-------	-----------------	-------------	---------------------

Vector-like spectrum:

At T = 0

Charged	Neutral			
$m_2^{\pm} = 4.11 \text{ TeV}$	$m_2^0 = 4.11 \text{ TeV}$			
$m_1^{\pm} = 189 \text{ GeV}$	$m_1^0 = 140 \text{ GeV}$			

At
$$T = T_c$$

Charged	Neutral			
$m_2^{\pm} = 4.06 \text{ TeV}$	$m_2^0 = 4.06 \text{ TeV}$			
$m_1^{\pm} = 240 \text{ GeV}$	$m_1^0 = 191 \text{ GeV}$			

Phase transition:

$$\phi_c = 179.3 \text{ GeV}$$

 $T_c = 158.4 \text{ GeV}$
 $\phi_c/T_c = 1.13$

Bubbles nucleate slightly below T_c

Eduardo Pontón

EWPT and diphoton enhancement:

$$\begin{array}{c} \Delta T \sim 10^{-4} \\ \Delta S \approx 0.04 \\ \Delta U \sim 10^{-6} \end{array} \end{array} \right\} \begin{array}{c} \text{Consistent at 95\% CL} \\ \text{with current PDG ellipse} \\ \hline R_{\gamma\gamma} \approx 1.5 \end{array} \end{array}$$

CTP

IF

Conclusions & Outlook

- We illustrated in a simple model the potentially far-reaching consequences of deviations from the SM Higgs properties in answering long-standing questions:
 - The nature of the EWPhT itself
 - The relevance of EW scale physics in the generation of the BAU (details to be worked out)
- Within the model:

 $\mathcal{O}(1)$ correction

- Triple Higgs coupling: $V'''(v) = 3m_H^2/v + 8\bar{\gamma}v^3$

 \longrightarrow expect 40-60% suppression in $gg \rightarrow HH$

- Measurement of lightest charged fermion mass + diphoton rate: $(m_{\chi}, G_m v)$

• Main ingredients: - a fermion state in the few TeV scale

- a parametrically lighter fermion state
- Underlying Yukawa interactions with $y\sim 3-4$

Rather familiar from (warped) extra-dimensional constructions!