

(New) Physics at the LHC Fabiola Gianotti (CERN)

- Status of machine and experiments, experimental challenges
- ${f O}$ The first year(s) of data taking
- Longer-term physics potential (examples ...)
- Constraining the underlying theory

110 dipoles installed in the underground tunnel as of last Friday

F. Gianotti, GGI Inaugural Conference,

Cryoline successfully cooled down last week

Such a high-tech machine requires sophisticated tests ...

F. Gianotti, GGI Inaugural Conferei

Not only dipoles

Dipoles	1232
Quadrupoles	400
Sextupoles	2464
Octupoles/decapoles	1568
Orbit correctors	642
Others	376
Total	~ 6700

23/10/2004: first beam injection test from SPS to LHC through TI8 transfer line

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

LHC physics goals

Search for the Standard Model Higgs boson over ~ 115 < m_H < 1000 GeV.

Explore the highly-motivated TeV-scale, search for physics beyond the SM (Supersymmetry, Extra-dimensions, q/l compositness, leptoquarks, W'/Z', heavy q/l, etc.)

Precise measurements :

- -- W mass
- -- top mass, couplings and decay properties
- -- Higgs mass, spin, couplings (if Higgs found)
- -- B-physics (mainly LHCb): CP violation, rare decays, B⁰ oscillations
- -- QCD jet cross-section and $a_{\!\scriptscriptstyle S}$

-- etc.

Study phase transition at high density from hadronic matter to quark-gluon plasma (mainly ALICE).

Etc. etc.

The environment and the experimental challenges

• Don't know how New Physics will manifest \rightarrow detectors must be able to detect as many particles and signatures as possible: e, μ , τ , ν , γ , jets, b-quarks, \rightarrow ATLAS and CMS are general-purpose experiments.

Event rate and pile-up (consequence of high luminosity ...)

Impact of pile-up on detector requirements and performance:

- -- fast response : ~ 50 ns
- -- granularity : > 10^8 channels
- -- radiation resistance (up to 10¹⁶ n/cm²/year in forward calorimeters)
- -- event reconstruction much more challenging than at previous colliders

- No hope to observe light objects (W, Z, H?) in fully-hadronic final states \rightarrow rely on I, γ
- Fully-hadronic final states (e.g. $q^* \rightarrow qg$) can be extracted from backgrounds only with hard O(100 GeV) p_T cuts \rightarrow works only for heavy objects
- Mass resolutions of ~ 1% (10%) needed for I, γ (jets) to extract tiny signals from backgrounds
- Excellent particle identification: e.g. e/jet separation

Length : ~45 m Radius : ~12 m Weight : ~ 7000 tons Electronic channels : ~ 10⁸

... and 3000 km of cables ...

• Tracking (|1|<2.5, B=2T) :

- -- Si pixels and strips
- -- Transition Radiation Detector (e/π separation)

• Calorimetry ($|\eta|$ <5) :

- -- EM : Pb-LAr
- -- HAD: Fe/scintillator (central), Cu/W-LAr (fwd)

• Muon Spectrometer ($|\eta|$ <2.7) :

air-core toroids with muon chambers

F. Gianotti, GGI Inaugural Conference, Arcetril, 17, 07, 100

Length : ~22 m Radius : ~7 m Weight : ~ 12500 tons

- Tracking ($|\eta|$ <2.5, B=4T): Si pixels and strips
- Calorimetry ($|\eta|$ <5):
- -- EM : PbWO₄ crystals
- -- HAD: brass/scintillator (central+ end-cap), Fe/Quartz (fwd)
- Muon Spectrometer ($|\eta|$ <2.5) : return yoke of solenoid instrumented with muon chambers

F. Gianotti, GGI Inaugural Conference, Arcetri, 191

Point 1: 8th (and last) ATLAS barrel toroid installed in the underground cavern

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

August 25 2005: an historical day at Point 1 and Point 5 Point 5: CMS magnet (230 tons, L=12.5 m, R=3m) rotated from vertical to horizontal position before insertion into cryostat (operation at T=4.2 K)

CMS end-cap Muon Spectrometer

All 400 CSC chambers produced, > 60% installed

ATLAS inner tracker: insertion of the third Silicon layer (out of four) into the barrel cylinder

First cosmic muons observed by ATLAS in the underground cavern on June 20th (recorded by hadron Tilecal calorimeter) ATLAS Atlantis Event JiveXML 1114 00005

2005

Tower energies:

Phi (Degree

W

~ 2.5 GeV

T scale = 1 GeV : Missing ET = 0 GeV

Examples of expected performance

10

2000

4000

m(l⁺l⁻) GeV

be discovered in the X → ee channel (muon decay useful for couplings, asymmetry, etc.)

8000

6000

First collisions (Summer 2007) : L ~ 5×10^{28} Plans to reach L ~ 10^{33} in/before 2009 Hope to collect few fb⁻¹ per experiment by end 2008

Channels (<u>examples</u>)	Events to tape for 1 fb ⁻¹ (per expt: ATLAS, CMS)	Total statistics from previous Colliders
$W \rightarrow \mu \nu$	7 × 10 ⁶	~ 10 ⁴ LEP, ~ 10 ⁶ Tevatron
Z→µµ	~ 10 ⁶	~ 10 ⁶ LEP, ~ 10 ⁵ Tevatron
tt →W b W b → μv +X	~ 10 ⁵	~ 10 ⁴ Tevatron
$\widetilde{g}\widetilde{g}$ m = 1 TeV	10 ² - 10 ³	

With these data:

- Understand and calibrate detectors in situ using well-known physics samples
 - e.g. $-Z \rightarrow ee, \mu\mu$ tracker, ECAL, Muon chambers calibration and alignment, etc. - tt \rightarrow blv bjj jet scale from W \rightarrow jj, b-tag performance, etc.
- Measure SM physics at $\sqrt{s} = 14$ TeV : W, Z, tt, QCD jets ... (omnipresent backgrounds to New Physics)

 $\overline{F. Gianotti, GGI Inaugurd} \rightarrow$ prepare the road to discovery it will take a lot of time ...

Example of initial SM measurement : top signal and top mass

(relevant to New Physics)

ATLAS 150 pb⁻¹ (< 20 days at 10³²) 300 250 200 150 100 50 B=W+4 iets (ALPGEN) 250 200 150 100 400 M (jjj) GeV

- top signal visible pretty soon with simple selection cuts and no b-tagging
- cross-section to ~ 20%
- top mass to ~7 GeV
- get feedback on detector performance (jet E-scale, b-tag)
- tt is background to many searches

- Very simple selection:

 - -- exactly 4 jets $p_T > 40$ GeV
 - -- no kinematic fit
 - -- no b-tagging required (pessimistic, assumes trackers not yet understood)
- $\boldsymbol{\cdot}$ Plot invariant mass of 3 jets with highest p_{T}

Time	Events at 10 ³³	Stat. error $\delta M_{top}(GeV)$	Stat. error δσ/σ
1 year	3x10 ⁵	0.1	0.2%
1 month	7x10 ⁴	0.2	0.4%
1 week	2x10 ³	0.4	2.5%

Ultimate LHC measurement precision: m_{top} to ~ 1 GeV (and m_W to ~ 15 MeV)

Bentvelsen et al

What about early discoveries? Three examples

<u>An easy case</u> : a new (narrow) resonance of mass ~ 1 TeV decaying into e^+e^- , e.g. a Z' or a Graviton $\rightarrow e^+e^-$ of mass ~ 1 TeV

An intermediate case : SUSY

<u>A difficult case</u> : a light Higgs (m_H ~ 115 GeV)

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

An "easy case" : $G \rightarrow e+e-resonance$ with m ~ 1 TeV

· ·		•	I .
Mass	Events for 1	0 fb ⁻¹	∫L dt for discovery
(TeV)	(after all cut	s)	(≥ 10 observed events)
0.9	~ 80		~ 1.2 fb ⁻¹
1.1	~ 25	CMS	~ 4 fb ⁻¹
1.25	~ 13		~ 8 fb ⁻¹

BR ($G \rightarrow ee \approx 2\%$), c = 0.01 (small/conservative coupling to SM particles)

signal is <u>mass peak</u> above background

<u>An "intermediate case" : SUPERSYMMETRY</u>

If SUSY stabilizes $m_H \rightarrow at$ TeV scale \rightarrow could be found quickly thanks to:

- large $\widetilde{q}\widetilde{q}, \widetilde{q}\widetilde{g}, \widetilde{g}\widetilde{g}$ cross-section $\rightarrow \approx 100$ events/day at 10^{33} for $m(\widetilde{q}, \widetilde{g}) \sim 1$ TeV
- spectacular signatures from cascade decays of heavy objects

Why is SUSY more difficult than the previous case?

Because of larger (and less well known) detector-related and physics backgrounds

<u>A difficult case: a light Higgs (m_H ~ 115 GeV) ...</u>

Expected Higgs signal significance (S/\sqrt{B}) in ATLAS (combining both experiments significance increases by ~ $\sqrt{2}$)

- Higgs can be discovered over full allowed mass range
 - \rightarrow LHC will say final word about SM Higgs mechanism
- Most difficult region (especially at the beginnning) : $m_H \sim 115 \text{ GeV}$
 - close-to-optimal detector performance needed to detect H $\rightarrow \gamma\gamma$, ttH \rightarrow bb, qqH $\rightarrow \tau\tau$
 - knowledge of (huge) backgrounds to few percent required
- \rightarrow it will take a lot of time ...

F. Gianotti, GGI Ind

If $m_H > 180 \text{ GeV}$: early discovery easier with gold-plated $H \rightarrow 41$ channel

 $H \rightarrow 4I$: low-rate but very clean (narrow mass peak, small background)

May be observed with 3-4 fb⁻¹ (end 2008?)

Second Examples of longer-term potential

Look for a continuum of Graviton KK states :

 \rightarrow topology is jet(s) + missing E_T

Cross-section
$$\approx \frac{1}{M_D^{\delta+2}}$$

 $M_D = \text{gravity scale}$

 δ = number of extra-dimensions

		AILA	<u>15, 100 fb⁻¹</u>
	δ = 2	δ = 3	δ = 4
M _D ^{max}	9 TeV	7 TeV	6 TeV

100 (1-1

5

<u>Discriminating between models:</u> -- SUSY : multijets plus E_T^{miss} (+ leptons, ...) -- ADD : monojet plus E_T^{miss}

Extra-dimensions (ADD models)

To characterize the model need to measure $M_{\rm D}$ and δ

Measurement of cross-section gives ambiguous results: e.g. δ =2, M_D = 5 TeV very similar to δ =4, M_D = 4 TeV

Good discrimination between various solutions possible with expected <5% accuracy on $\sigma(10)/\sigma(14)$ for 50 fb⁻¹

Alternative approach to the hierarchy problem predicting heavy top T (EW singlet), new gauge bosons W_H , Z_H , A_H and Higgs triplet Φ^0 , Φ^+ , Φ^{++}

Observation of $T \rightarrow Zt$, Wb discriminates from 4th family quarks Observation of $V_H \rightarrow Vh$ discriminates from W', Z'

Other scenarios

Large number of scenarios studied:

- \Rightarrow demonstrated detector sensitivity to many signatures
 - \rightarrow robustness, ability to cope with unexpected scenarios
- \Rightarrow LHC <u>direct</u> discovery reach up to m \approx 5-6 TeV

• Constraining the underlying theory ...

Courtesy M. Duehrssen

Lot of useful information to constrain the theory

(though not competitive with LC precision of e.g. \approx % on couplings)

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

Higgs self-coupling λ

- not accessible at LHC
- may be constrained to $\approx 20\%$ at Super-LHC (L=10³⁵)

Buszello et al. SN-ATLAS-2003-025

<u>Higgs spin and CP</u> Promising for $m_H > 180 \text{ GeV} (H \rightarrow ZZ \rightarrow 4I)$, difficult at lower masses

Significance for exclusion of $J^{CP}=0^+$

ATLAS + CMS, 2 x 300 fb⁻¹

m _H (GeV)	J ^{CP} = 1+	J ^{CP} = 1⁻	J ^{CP} =0 ⁻
200	6.5 σ	4.8 σ	40 σ
250	20 σ	19 σ	80 σ
300	23 σ	22 σ	70 σ

Precise SUSY measurements

Mass peaks cannot be directly reconstructed (χ^{0}_{1} undetectable) → measure invariant mass spectra (end-points, edges,..) of visible particles → deduce constraints on combinations of sparticle masses

Putting all measurements together:

- deduce several sparticle masses: typical precision 1%-20% Model-indep. (just kinematics), but interpretation is model-dep.
- from fit of model to all experimental measurements derive
 - -- sparticle masses with higher accuracy
 - -- fundamental parameters of theory to 1-30%
- -- dark matter (χ^{0}_{1}) relic density and σ (χ^{0}_{1} nucleon)

demonstrated so far in mSUGRA (5 param.) and in more general MSSM (14 param.)

General strategy toward understanding the underlying theory

(SUSY as an example ...)

Discovery phase: inclusive searches ... as model-independent as possible

<u>First characterization of model</u>: from general features: Large E_T^{miss} ? Many leptons? Exotic signatures (heavy stable charged particles, many γ 's, etc.)? Excess of b-jets or τ 's?...

Interpretation phase:

- reconstruct/look for semi-inclusive topologies, eg.:
 - -- h \rightarrow bb peaks (can be abundantly produced in sparticle decays)
 - -- di-lepton edges
 - -- Higgs sector: e.g. A/H $\rightarrow \mu\mu$, $\tau\tau \Rightarrow$ indication about tan β , measure masses
 - -- tt pairs and their spectra \Rightarrow stop or sbottom production, gluino \rightarrow stop-top
- determine (combinations of) masses from kinematic measurements (e.g. edges ...)
- measure observables sensitive to parameters of theory (e.g. mass hierarchy)

At each step narrow landscape of possible models and get guidance to go on:

- lot of information from LHC data (masses, cross-sections, topologies, etc.)
- consistency with other data (astrophysics, rare decays, etc.)
- · joint effort theorists/experimentalists will be crucial

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

Conclusions

Past year achievements in the LHC machine construction are impressive, giving robustness to the schedule (CERN fully committed to it !). Main objectives: -- complete installation by end of 2006 -- deliver first collisions by summer 2007

The experiments are generally on track for ready-for-beam in middle 2007 Emphasis is now on integration, installation, commissioning of machine and detectors of unprecedented complexity, technology and performance

so, hopefully ...

F. Gianotti, GGI Inaugural Conference, Arcetri

In ~ 2 years from now, particle physics will enter a new epoch, hopefully the most glorious and fruitful of its history.

The LHC will explore in detail the highly-motivated TeV-scale with a direct discovery potential up to m \approx 5-6 TeV

- \rightarrow if New Physics is there, the LHC will find it (*)
- → it will say the final word about the SM Higgs mechanism and many TeV-scale predictions
- → it may add crucial pieces to our knowledge of fundamental physics → impact also on astroparticle physics and cosmology
- → most importantly: it will likely tell us which are the right questions to ask, and how to go on

(*) Early determination of scale of New Physics would be crucial for the future of our discipline and for the planning of future facilities (ILC ? CLIC ? Underground Dark Matter searches ?)

Spare slides

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

LHC start-up scenario

Stage 1

Initial commissioning 43x43 to 156x156, N=3x10¹⁰ Zero to partial squeeze

L=3x10²⁸ - 2x10³¹

Stage 2

75 ns operation 936x936, N=3-4x10¹⁰ partial squeeze

L=10³² - 4x10³²

Stage 3

25 ns operation 2808x2808, N=3-5x10¹⁰ partial to near full squeeze

L=7x10³² - 2x10³³

Stage 4 25 ns operation Push to nominal per bunch partial to full squeeze

L=10³⁴

" Difficult to speculate further on what the performance might be in the first year. As always, CERN accelerators departments will do their best !"

Lyn Evans, LHC Project Leader

• Now : detectors being commissioned with cosmic rays also in large chunks, addressing system issues.

 \cdot Q1 06, cosmic challenge: slice test of CMS during the Magnet Test

 \cdot Test with cosmic rays will continue in the pit after installation and re-cabling

• **Pilot run:** Assume that we get a reasonable amount of collision data which are completed by Beam Gas/Beam Halo Muon datasets

•LVL1/HLT/DAQ: Timing-in, data coherence, sub-system synchronization, calibration, debug algorithms, …

•ECAL and HCAL calibration :Intercalibrate barrel crystals -

"Phi Symmetry Method" ~2% and Cross check and complete source calibration for HCAL channels ~2%

 $\cdot \text{Tracker}$ and Muon alignment : Align the tracker strip detector significantly below the 100 μm level, Align the muon chambers at the 100 μm level

CMS Status

- Civil Engineering is off the Critical Path
- Magnet: Coil connected. Start swivelling preparations in June 2005. Q1-06 end magnet test and cosmic challenge & start heavy lowering April 06
- HCAL, Muons : construction on schedule and well advanced.
- TO WATCH:
- ECAL: Crystals production, new contracts signed with two vendors.
- TRACKER: Hybrid production and tracker integration at CERN.

Initial CMS* detector will be ready and closed for beam on 30 June 2007.

*ECAL endcaps and pixels (even though ready) will be installed during winter 2007 shutdown in time for physics run in 2008.

Impact of pile-up on detector requirements and performance:

- -- fast response : ~ 50 ns
- -- granularity : > 10⁸ channels
- -- radiation resistance (up to 10¹⁶ n/cm²/year in forward calorimeters)
- -- event reconstruction much more challenging than at previous colliders

• The first year(s) of data taling

The first LHC data : from Summer 2007...

1 fb⁻¹ (10 fb⁻¹) = 6 months at 10^{32} (10^{33}) cm⁻²s⁻¹ at 50% efficiency \rightarrow may collect few fb⁻¹ per experiment by end 2008

Channels (<u>examples</u>)	Events to tape for 1 fb ⁻¹ (per expt: ATLAS, CMS)	Total statistics from previous Colliders
$W \rightarrow \mu \nu$	7 × 10 ⁶	~ 10 ⁴ LEP, ~ 10 ⁶ Tevatron
Z→µµ	~ 10 ⁶	~ 10 ⁶ LEP, ~ 10 ⁵ Tevatron
tt →W b W b → μ v +X	~ 10 ⁵	~ 10 ⁴ Tevatron
$\widetilde{g}\widetilde{g}$ m = 1 TeV	10 ² - 10 ³	

With these data:

- Understand and calibrate detectors in situ using well-known physics samples
 - e.g. $-Z \rightarrow ee, \mu\mu$ tracker, ECAL, Muon chambers calibration and alignment, etc. - tt \rightarrow blv bjj jet scale from W \rightarrow jj, b-tag performance, etc.
- Measure SM physics at vs = 14 TeV : W, Z, tt, QCD jets ... (omnipresent backgrounds to New Physics)

 \rightarrow prepare the road to discovery it will take a lot of time ...

<u>A difficult case: a light Higgs (m_H ~ 115 GeV) ...</u>

Remarks:

Each channel contributes ~ 2σ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - -- ECAL crucial for H $\rightarrow \gamma\gamma$ (in particular response uniformity) : $\sigma/m \sim 1\%$ needed
 - -- b-tagging crucial for ttH: 4 b-tagged jets needed to reduce combinatorics
 - -- efficient jet reconstruction over $|\eta|$ < 5 crucial for qqH \rightarrow qqtt :

forward jet tag and central jet veto needed against background

Note : -- all require "low" trigger thresholds

E.g. ttH analysis cuts : p_T (I) > 20 GeV, p_T (jets) > 15-30 GeV

-- all require very good understanding (1-10%) of backgrounds

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

• H \rightarrow WW \rightarrow Iv Iv : high rate (~ 100 evts/expt) but no mass peak

- $\rightarrow\,$ not ideal for early discovery ...
- $H \rightarrow 4I$: low-rate but very clean : narrow mass peak, small background

Here only h (SM - like) observable at LHC, unless A, H, $H^{\pm} \rightarrow$ SUSY \rightarrow LHC may miss part of the MSSM Higgs spectrum Observation of full spectrum may require high-E ($\sqrt{s} \approx 2$ TeV) Lepton Collider

Most of MSSM Higgs plane already covered after 1 year at L= 10³³ ...

Extended gauge groups : $Z' \rightarrow I^+I^-$

- Reach in 1 year at 10³⁴ : 4-5 TeV
- Discriminating between models possible up to m ~ 2.5 TeV by measuring:
 - -- $\sigma \textbf{x} \Gamma$ of resonance
 - -- lepton F-B asymmetry
 - -- Z' rapidity

Mini black holes production at LHC ?

... quite speculative for the time being ... many big theoretical uncertainties

• Schwarzschild radius (i.e. within which nothing escapes gravitational force):

4-dim.,
$$M_{\text{gravity}} = M_{\text{Planck}}$$
: $R_{\text{S}} \sim \frac{2}{M_{\text{Pl}}^2} \frac{M_{\text{BH}}}{c^2}$
4 + δ -dim., $M_{\text{gravity}} = M_{\text{D}} \sim \text{TeV}$: $R_{\text{S}} \sim \frac{1}{M_{\text{D}}} \left(\frac{M_{\text{BH}}}{M_{\text{D}}}\right)^{\frac{1}{\delta+1}}$

Since M_D is low, tiny black holes of $M_{BH} \sim \text{TeV}$ can be produced if partons ij with $\sqrt{s_{ij}} = M_{BH}$ pass at a distance smaller than R_S

- Large partonic cross-section : $\sigma(ij \rightarrow BH) \sim \pi R_s^2$ e.g. For $M_D \sim 3$ TeV and $\delta = 4$, $\sigma(pp \rightarrow BH) \sim 100$ fb $\rightarrow 1000$ events in 1 year at low L
- Black holes decay immediately ($\tau \sim 10^{-26}$ s) by Hawking radiation (democratic evaporation) :
 - -- large multiplicity
 - -- small missing E
 - -- jets/leptons ~5

expected signature (quite spectacular ...)

A black hole event with $M_{\rm BH} \sim 8 \mbox{ TeV}$ in ATLAS

From preliminary studies : reach is $M_D \sim 6$ TeV for any δ in one year at low luminosity.

By testing Hawking formula \rightarrow proof that it is BH + measurement of M_D , δ

 $\log T_{\rm H} = -\frac{1}{\delta + 1} \log M_{\rm BH} + f(M_{\rm D}, \delta)$

precise measurements of M_{BH} and T_{H} needed (T_{H} from lepton and photon spectra)

Note: mini-BH should also be produced by ultra-high-energy cosmic neutrinos and observed by Auger

F. Gianotti, GGI Inaugural Conference, Arcetri, 19/09/2005

Other examples of reach for Physics beyond SM ...

Links with astrophysics and cosmology?

<u>Measurement of σ_{tot} (pp)</u>

