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Optical Trapping of Dielectrics
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Optical Trapping of Dielectrics

• Quality factor, ωmech / Γloss, larger than 1012 even at room 
temperature

• Internal modes decoupled from CM for small objects

• CM motion controlled by the intensity of light
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Optical Trapping Applications

• Atom Interferometry (Nobel Prize 1997, 2001, 2005, 2012)

• Biology

• Quantum Computing



Towards the Quantum Regime
ECM = (nthermal + 1/2)ωCM



Towards the Quantum Regime
ECM = (nthermal + 1/2)ωCM

109 atoms in a quantum superposition of states 



Optical Cooling
Doppler cooling
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Optical Cavity Cooling

For a trapped oscillating
dielectric
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Optical Cavity Cooling

For a trapped oscillating
dielectric
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Photon is re-emitted at the frequency of the cavity tuned laser
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Outline

• Gravitational Wave Detection

• Sources of High-Frequency Gravitational Waves

• Short Distance Tests of Gravity

• Future Prospects



Gravitational Wave Detection

• Last piece of General Relativity

• Sources: 

• Inspirals of astrophysical objects

• Inflation, Phase transitions, etc.



Gravitational Wave Detection
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trapping laser

cooling and tracking laser

• Fused silica sphere (r = 150 nm) or disk (d=500 nm, r=75 µm) 
sensor in optical cavity of 10-100 m in size

• One laser to hold, one to cool and one to measure the position

AA and Geraci (2012)
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Gravitational Wave Detection

• Changes the physical position of the laser antinode:

• Changes the physical distance between the sensor and the mirror:

• Sensor position changes with respect to the trap minimum:
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ds2 = dt2 � (1 + h cos(�(t� y)))dx2 � dy2 � (1� h cos(�(t� y)))dz2
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Gravitational wave changes the physical distance between masses
L=L0 (1+ h cosωt)
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Gravitational Wave Detection

• Laser intensity changes resonant frequency of the sensor: 
Tunable resonant GW detector

• For a 100 m cavity h ~10-22 Hz-1/2 sensitivity and increases 
linearly with the cavity size

• Main background: Thermal motion in the trap
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for a disk in a 100 m cavity



GW sensitivity



GW sensitivity
150 nm sphere



GW sensitivity
150 nm sphere

500 nm × (75 µm)2  
disk

Radical change in sensitivity between the two geometries
due to difference in mass and in light scattering properties



GW sensitivity compared to LIGO

Current and 
Advanced 

LIGO
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GW sensitivity compared to LIGO

Current and 
Advanced 

LIGO

Current setup: 100 m cavity

LIGO: 4 km cavity



GW Sources in the High Frequency Regime

• Astrophysical Sources:

• Beyond-the-Standard Model Sources:

Natural upper bound on GW frequency

Black Hole Super-radiance

AA and Dubovsky (2010)

1

Minimum Black Hole Size
⇠ 30 kHz



Black Hole Superradiance

Ergoregion

Rotating Black Hole

Ergoregion: Region where even light has to be rotating

Penrose Process



Black Hole Superradiance

Extracts angular momentum and mass from a spinning black hole 

Ergoregion

Rotating Black Hole

Penrose Process



Black Hole Bomb

Photons reflected back and forth from the black hole 
and through the ergoregion

Press & Teukolsky 1972 



Black Hole Bomb

Photons reflected back and forth from the black hole 
and through the ergoregion

Press & Teukolsky 1972 



Superradiance for a Massive Boson

Particle Compton Wavelength comparable to the size of the Black Hole

Penrose Process Damour et al; Zouros & Eardley; 
Detweiler; Gaina
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Superradiance for a Massive Boson

Penrose Process Damour et al; Zouros & Eardley; 
Detweiler; Gaina

Gravitational Atom in the Sky



The Strong CP Problem

Experimental bound: θQCD  < 10-10

Non-zero electric dipole moment for the neutron

LSM �
g2

s

32⇥2
�QCDGaG̃a

Solution:
θQCD is a dynamical field, an axion

Axion mass from QCD:

fa : axion decay constant

µa ⇠ 6⇥ 10�11 eV
1017 GeV

fa
⇠ (3 km)�1 1017 GeV

fa



Evolution of Superradiance for an Axion

Superradiance instability time (100 sec minimum)
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Superradiance instability time (100 sec minimum)
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Axion self-interactions

Black Hole Accretion τaccretion ~ 108 years



Evolution of Superradiance for an Axion

Superradiance instability time (100 sec minimum)

Gravity wave transitions of axions between levels

Gravity wave emission through axion annihilations

Axion self-interactions

Black Hole Accretion τaccretion ~ 108 years



Spin Gap for the QCD Axion
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Spin Gap for the QCD Axion
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Possible to probe the QCD axion down to fa ~few × 1016 GeV



Signals from annihilations

BH Gravitational field

ωgraviton = 2 maxion

signal duration > years and ε ~10-3

h ⇠ 10�19
⇣↵
`

⌘7
✏

✓
10 kpc

r

◆✓
MBH

2⇥MJ

◆



GWs from the QCD axion at high frequencies

QCD axion 
superradiance

Distance to the source: 10 kpc

GUT scale
axion



Prospects of GW detection with optically 
trapped sensors

• Sensitivity better than 10-21 1/Hz1/2 above ~30 kHz

• Relatively small size enables GW array antenna design

• Improved GW sensitivity in new regime for GW astronomy



Outline

• Gravitational Wave Detection

• Sources of High-Frequency Gravitational Waves

• Future Prospects: Towards an interferometer of macroscopic 
objects



Towards the Schroedinger Cat State

• Feasible goal: Ground state cooling of the CM motion of 108-9 
atoms

• Can we put the wave-function of 109 atoms in a superposition of 
spatially separated states?
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Sources of Decoherence

• Black Body radiation emission

• Collisions with gas molecules 

• Interaction with diffraction grating, holding light, etc.



Sources of Decoherence

• Black Body radiation emission

• Collisions with gas molecules 

• Interaction with diffraction grating, holding light, etc.

λBB >> δx



Decoherence from BB emission

λBB >> δx

For a 50 nm sphere with  0.1 nm separation

Romero-Isart (2011)



Decoherence from BB emission

λBB >> δx

For a 50 nm sphere with  0.1 nm separation

100 ms is a long time

There may be a setup that actually works...

Romero-Isart (2011)



Conclusions

• Optical trapping and cooling provides new precision tool

• Short distance tests of gravity

• GW detection in the high frequency regime

• Quantum Mechanics pushed to a new regime 



Gravity Wave Transitions

QCD axion observable at high frequency gravity wave detectors

Super-Radiant Mode (n+1, l, m)

Super-Radiant Mode (n, l, m)

Gravitons

signal duration ~ 1 day-1 year



Einstein Telescope

Advanced LIGOAGIS

LISA
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Einstein Telescope

Advanced LIGOAGIS

LISA
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