Galileo Galilei Institute Beyond the SM after LHC 8 July 2013

TeV-Scale Superpartners with an Unnatural Weak Scale

Lawrence Hall University of California, Berkeley

BERKELEY CENTER FOR THEORETICAL PHYSICS

Multiverse SUSY

Outline

1. High Scale SUSY Hall, Nomura 0910.2235

2. Spread SUSY Hall, Nomura 1111.4519

3. TeV SUSY with $\rho_D \sim \rho_B$

Bousso, Hall 1304.6407

Outline

1. High Scale SUSY Hall, Nomura 0910.2235

2. Spread SUSY Hall, Nomura 1111.4519

3. TeV SUSY with

 $\rho_D \sim \rho_B$

Bousso, Hall 1304.6407

(multi)-TeV superpartners

Outline

Simplest Interpretation of LHC 8

125 GeV Higgs

v is fine tuned (to some degree)

Simplest Interpretation of LHC 8

125 GeV Higgs

v is fine tuned (to some degree)

A Simple Interpretation: Λ_{CC} : tuning and size understood v: in the multiverse.

Simplest Interpretation of LHC 8

125 GeV Higgs

v is fine tuned (to some degree)

A Simple Interpretation: Λ_{CC} :tuning and size understoodv:in the multiverse.

 \tilde{m}

Multiverse arguments for the scale of superpartners?

Where are the Superpartners?

Without Naturalness

Where are the Superpartners?

Split SUSY

Pioneered multiverse reasoning in BSM particle physics

Measurements could imply huge fine-tuning of weak scale

Anthropics for Λ_{CC}

Anthropics for Λ_{CC}

Fraction of virialized baryons

Anthropics for Λ_{CC}

Fraction of virialized baryons

Causal patch measure

Anthropics for v and Λ_{CC}

Anthropics for v and Λ_{CC}

Scanning SUSY Breaking

Consider a power law distribution for \tilde{m} in multiverse

 $dP \propto \tilde{m}^p \ d\ln \tilde{m}$

For $\tilde{m} \geq v$ include a factor for fine tuning of weak scale

$$dP \propto \left(\frac{v}{\tilde{m}}\right)^2 \tilde{m}^p \ d\ln \tilde{m}$$

1. High Scale SUSY

Hall, Nomura 0910.2235

Runaway to High Scale SUSY

Runaway to High Scale SUSY

Higgs Mass Prediction

2. Spread SUSY

Hall, Nomura 1111.4519

Anthropics for v, Λ_{CC} , and \tilde{m}

A Boundary from LSP Freeze-Out

Assumptions: 1. The LSP is cosmologically stable 2. $T_R \ge \tilde{m}$ 3. No Dilution

The result:

$$\Omega h^2 \propto \frac{1}{\langle \sigma_A v \rangle} \propto m_{LSP}^2 \propto \tilde{m}^2$$

$$\left(\begin{array}{cc} \rho_D < \rho_c & \longrightarrow & \tilde{m} < \tilde{m}_c \end{array}\right)$$

A Boundary from LSP Freeze-Out

Assumptions:1. The LSP is cosmologically stable2. $T_R \ge \tilde{m}$ 3. No Dilution

The result:

Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774

Disks don't fragment Close encounters

A Boundary from LSP Freeze-Out

Assumptions: 1. The LSP is cosmologically stable 2. $T_R \geq \tilde{m}$ No Dilution 3.

The result:

$$h^2 \propto \frac{1}{\langle \sigma_A v \rangle} \propto m_{LSP}^2 \propto \tilde{m}^2$$

 $\rho_D < \rho_c \qquad \longrightarrow \quad \tilde{m} < \tilde{m}_c$ Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774

 Ω

Disks don't fragment **Close** encounters

Unnatural Multi-TeV SUSY

 $m_{LSP} \sim \alpha_{\text{eff}} \sqrt{T_{\text{eq}} M_{\text{P}}} \approx \left(\frac{\alpha_{\text{eff}}}{0.01}\right) 1 \,\text{TeV}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q+\dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q + \dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Scalar Masses $\frac{X^{\dagger}X}{M^2}(Q^{\dagger}Q + \dots)$

 $\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$

Multiverse MSSM

Scalar Masses

$$\tilde{m} \sim \frac{F_X}{M} \sim m_{3/2}$$

Multiverse MSSM

Spread SUSY

Spread SUSY

Gaugino dark matter

Spread SUSY

125 GeV Scalar is "effortless"

Spread SUSY

125 GeV Scalar is "effortless"

Susy Spectrum

Hall, Nomura, Shirai arXiv:1210.2395

Dark Matter Abundance

3. TeV Scale Superpartners with $\rho_D \sim \rho_B$

Bousso, Hall 1304.6407

No Catastrophic Boundary for Dark Matter

The Dark to Baryon Ratio

Why is
$$\zeta = \frac{\rho_D}{\rho_B} \sim 1$$
?

The Dark to Baryon Ratio

Why is
$$\zeta = \frac{\rho_D}{\rho_B} \sim 1$$
?

A multiverse explanation: $dP \sim \zeta^{p/2} \frac{1}{1+\zeta} d\ln \zeta$

LSP Dark Matter from Freeze-Out

LSP Dark Matter from Freeze-Out

LSP Dark Matter from Freeze-Out

4. Gravitino LSP

Hall, Ruderman, Volansky 1302.2620

TeV scale superpartners in unnatural theories rest on LSP freeze-out DM (multiverse or not)

What if LSP does not reach Thermal Equilibrium?

Large Loop-hole?

TeV scale superpartners in unnatural theories rest on LSP freeze-out DM (multiverse or not)

What if LSP does not reach Thermal Equilibrium?

Large Loop-hole?

Josh's talk: No!

Must include all production mechanisms

\tilde{m} : TeV \longrightarrow multi-TeV

Summary: SUSY in the Multiverse

A Remarkable Situation

1973-2013:40years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

A Remarkable Situation

1973-2013: 40 years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

Naturalness/Symmetry may be in trouble

A Remarkable Situation

1973-2013: 40 years without BSM discovery1998: $\Lambda_{CC} \sim \frac{1}{G_N t_{obs}^2}$ 2013:SM Higgs, apparently tuned

Naturalness/Symmetry may be in trouble

A New Framework

A Multiverse scanning mass scales: $\Lambda_{CC}, v, ...$ investigate $dP \propto \tilde{m}^p \ d \ln \tilde{m}$

Natural SUSY

Cornered after 30+ years -- we need to be sure

Runaway to High Scale SUSY

Axion Dark Matter

