Asymmetric Dark Matter & (Self) Interactions

John March-Russell Oxford University

GGI Florence, 2013

work w/ Stephen West, James Unwin, & earlier with Lawrence Hall, Matthew McCullough

Dark Matter Genesis?

🏺 Dark matter

WIMPs: Calculable thermal freeze-out with scale v

FIMPs: Calculable thermal freeze-in with scale v

Axions: Mis-alignment or thermal production

Symmetric DM & Baryons

Sharing

Co-genesis

Motivation

Baryons need origin of particle-antiparticle asymmetry

$$\eta_B = Y_B - Y_{\bar{B}}$$

Solution Usual, unrelated origin of baryons & DM, involving very different physics, makes it hard to understand $\Omega_{DM}/\Omega_B \simeq 4.86$

Freeze-out dominates thinking about DM candidates, detection, and LHC phenomenology

Alternative: similar physics underlies both Ω_B and Ω_{DM}

(Nussinov '85; Gelmini, Hall, Lin '87; Barr '91; Kaplan '92; Thomas '95; Hooper, JMR, West '04; explosion in last 3yrs esp work of Zurek etal; now many others...)

Baryons: $U(1)_B$ u, d, s... p stable $\Omega_B \propto m_B \eta_B$

DM: $U(1)_X$ $X_0, X_1, X_2... X_0$ stable $\Omega_X \propto m_X \eta_X$

Interactions violate B and X to yield related values for η_B and η_X

At some era

$$\frac{\Omega_X}{\Omega_B} = \frac{\eta_X}{\eta_B} \frac{m_X}{m_B}$$

only true if X density is determined by the asymmetric part otherwise

$$\frac{\Omega_X}{\Omega_B} = \frac{Y_X + Y_{\bar{X}}}{Y_B + Y_{\bar{B}}} \frac{m_X}{m_B}$$

need $Y_X + Y_{\bar{X}} = Y_X - Y_{\bar{X}} + \text{small corrections}$

non-trivial constraint as initially

$$Y_X + Y_{\bar{X}} = \frac{Y_X - Y_{\bar{X}}}{\epsilon}$$

where $\epsilon \leq \sin(\phi_{eff}) \times \text{loop factor}$ measures CP-violation

 $\eta_X \sim \eta_B \, \, \mathbf{by} \, \mathbf{sharing} \qquad \qquad \eta_X \sim \eta_B \, \, \mathbf{b}$

 $\eta_X \sim \eta_B$ by co-generation

Co-generation is more ambitious: attempts to explain simultaneous origin of B & X asymmetries (if at scale ~ TeV allowing test at LHC...)

Sharing:

Assumes presence of some initial asymmetry in (at least) one of B, L & X

A "portal interaction" breaks a combination of B/L & X, such that

there is an era when only conserved U(I) is

 $B - L + X \implies \eta_B : \eta_L : \eta_X = N_1 : N_2 : N_3$

Alternative view (either sharing or co-generation):

incompatible with standard SUSY Majorana neutralino DM

Solution changes one or both direct/indirect DM detection

co-generation harder as requires B, X violation & out-ofequilibrium condition (at TeV scale if testable). Requires a new theory of calculable (thermal) DM production....

 \implies Must efficiently annihilate away symmetric part to light states

there has to be an efficient X-preserving freeze-out process

Three options:

direct FO to light SM dof

 \Longrightarrow operators connecting X & SM sectors with strength bounded below

direct FO to light dark sector dof

 \implies (potentially) new long-range DM interactions

FO to dark sector dof which then late decay to SM

 \implies late-time energy injection in early universe

direct FO of symm yield to light SM dof

limits from direct detection experiments and monojet searches at Tevatron and LHC are very constraining

Use effective operators to parameterise portal interactions. Some are suppressed by:

v velocity of

q < 0.1GeV mom'm

	$\Delta \mathscr{L}$	Int.	Suppression
\mathcal{O}^{ϕ}_{s} :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}f$	SI	1
\mathcal{O}_v^ϕ :	$\frac{1}{\Lambda^2} \phi^{\dagger} \partial^{\mu} \phi \overline{f} \gamma_{\mu} f$	SI	1
\mathcal{O}_{va}^{ϕ} :	$\frac{1}{\Lambda^2}\phi^{\dagger}\partial^{\mu}\phi\overline{f}\gamma_{\mu}\gamma^5f$	SD	v^2
\mathcal{O}_p^ϕ :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}i\gamma^{5}f$	SD	q^2
\mathcal{O}^ψ_s :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}f$	SI	1
\mathcal{O}_v^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu f$	SI	1
\mathcal{O}^ψ_a :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^{\mu}\gamma^5\psi\overline{f}\gamma_{\mu}\gamma^5f$	SD	1
\mathcal{O}_t^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\sigma^{\mu\nu}\psi\overline{f}\sigma_{\mu\nu}f$	SD	1
\mathcal{O}_p^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4
\mathcal{O}_{va}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu\gamma^5f$	SD	v^2, q^2
\mathcal{O}_{pt}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\sigma^{\mu\nu}\gamma^5\psi\overline{f}\sigma_{\mu\nu}f$	\mathbf{SI}	q^2
\mathcal{O}_{ps}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\gamma^5\psi\overline{f}f$	SI	q^2
\mathcal{O}_{sp}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}i\gamma^5f$	SD	q^2
ϕ^{ψ} .	$1 \overline{a/a} \mu_{a} 5 a/\overline{f} a f$	SI	v^2
O_{av} :	$\overline{\Lambda^2}\psi\gamma^{\mu}\gamma^{\nu}\psi J\gamma_{\mu}J$	SD	q^2
$\hat{\mathcal{O}}^{\phi}_{s}$:	$\frac{m_q}{\Lambda^2} \phi^{\dagger} \phi \overline{f} f$	SI	1
$\hat{\mathcal{O}}^{\psi}_{s}$:	$rac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{f}f$	SI	1
$\hat{\mathcal{O}}_p^\psi$:	$rac{m_q}{\Lambda^3}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4

we shall examine

Ş

CP-violating ops

	$\Delta \mathscr{L}$	Int.	Suppression
\mathcal{O}^{ϕ}_{s} :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}f$	SI	1
\mathcal{O}_v^ϕ :	$\frac{1}{\Lambda^2}\phi^{\dagger}\partial^{\mu}\phi\overline{f}\gamma_{\mu}f$	SI	1
\mathcal{O}_{va}^{ϕ} :	$\frac{1}{\Lambda^2} \phi^{\dagger} \partial^{\mu} \phi \overline{f} \gamma_{\mu} \gamma^5 f$	SD	v^2
\mathcal{O}_p^ϕ :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}i\gamma^{5}f$	SD	q^2
\mathcal{O}^ψ_s :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}f$	SI	1
\mathcal{O}_v^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu f$	SI	1
\mathcal{O}^ψ_a :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^{\mu}\gamma^5\psi\overline{f}\gamma_{\mu}\gamma^5f$	SD	1
\mathcal{O}^ψ_t :	$\frac{1}{\Lambda^2}\overline{\psi}\sigma^{\mu\nu}\psi\overline{f}\sigma_{\mu\nu}f$	SD	1
\mathcal{O}_p^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4
\mathcal{O}_{va}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu\gamma^5f$	SD	v^2, q^2
\mathcal{O}_{pt}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\sigma^{\mu\nu}\gamma^5\psi\overline{f}\sigma_{\mu\nu}f$	\mathbf{SI}	q^2
\mathcal{O}_{ps}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\gamma^5\psi\overline{f}f$	\mathbf{SI}	q^2
\mathcal{O}_{sp}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}i\gamma^5f$	SD	q^2
\mathcal{O}^{ψ} .	$1 \overline{a/a} \mu_{\alpha} 5 \overline{a/a} f$	SI	v^2
U_{av} :	$\overline{\Lambda^2} \psi^{\gamma} \gamma^{\gamma} \psi^{\gamma} \psi^{J} \gamma \mu J$	SD	q^2
$\hat{\mathcal{O}}^{\phi}_{s}$:	$\frac{m_q}{\Lambda^2} \phi^{\dagger} \phi \overline{f} f$	SI	1
$\hat{\mathcal{O}}^{\psi}_{s}$:	$\frac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{f}f$	SI	1
$\hat{\mathcal{O}}_p^\psi$:	$\frac{m_q}{\Lambda^3}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4

	$\Delta \mathscr{L}$	Int.	Suppression
\mathcal{O}^{ϕ}_{s} :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}f$	SI	1
\mathcal{O}_v^ϕ :	$\frac{1}{\Lambda^2} \phi^{\dagger} \partial^{\mu} \phi \overline{f} \gamma_{\mu} f$	SI	1
\mathcal{O}_{va}^{ϕ} :	$\frac{1}{\Lambda^2} \phi^{\dagger} \partial^{\mu} \phi \overline{f} \gamma_{\mu} \gamma^5 f$	SD	v^2
\mathcal{O}_p^ϕ :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}i\gamma^{5}f$	SD	q^2
\mathcal{O}^ψ_s :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}f$	SI	1
\mathcal{O}_v^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu f$	SI	1
\mathcal{O}^ψ_a :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^{\mu}\gamma^5\psi\overline{f}\gamma_{\mu}\gamma^5f$	SD	1
\mathcal{O}_t^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\sigma^{\mu\nu}\psi\overline{f}\sigma_{\mu\nu}f$	SD	1
\mathcal{O}_p^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4
\mathcal{O}_{va}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu\gamma^5f$	SD	v^2, q^2
\mathcal{O}_{pt}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\sigma^{\mu\nu}\gamma^5\psi\overline{f}\sigma_{\mu\nu}f$	SI	q^2
\mathcal{O}_{ps}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\gamma^5\psi\overline{f}f$	SI	q^2
\mathcal{O}_{sp}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}i\gamma^5f$	SD	q^2
\mathcal{O}^{ψ} .	$1 \overline{q/q} \mu \gamma 5 q/\overline{f} \gamma f$	SI	v^2
O_{av} :	$\overline{\Lambda^2} \psi^{\gamma} \gamma^{\prime} \gamma^{\prime} \psi J \gamma \mu J$	SD	q^2
$\hat{\mathcal{O}}^{\phi}_{s}$:	$\frac{m_q}{\Lambda^2}\phi^{\dagger}\phi\overline{f}f$	SI	1
$\hat{\mathcal{O}}^{\psi}_{s}$:	$rac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{f}f$	SI	1
$\hat{\mathcal{O}}_p^\psi$:	$\frac{m_q}{\Lambda^3}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4

m_q dep't ops

Ş

direct detection constrained

	$\Delta \mathscr{L}$	Int.	Suppression
\mathcal{O}^{ϕ}_{s} :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}f$	SI	1
\mathcal{O}^{ϕ}_{v} :	$\frac{1}{\Lambda^2}\phi^{\dagger}\partial^{\mu}\phi\overline{f}\gamma_{\mu}f$	SI	1
\mathcal{O}_{va}^{ϕ} :	$\frac{1}{\Lambda^2}\phi^{\dagger}\partial^{\mu}\phi\overline{f}\gamma_{\mu}\gamma^5f$	SD	v^2
\mathcal{O}_p^ϕ :	$\frac{1}{\Lambda}\phi^{\dagger}\phi\overline{f}i\gamma^{5}f$	SD	q^2
\mathcal{O}^ψ_s :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}f$	SI	1
\mathcal{O}_v^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu f$	SI	1
\mathcal{O}^ψ_a :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^{\mu}\gamma^5\psi\overline{f}\gamma_{\mu}\gamma^5f$	SD	1
\mathcal{O}_t^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\sigma^{\mu\nu}\psi\overline{f}\sigma_{\mu\nu}f$	SD	1
\mathcal{O}_p^ψ :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4
\mathcal{O}_{va}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}\gamma_\mu\gamma^5f$	SD	v^2, q^2
\mathcal{O}_{pt}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\sigma^{\mu\nu}\gamma^5\psi\overline{f}\sigma_{\mu\nu}f$	\mathbf{SI}	q^2
\mathcal{O}_{ps}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}i\gamma^5\psi\overline{f}f$	SI	q^2
\mathcal{O}_{sp}^{ψ} :	$\frac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}i\gamma^5f$	SD	q^2
\mathcal{O}^{ψ} .	$1 \overline{\mu} \mu \sigma 5 r \overline{\mu} \sigma f$	SI	v^2
U_{av} :	$\overline{\Lambda^2} \psi \gamma^\mu \gamma^- \psi J \gamma_\mu J$	SD	q^2
$\hat{\mathcal{O}}^{\phi}_{s}$:	$\frac{m_q}{\Lambda^2} \phi^{\dagger} \phi \overline{f} f$	SI	1
$\hat{\mathcal{O}}^{\psi}_{s}$:	$\frac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{f}f$	SI	1
$\hat{\mathcal{O}}_p^\psi$:	$\frac{m_q}{\Lambda^3}\overline{\psi}\gamma^5\psi\overline{f}\gamma^5f$	SD	q^4

$\Delta \mathscr{L}$]	Int.	Suppression
$\mathcal{O}_s^\phi: \frac{1}{\Lambda} \phi^\dagger \phi \overline{f} f$		SI	1
$\mathcal{O}_v^\phi:=rac{1}{\Lambda^2}\phi^\dagger\partial^\mu\phi\overline{f}$	$\gamma_{\mu}f$	SI	1
$\mathcal{O}_{va}^{\phi}:=rac{1}{\Lambda^2}\phi^{\dagger}\partial^{\mu}\phi_{J}$	$\overline{f}\gamma_{\mu}\gamma^{5}f$	SD	v^2
$\mathcal{O}_p^\phi:=rac{1}{\Lambda}\phi^\dagger\phi\overline{f}i\gamma^5$	f	SD	q^2
$\mathcal{O}_s^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}f$		SI	1
$\mathcal{O}_v^\psi:=rac{1}{\Lambda^2}\overline{\psi}\gamma^\mu\psi\overline{f}$	$\gamma_{\mu}f$	SI	1
$\mathcal{O}_a^\psi:=rac{1}{\Lambda^2}\overline\psi\gamma^\mu\gamma^5\psi$	$\psi \overline{f} \gamma_{\mu} \gamma^5 f$	SD	1
$\mathcal{O}_t^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}\sigma^{\mu u}\psi\overline{j}$	$\overline{f}\sigma_{\mu u}f$	SD	1
$\mathcal{O}_p^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}\gamma^5\psi\overline{f}$	$\gamma^5 f$	SD	q^4
$\mathcal{O}_{va}^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}\gamma^{\mu}\psi\overline{f}$	$\gamma_{\mu}\gamma^{5}f$	SD	v^2, q^2
$\mathcal{O}_{pt}^{\psi}: \frac{1}{\Lambda^2} \overline{\psi} i \sigma^{\mu\nu} \gamma$	$5\psi \overline{f}\sigma_{\mu\nu}f$	SI	q^2
$\mathcal{O}_{ps}^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}i\gamma^5\psi$	$\overline{f}f$	SI	q^2
$\mathcal{O}_{sp}^{\psi}:=rac{1}{\Lambda^2}\overline{\psi}\psi\overline{f}i\gamma^{\psi}$	^{5}f	SD	q^2
\mathcal{O}^{ψ} , $1 \overline{\psi}_{2} \mu_{2} 5$	\sqrt{f}	SI	v^2
$U_{av}: \overline{\Lambda^2} \psi^{\gamma} \gamma^{\gamma} \gamma^{\gamma}$	<i>Ψ</i> J ΄ γμ J	SD	q^2
$\hat{\mathcal{O}}_s^{\phi} := \frac{m_q}{\Lambda^2} \phi^{\dagger} \phi \overline{f} f$		SI	1
$\hat{\mathcal{O}}_{s}^{\psi}:=rac{m_{q}}{\Lambda^{3}}\overline{\psi}\psi\overline{f}f$		SI	1
$\hat{\mathcal{O}}_p^\psi:=rac{m_q}{\Lambda^3}\overline{\psi}\gamma^5\psi\overline{f}$	$\gamma^5 f$	SD	q^4

ADM relic density - removal of symmetric component:

$$\Omega_{\rm DM} h^2 \simeq 3 \times 10^8 \, \left(Y_{\rm sym} + Y_{\rm asym} \right) \left(\frac{m_{\rm DM}}{\rm GeV} \right)$$

By assumption relic density must be due to the asymmetry, so demand symmetric component <10% of asymmetric part (results relatively insensitive to 0.1% vs 100%)

Yields depend on (presumed known) asymmetry and FO cross section

$$Y_{\rm DM} \sim \frac{\eta_X}{\exp\left[\eta_X \omega \left(\frac{a}{\bar{x}_F} + \frac{b}{\bar{x}_F^2}\right)\right] - 1} \qquad Y_{\rm \overline{DM}} \sim \frac{\eta_X}{1 - \exp\left[-\eta_X \omega \left(\frac{a}{\bar{x}_F} + \frac{b}{\bar{x}_F^2}\right)\right]}$$

where $\omega = \frac{4\pi}{\sqrt{90}} m_{\rm DM} M_{\rm Pl} \sqrt{g_*}$ and $\langle \sigma v \rangle = a + \frac{6b}{x} + \cdots$

Example: relic density requirement on $\frac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{q}q$

8

Constraints from direct detection (CRESST, DAMIC, CDMS, XENON100)

ADM in preferred I-I0GeV region excluded with this op

Portal operator $\frac{m_q}{\Lambda^3}\overline{\psi}\psi\overline{q}q$ is an easy case as direct detection not SD and not v- or q- suppressed

Monojet searches provide complementary constraints on DM with interactions with quarks

(e.g. Bai, Fox, Harnik arXiv:1005.3797)

Constraints on SD operators

Ş

direct FO of symm yield to light SM dof

limits from direct detection experiments and monojet searches at Tevatron and LHC are very constraining

Main way to avoid these constraints:

Non-minimal flavour structure: e.g. isospin violating or tau-philic, or very special choice of operator...

with ugly exceptions if we want asymmetric DM in natural region $m_X < 10 \,\,{\rm GeV}$ then direct FO to SM is disfavoured

eliminating symm yield likely implies new dark-sector dynamics involving further light states Crucial question how light?

`Midi' Mass Mediators

With mediators < few 100 GeV effective operator description breaks-down at LHC and previous results no longer valid

Resonances and mass thresholds are important

Large effects on the monojet limits and relic density calculation

Notably, constraints from monojet limits are greatly relaxed

Direct detection limits are unaffected for mediators >100 MeV as bigger than mom'm transfer & effective op is still good

Consider a scalar mediator with couplings to quarks due to mixing with the SM Higgs $\theta \sim \frac{m_{\eta}}{m_{H}}$

$$\mathcal{L} \supset \lambda_X \eta \bar{\psi} \psi + \sum_q (\lambda' \theta y_q) \eta \bar{q} q$$

Monojet constraints relaxed, but direct detection limits remain unless in resonance region Such midi-mass mediating states logically possible and still marginally allow ADM with some fine-tuning (rather like traditional WIMPs)

However a much more interesting possibility in my opinion is that there are very light states in dark sector, like photon or pion/axion in our sector

much richer dark-matter dynamics with astrophysical advantages (and signals)

(also potential signals in direct and indirect detection, and precision particle phys expts)

Light Dark Sector States

Fhis leads to a rich and potentially extremely complicated set of possible consequences

Here I'll discuss only the very simplest...

Suppose there exists a single v. light self-conjugate DS state Y coupling to ADM and which is stable or metastable

What mass should it have?

Maintaining ADM relation for DM density given symm yield $Y_X + Y_{\bar{X}} = \frac{Y_X - Y_{\bar{X}}}{\epsilon}$

symmetric component annihilates to Y and the coupling $\alpha_X \equiv \frac{\lambda^2}{4\pi}$ must satisfy

Minimum for efficient annihilation for scalar (blue), & derivatively coupled pseudoscalar (red) mediator (in pseudoscalar case $\lambda \equiv m_x/f$)

Constraints on ADM self interactions

The light state implies elastic & inelastic processes for ADM

Existence of elliptical halos implies average time for O(I) changes to DM velocity is bounded below

$$\Gamma_{\Delta v \sim v} \simeq \int \mathrm{d}^3 v_1 \mathrm{d}^3 v_2 f(v_1) f(v_2) n_X \sigma_T v_{\mathrm{rel}} \left(\frac{v_{\mathrm{rel}}^2}{v_0^2}\right)$$

Galaxy NGC720 constrains the DM momentum transfer cross-section,

$$\sigma_T \lesssim 4.4 \times 10^{-27} \ \mathrm{cm}^2 \left(\frac{m_X}{\mathrm{GeV}}\right)$$

Feng, Kaplinghat, Yu, arXiv:0911.0422. Lin, Yu, Zurek, arXiv:1111.0293

Constraints on ADM self interactions

For fermion ADM with scalar light state

$$\sigma_T \simeq \frac{32\pi}{m_{\phi}^2 m_X^2 v_{\rm rel}^4} \left[\alpha_X m_{\phi} \right]^2 \left(\ln(1+R^2) - \frac{R^2}{1+R^2} \right)$$
$$R \equiv \frac{m_X v_{\rm rel}}{m_{\phi}} \qquad \beta \equiv \frac{|V(r \sim m_{\phi}^{-1})|}{m_X v_{\rm rel}} = \frac{\alpha m_{\phi}}{m_X v_{\rm rel}^2}$$

upper bound for scalar case

$$\alpha_X \lesssim 2 \times 10^{-3} \left(\frac{m_\phi}{100 \text{ MeV}}\right)^2 \left(\frac{5 \text{ GeV}}{m_X}\right)^{1/2}$$

Pseudoscalars have similar form, but as derivatively coupled

$$\sigma_T^{(a)} \simeq 24\pi \left(\frac{27}{16}\right)^2 \frac{1}{m_a^2 m_X^2 v_{\rm rel}^4} \left[\frac{\alpha_X m_a^3}{f_a^2}\right]^2 \left(\ln(1+R^2) - \frac{R^2}{1+R^2} \left(1 + \frac{R^2}{2} - \frac{R^4}{6}\right)\right)$$

leading to approximate upper bound for pseudoscalar case

$$\alpha_X \lesssim 20 \left(\frac{10^{-2}}{m_a/f_a}\right)^2 \left(\frac{m_a}{100 \text{ MeV}}\right)^2 \left(\frac{5 \text{ GeV}}{m_X}\right)^{1/2}$$

Significant tension with annihilation in scalar case, whereas pseudoscalar is quite free due to scattering suppression of $(m_a/f_a)^4$

By emitting a light Y quanta the ADM can form WIMPonium bound states

$$\sigma_{\text{capture}} \sim \begin{cases} \frac{\pi \alpha'^2}{m_X^2 v^2} & \text{for } m_X \beta^2 > m_Y \\ \frac{\pi \alpha'^2}{(m_X^2 m_Y v)^{2/3}} & \text{for } m_X \beta^2 < m_Y \end{cases}$$

Depending on model details there can be further transitions to deeper bound states, or even annihilation of ADM via

Late-time SM indirect detection signals

with possible unusual morphology on sky

Conclusions

ADM is an exciting, constrained, alternative to WIMPs

Requirement that symmetric component removed leads to model independent constraints

Strongly motivates an extended dark sector, with many potential signals