One or more Higgs bosons?

Beyond the SM after the first run of the LHC GGI, July 9–12, 2013

Riccardo Barbieri SNS and INFN, Pisa

B, Buttazzo, Kannike, Sala, Tesi 2013

Conclusion (no lack of ? marks)

1. The discovery of the Higgs boson:

Is it the coronation of the Standard Model OR a first step towards unexplored territory?

2. Natural or unnatural theories?

before accepting a shift of paradigm, useful to be patient and careful (but courageous as well)

3. One or more Higgs bosons?

21/21

could be the lightest new particle(s) around

4. What about the flavour puzzle?

 $m's, V_{CKM} \Leftrightarrow \lambda_{ij}^{Yukawa}$: a great embarrassment, unlikely to be solved without much needed key data

NMSSM
$$\Delta f = \lambda H_u H_d$$

Fayet 1975

Two independent reasons to consider it:

- 1. Add an extra contribution to $m_{hh}^2 = m_Z^2 c_{2\beta}^2 + \Delta_t^2 + \frac{\lambda^2 v^2 s_{2\beta}^2}{\lambda^2 v^2 s_{2\beta}^2}$ thus allowing for lighter stops
- 2. Alleviates fine tuning in v for $\lambda \approx 1$ and moderate $\tan \beta$

B, Hall, Nomura, Rychkov 2007

green points have better than 5% "combined" fine-tuning and $\Lambda_{mess} = 20 \ TeV$ in the scale invariant NMSSM

$$\begin{array}{l} m_{\tilde{t}_1} < 1.2 \ TeV \\ \\ m_{\tilde{g}} < 3 \ TeV \end{array}$$

Gherghetta et al 2012

The pro's for just one Higgs boson

1. simplicity

How about the 12 (18) matter and the 12 (3) vector states?

2. electromagnetism always preserved

From 2 to 3 phases only

3. flavour

No big reason to be proud of the λ_{ij}

4. a single tuning, in case

None is better, which often demands more Higgs bosons

Can some extra Higgs bosons be the lightest new particles around?

Two ways to attack the problem

 \Rightarrow By precision measurements of the couplings of the 125 GeV (quasi-standard) Higgs boson

Outline an overall strategy

See the impact of the $\mu(h_{LHC})$'s

Look at connection with the EWPT

How to deal with the plethora of parameters of the general NMSSM? (without scatter plots or benchmark points)

MSSM $\tan 2\alpha = \tan 2\beta \frac{m_A^2 - m_Z^2}{m_A^2 + m_Z^2}$ (up to rad. corr.) $m_A^2 = m_{h_3}^2 + m_{h_1}^2 - m_Z^2 \qquad m_{H^+}^2 = m_A^2 + m_W^2$

 $\begin{array}{ll} \text{general} & (H_d^0, H_u^0, S)^T = R_{\alpha}^{12} R_{\gamma}^{23} R_{\sigma}^{13} (h_3, h_1, h_2)^T & h_1 \equiv h_{LHC} \\ \text{NMSSM} \\ \text{(with CP = OK)} & \mathcal{M}^2 = R \ \text{diag}(m_{h_3}^2, m_{h_1}^2, m_{h_2}^2) \ R^T \end{array}$

$$\mathcal{M}^{2} = \begin{pmatrix} m_{Z}^{2}c_{\beta}^{2} + m_{A}^{2}s_{\beta}^{2} & (2v^{2}\lambda^{2} - m_{A}^{2} - m_{Z}^{2})c_{\beta}s_{\beta} & vM_{1} \\ (2v^{2}\lambda^{2} - m_{A}^{2} - m_{Z}^{2})c_{\beta}s_{\beta} & m_{A}^{2}c_{\beta}^{2} + m_{Z}^{2}s_{\beta}^{2} + \Delta_{t}^{2}/s_{\beta}^{2} & vM_{2} \\ vM_{1} & vM_{2} & M_{3}^{2} \end{pmatrix} \\ & vM_{2} & m_{A}^{2} = m_{H^{+}}^{2} - m_{W}^{2} + \lambda^{2}v^{2}$$

$$\Rightarrow \alpha, \gamma, \sigma = \alpha, \gamma, \sigma(m_i^2, m_{H^+}^2; \tan \beta, \lambda, \Delta_t)$$

An orientation table

with comments on full triple mixing (no ``invisible" decays) (CP-odd not considered)

The signal strengths of h_{LHC}

From a theorist's informal combination of ATLAS&CMS data

Giardino, (Kannike,) Masina, Raidal, Strumia 2013

A projection from the measurements of the signal strengths of h_{LHC}

Summary so far

S-"decoupled" (similarities with the MSSM)

 $h_3 < h_{LHC} < h_2 (\approx S)$

 $h_{LHC} < h_3 < h_2 (\approx S)$

$$\mu(h_{LHC})'s$$

Any restriction from the EWPT on the figures above?

No, because for $\delta = \alpha - \beta + \pi/2 \rightarrow 0$ H does not contribute at one loop to S or T (no breaking of $SU(2) \times U(1)$) and the signal strengths of h_{LHC} strongly constrain δ

 h_3 $H = s_{\beta}H_d - c_{\beta}H_u$ h_{LHC} Fully mixed case and the $\gamma\gamma$ signal S h_2 $h = c_{\beta}H_d + s_{\beta}H_u$ isolines of $\mu(h_2
ightarrow \gamma \gamma)$ normalized to SM $\lambda = 0.1, \ \Delta_t = 85 \ GeV$ $\lambda = 0.8, \ \Delta_t \lesssim 75 \ GeV$ 120 120 0.6 \leq_{1} 100 100 80 80 m_{h_2} (GeV) m_{h_2} (GeV) 60 40 40 20 20 03 0 2 10 12 14 10 14 6 12 4 $\tan \beta$ $\tan \beta$ magenta = excluded by LEP in $h_2 \rightarrow$ hadrons

 $\sigma^2 = 0.001, \ m_{h_3} = 500 \ GeV$

$h_{LHC} < h_2(< h_3(\approx H))$ H-decoupled $\Delta_t \leq 75 \ GeV$ almost irrelevant $\lambda = 0.8$ $\lambda = 1.4$ 500 500 0.05 $\sin^2\gamma$ 450 450 0.1 0.025 🕊 400 400 0.2 0.05 $m_{h_2}({\rm GeV})$ 350 $m_{h_2}(\text{GeV})$ 350 0.25 300 300 0.1250 250 0.2 0.25 200 200 150 150 3.5 1.5 2.5 1.0 2.0 4.0 3.0 1.5 1.0 2.02.5 35 tan $\tan\beta$ "excluded" by h_{LHC} -signal strenghts 95%C.L. projection on $\sin^2 \gamma$ No big improvement 68%C.I

0.00

0.05

0.10

 $sin^2\gamma$

0.15

0.20

0.25

NMSSM: Direct search at LHC14

 h_2

 h_{LHC}

S

h

any other BR determined in this plane

but, at the proper time, the game might/should be over

How about the EWPT in the H-decoupled case?

As in the S-decoupled case, not competitive with the measurements of the signal strengths

$$\Rightarrow \text{Heavy } h_2 : \\ \Delta \hat{S} = + \frac{\alpha}{48\pi s_w^2} s_\gamma^2 \log \frac{m_{h_2}^2}{m_{h_{LHC}}^2}, \quad \Delta \hat{T} = -\frac{3\alpha}{16\pi c_w^2} s_\gamma^2 \log \frac{m_{h_2}^2}{m_{h_{LHC}}^2} \\ s_\gamma^2 = \frac{m_{hh}^2 - m_{h_{LHC}}^2}{m_{h_2}^2 - m_{h_{LHC}}^2}$$
 B, Bellazzini, Rychkov, Varagnolo 2007

 $\Rightarrow m_{h_2} \to m_{h_{LHC}}$

No effect on S and T since any mixing can be rotated away

An orientation/summary table

The triple mixing could help in the H-decoupled case with $~~\mu(h_2 \rightarrow \gamma \gamma)$

The (many) reactions to the FT problem

0. Ignore it and view the SM in isolation

- 1. Cure it by symmetries: SUSY, Higgs as PGB
- 2. A new strong interaction nearby
- 3. A new strong interaction not so nearby: quasi-CFT
- 4. Saturate the UV nearby: extra-dimensions around the corner
- 5. Warp space-time: RS
- 6. Accept it: the multiverse, the 10^{120} vacua of string theory

Anything else?

(untenable)

Last but not least

Many thanks for the successful workshop (as usual) to:

Stefania, Daniele Emilian Yasunori James Fabio Annalisa Mauro

(and even larger for $h_{LHC} < h_2(< h_3(pprox H))$)

 $f = \lambda_S SF_u F_d + M_u F_u \overline{F}_u + M_d F_d \overline{F}_d + m_u H_u \overline{h}_u + m_d H_d \overline{h}_d + \lambda_t H_u Qt,$ $F_{u,d} + \overline{F}_{u,d} = 5 + \overline{5}$

 $M_u \approx M_d \approx m_u \approx m_d \approx 1000 \ TeV$

$$S, \quad \hat{H}_u = c_u H_u + s_u h_u, \quad \hat{H}_d = c_d H_d + s_d h_d,$$

 $\hat{f} = \hat{\lambda} S \hat{H}_u \hat{H}_d + \hat{\lambda}_t \hat{H}_u Q t, \quad \hat{\lambda} = \lambda_S s_u s_d, \quad \hat{\lambda}_t = \lambda_t c_u$