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Introduction
In recent years, N=2 supersymmetric gauge theories and 
their deformations have played an important role in 
theoretical physics - very active research topic.
Examples:
2d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates 2d gauge theories with twisted masses to 
integrable spin chains.

4d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates Omega-deformed 4d gauge theories to quantum 
integrable systems.

AGT correspondence (Alday, Gaiotto, Tachikawa):
relates Omega-deformed super-Yang-Mills theory to 
Liouville theory.



Introduction
All these examples have two things in common:
1.  A deformed supersymmetric gauge theory is linked to 
an integrable system. 

Relation between two very constrained and well-
behaved systems that can be studied separately with 
different methods.

Transfer insights from one side to the other, cross-
fertilization between subjects!

2.  The deformed gauge theories in question can be 
realized in string theory via the fluxtrap background!

The string theory construction provides a unifying 
framework and a different point of view on the gauge 
theory problems.



Introduction

Use the fluxtrap construction to unify and meaningfully 
relate and reinterpret a large variety of existing results.

⇒ different brane set-ups give rise to different gauge 
theories with seemingly unrelated deformations!

Here: Deform the string theory background (“fluxtrap”) 
into which the branes are placed (Hellerman, Orlando, S.R.)

Realize deformed supersymmetric gauge theories via 
string theory. Gauge theories encode fluctuations on the 
world-volume of D-branes. Many parameters can be tuned 
by varying brane geometry.



Introduction

- 4d effective gauge theories with deformations

Fluxtrap background as toolbox to generate deformed 
gauge theories and analyze them via string theoretic 
methods.

- 2d effective gauge theories with deformations

Today: panoramic overview over the many applications of 
the fluxtrap background:

Our string theoretic approach enables us moreover to 
generate new deformed gauge theories in a simple and 
algorithmic way.
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x 0 1 2 3 4 5 6 7 8 9
(ρ1, θ1) (ρ2, θ2) (ρ3, θ3) (ρ4, θ4) v

fluxbrane �1 �2 �3 �4 ◦ ◦

T 2

�x8 � �x8 + 2π �R8

�x9 � �x9 + 2π �R9

Fluxbrane background with 3 independent deformation 
parameters:

fluxbrane parametersImpose identifications:

This corresponds to the well-known Melvin or fluxbrane 
background.

The Fluxtrap Background
Geometrical realization of Nekrasov's construction of the 
equivariant gauge theory.

�
�x8 � �x8 + 2π �R8n8

θk � θk + 2π�Rk
�R8n8

�
�x9 � �x9 + 2π �R9n9

θk � θk + 2π�Ik
�R9n9

Start with metric with 2 periodic directions and at least a 
U(1)xU(1) symmetry, no B-field, constant dilaton.



The Fluxtrap Background

ds2 = d�x2
0...7 −

V R
i V R

j dxi dxj

1 + V R · V R
−

V R
i V R

j dxi dxj

1 + V R · V R

+
�
1 + V R · V R

� �
(dx8)2 − V R

i dxi

1 + V R · V R

�2

+
�
1 + V I · V I

� �
(dx9)2 − V I

i dxi

1 + V I · V I

�2
+ 2V R · V I dx8 dx9

V = V R + iV I =�1
�
x1 ∂0−x0 ∂1

�
+ �2

�
x3 ∂2−x2 ∂3

�

+ �3
�
x5 ∂4−x4 ∂5

�
+ �4

�
x7 ∂6−x6 ∂7

�

Generator of rotations:

Fluxbrane metric (   -fibration over Ω-deformed    ):T 2 R8

Introduce new angular variables with disentangled 
periodicities: φk = θk − �Rk �x8 − �Ik�x9 = θk − Re(�k�̄v)

�k = �Rk + i �Ik �v = �x8 + i �x9



The Fluxtrap Background
The general case breaks all supersymmetries.

Impose condition N�

k=1

�k = 0

Find preserved Killing spinor
K =

�

k

exp
�
φk

γρkθk

2

�
Πflux

k η

with projector

Each projector breaks half of the supersymmetries:

26−N susys are preserved

Πflux
k = 1

2 (1− γρkθkρNθN )



T-dualize along torus directions and take 
decompactification limit to discard torus momenta:

Fluxtrap background
Before T-duality, locally, the metric was still flat, but some 
of the rotation symmetries were broken globally. 

B-field has appeared

creates a potential that 
localizes instantons

The Fluxtrap Background

              

ds2 = dρ21 +
ρ21 dφ

2
1 + dx2

8

1 + �21ρ
2
1

+ dρ22 +
ρ22 dφ

2
2 + dx2

9

1 + �22ρ
2
2

+
7�

k=4

(dxk)2,

B = �1
ρ21

1 + �21ρ
2
1

dφ1 ∧ dx8 + �2
ρ22

1 + �22ρ
2
2

dφ2 ∧ dx9 ,

e−Φ =

√
α� e−Φ0

R

�
(1 + �21ρ

2
1) (1 + �22ρ

2
2)

not anymore flat

Bulk fields after T-duality (case                                             ):V R · V I = 0, �1 ∈ R, �2 ∈ iR, �3 = �4 = 0



Space splits into

r

φ1
1
�1

R2

R × S1

Figure 1: Cartoon of the geometry of the base of the manifold M3(�1): a cigar with
asymptotic radius 1/�1.

The space splits into a product

M10 = M3(�1)× M3(�2)× R3 × S1 , (2.14)

where R3 is generated by (ρ3, ψ, x7), the S1 is generated by (x6, x7), and M3 is a three-
dimensional manifold which is obtained as a R foliation (generated by x8 or x9) over
the cigar with asymptotic radius 1/�i described by (ρ1, φ1) or (ρ2, φ2) (see the cartoon
in Figure 1):

R�x8� M3(�1)

cigar �ρ1, φ1� (2.15)

This shows that the effect of the Ω–deformation is to regularize the rotations
generated by ∂φ1 and ∂φ2 in the sense that the operators become bounded:

� ∂φ1�2 =
ρ2

1
1 + �2

1ρ2
1
<

1
�2

1
, � ∂φ2�2 =

ρ2
2

1 + �2
2ρ2

2
<

1
�2

2
. (2.16)

In a different frame this will translate into a bound on the asymptotic coupling of the
effective gauge theory for the motion of a D–brane.

As a final remark we observe that even though the background in Equation (2.13)
where the contributions of the two �i are decoupled was obtained as a limit, it is by
itself a solution of the ten-dimensional supergravity equations of motion for any value
of ρi.

What we have obtained is the starting point of the chain of dualities leading
eventually to the reciprocal background, as detailed in Table 1.

M–theory. As a first step we dualize in x6 to type iia and then lift to M–theory.
A remarkable feature of the M–theory background is the fact that it is symmetric
under the exchange {ρ1, φ1, x8, �1} ↔ {ρ2, φ2, x9, �2}. This is the origin of the S–duality
covariance of the final type iib background. This has to be contrasted with the fact
that the directions x6 and the M–circle x10 appear in a non-symmetric fashion. This is

5

Study resulting geometry.

The Fluxtrap Background

M10 = M3(�1)×M3(�2)× R4

r

φ1
1
�1

R2

R × S1

Figure 1: Cartoon of the geometry of the base of the manifold M3(�1): a cigar with
asymptotic radius 1/�1.

The space splits into a product

M10 = M3(�1)× M3(�2)× R3 × S1 , (2.14)

where R3 is generated by (ρ3, ψ, x7), the S1 is generated by (x6, x7), and M3 is a three-
dimensional manifold which is obtained as a R foliation (generated by x8 or x9) over
the cigar with asymptotic radius 1/�i described by (ρ1, φ1) or (ρ2, φ2) (see the cartoon
in Figure 1):

R�x8� M3(�1)

cigar �ρ1, φ1� (2.15)

This shows that the effect of the Ω–deformation is to regularize the rotations
generated by ∂φ1 and ∂φ2 in the sense that the operators become bounded:

� ∂φ1�2 =
ρ2

1
1 + �2

1ρ2
1
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1
�2

1
, � ∂φ2�2 =

ρ2
2

1 + �2
2ρ2

2
<

1
�2

2
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In a different frame this will translate into a bound on the asymptotic coupling of the
effective gauge theory for the motion of a D–brane.

As a final remark we observe that even though the background in Equation (2.13)
where the contributions of the two �i are decoupled was obtained as a limit, it is by
itself a solution of the ten-dimensional supergravity equations of motion for any value
of ρi.

What we have obtained is the starting point of the chain of dualities leading
eventually to the reciprocal background, as detailed in Table 1.

M–theory. As a first step we dualize in x6 to type iia and then lift to M–theory.
A remarkable feature of the M–theory background is the fact that it is symmetric
under the exchange {ρ1, φ1, x8, �1} ↔ {ρ2, φ2, x9, �2}. This is the origin of the S–duality
covariance of the final type iib background. This has to be contrasted with the fact
that the directions x6 and the M–circle x10 appear in a non-symmetric fashion. This is

5

R-foliation over the cigar

The generator of rotations is bounded (by asymptotic radius).



Now we want to lift to M-theory:

gMN = δMN +O(�2) ,

G4 = (dz + dz̄) ∧ (ds+ ds̄) ∧ ω

z = x8 + ix9 s = x6 + ix10

ω = �1 dx
0 ∧ dx1 + �2 dx

2 ∧ dx3 + �3 dx
4 ∧ dx5

σi =
φi

�i

ds2 = (∆1∆2)
2/3

�
dρ21 +

�21ρ
2
1

1 + �21ρ
2
1

dσ2
1 +

dx2
8

1 + �21ρ
2
1

+ dρ22 +
�22ρ

2
2

1 + �22ρ
2
2

dσ2
2 +

dx2
9

1 + �22ρ
2
2

+ dρ23 + ρ23 dψ
2 + dx2

6 + dx2
7

�
+ (∆1∆2)

−4/3 dx2
10 ,

A3 =
�21ρ

2
1

1 + �21ρ
2
1

dσ1 ∧ dx8 ∧ dx10 +
�22ρ

2
2

1 + �22ρ
2
2

dσ2 ∧ dx9 ∧ dx10

∆2
i = 1 + �2i ρ

2
i

Consider only linear order in   : �

The Fluxtrap Background



The type of deformation resulting from the fluxbrane 
background depends on how D-branes are placed into 
the fluxtrap with respect to the monodromies:

Deformed gauge theories

Deformation not on brane world-volume: 
mass deformation

Deformation on brane world-volume: Ω-type 
deformation, Lorentz invariance broken

fluxtrap �i �j
D–brane × × × φi

fluxtrap �i �j
D–brane × × × ×



Examples: 2d gauge 
theory w. twisted mass



2d gauge theory w. twisted masses
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2d Gauge Theories
We can construct N=2 gauge theories in 2d by studying 
the low energy theory on the world-volume of D2-branes 
suspended between NS5-branes.

Separation of NS5s in 7-direction: FI-term
Separation of NS5s in 6-direction: 1/g2

x6

x8, x9

x 0 1 2 3 4 5 6 7 8 9

fluxtrap �1 �2 �3 ◦ ◦
D2–brane × × φ × σ
NS5–brane × × × × × ×



2d Gauge Theories
Why is the fluxtrap called a fluxtrap? 

The D2s are trapped at the origin.

Adding also NS5-branes preserves 4 supercharges, N=(2,2)

x0 = ζ0, x1 = ζ1, x6 = ζ3In the static embedding,                             , the e.o.m. 
are solved for the D2-branes sitting in 

x2 = x3 = x4 = x5 = x7 = 0

�
�L = e−Φ/8 ( + Γ11)ΠNS5

− Πflux
− Γ1608 exp[

1
2 (φ1 + φ2)Γ23]� ,

�R = e−Φ/8 ( − Γ11)ΓuΠNS5
+ Πflux

− exp[ 12 (φ1 + φ2)Γ23]� .

ΠNS5
± = 1

2 ( ± Γ4567)

Preserved Killing spinors:

Special case                 preserves 16 supercharges.
Adding only D2-branes to the fluxtrap preserves 8 
supercharges (static embedding).

�2 = −�3 = m



2d Gauge Theories
The fluxtrap deformation gives rise to the twisted masses!
Start with (kappa fixed) DBI action (democratic 
formulation):

After expanding to quadratic order in the fields, we get

twisted mass terms!

dilaton B-field

S = − 1

8π2g23(α
�)2

�
d3ζ

�
−ẊσẊσ +m2ρ21 + ψ̄ Γ0ψ̇ +

m

2
ψ̄ Γ45Γ8 ψ

�
+ . . .



2d Gauge Theories
An important ingredient of the Gauge/Bethe 
correspondence is the symmetry group of the integrable 
system, which also relates gauge theories with different 
gauge groups.
The example with two NS5-branes treated so far 
corresponds to the simplest case with symmetry group 
su(2).
Spin chains can have any Lie group as symmetry, even 
supergroups. Can we realize all those via a brane 
construction?
So far, we are able to reproduce the A and D-series.



2d Gauge Theories
An SU(r) quiver gauge theory corresponds to a spin chain 
with SU(r) symmetry. Can be constructed by varying the 
brane set-up: r+1 NS5s with stacks of D2s suspended in 
between.

the Bethe Ansatz equation [11]:

La

∏
k=1

λ(a)
i + i

2
�
Λa

k + νa
k
�

λ(a)
i − i

2
�
Λa

k − νa
k
� =

(r,Nb)

∏
(b,j)=(1,1)
(b,j) �=(a,i)

λ(a)
i − λ(b)

j + i
2 Cab

λ(a)
i − λ(b)

j − i
2 Cab

, a = 1, 2, . . . , r ; i = 1, 2, . . . , Na ,

(1.3)
where Cab are the elements of the Cartan matrix of the symmetry group. The observation
of [1–3] is that the same equations describe the ground states of a corresponding two-
dimensional quiver gauge system on a circle (for details see Table 4). It is important to
note that the twisted masses (which are the counterparts of the parameters Λ, ν, C) induce
an effective twisted superpotential �W whose minima correspond to the normalizable ground
states. These ground states are in one-to-one correspondence with the spectrum of the
chain and will be identified in the following with bps configurations in the string theory
construction (see [7]).

2 The A series

Generalizing the SU(2) or A1 case to Ar is very straightforward. We will therefore use
this section to remind the reader of the fluxtrap construction [7].

The Cartan matrix of Ar series (SU(r + 1)) has the form

A =





2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 −1 . . . 0
... . . . . . . . . . ...
0 0 . . . −1 2 −1
0 0 . . . 0 −1 2





, (2.1)

which gives rise to the Dynkin diagram in Figure 2a. The a-th node of the Dynkin diagram
translates directly to the a-th node of the quiver gauge theory. Its color group U(Na) is
determined by the superselection sector; the length parameter fixes the flavor group U(La)
which is attached to the a-th node by fundamental and antifundamental fields Qa

k, Qa
k,

k = 1, . . . La. Each arrow between nodes a and b of the quiver diagram corresponds to

1 r − 1 r
. . .

(a)

U(N1) U(Nr−1) U(Nr)

U(L1) U(Lr−1) U(Lr)

. . .

(b)

Figure 2: Dynkin diagram (a) and quiver diagram (b) for the Ar series. In the quiver
diagram, nodes are gauge groups and squares flavor groups. Each arrow represents a
bifundamental and each dotted line a pair fundamental–antifundamental. Each node carries
also an adjoint field (not represented).

3

bifundamental fields

fundamentals 
and anti-

fundamentals

gauge group

flavor groups

. . .

NS5(1) NS5(r) NS5(r+1)

D4 D2
D4

D2

N1
Nr−1

Nr

L1

Lr

adjoint fields

bifundamental fields

fundamentals and 
antifundamentals



Examples: N=2* theory



N=2* theory
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N=2* theory

It is obtained from a D3-brane in the fluxtrap background 
with deformation parameters (8 conserved supercharges)

N=2* theory is obtained from N=4 SYM (4d) by giving 
equal masses to two of the scalar fields.

�1 = �2 = 0 �3 = �4 = �

LΩ =
1

4g2ym

�
FijF

ij +
1

2

3�

k=1

�
∂iφk

� �
∂iφ̄k

�
+

1

2
|�|2 φ1φ̄1 +

1

2
|�|2 φ2φ̄2

�

Flows to N=2 in the IR (masses become infinite).

Different from Witten’s construction (global BC).

x 0 1 2 3 4 5 6 7 8 9

fluxtrap �1 �2 �3 �4 ◦ ◦
D3–brane × × × × φ1 φ2 φ3



Examples: Polchinski/
Strassler type solution



Polchinski/Strassler-type solution
We have a string realization of a deformation of N = 4 
SYM based on the dynamics of a D3–brane ⇒ 

What is the gravity dual of the Ω–deformed theory?

Gravity duals of massive deformations ⇒ Polchinski/
Strasser 

Gravity dual of the Ω–deformed N=4 SYM is given by the 
full backreaction of the D3–brane in the fluxtrap, which 
interpolates between the solution of Polchinski and 
Strassler in the near-horizon limit and the flat-space 
fluxtrap at infinity.

Example: Polchinski/Strassler-type solution for N=2* 
theory



Polchinski/Strassler-type solution
Start from standard D3-brane solution:

ds2 = H(r)−1/2 d�x2
0...3 +H(r)1/2

�
dr2 + r

2 dΩ2
5

�

F4 = dH(r)−1 ∧ dx0 ∧ . . . ∧ dx3 + 4Q ωS5

H(r) = a+Q/r
4

a=0 at horizon
D-brane charge

distance from 
center of the brane

Lowest order deformation in ε:

2ω = dV

Metric undeformed at 1st order.  

�
Φ = −aV ·V

2 − Q�2

2
x2
9−x2

8
r4

C0 = Q�2 x8x9

r4

B = aV ∧ dx8 +
Q

r4
�
V ∧ dx8 + x8ω

�
,

C2 = −Q

r4
�
V ∧ dx9 + x9ω

�

1st order expansion of 
FT result

Polchinski/Strassler 
solution

C0

Conformal invariance is broken ⇒ non-trivial dilaton and 
    field in the near-horizon. 



Examples: Omega-
deformed N=2 SYM



Omega-deformed N=2 SYM
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Omega-deformed N=2 SYM

LΩ =
1

4g2ym

�
FijF

ij +
1

2

�
∂iφ+ V kF i

k

� �
∂iφ̄+ V̄ kFki

�
− 1

8
(V̄ i ∂iφ− V i ∂iφ̄+ V kV̄ lFkl)

2

�

Original theory where the Ω-deformation was first 
introduced by Nekrasov. 

Interesting limits are
�1 = −�2, �3 = 0 reproduces top. string partition 

function, more supersymmetry

�1 = −�3, �2 = 0 Nekrasov/Shatashvili limit

dilaton+metricB-field

x 0 1 2 3 4 5 6 7 8 9

fluxtrap �1 �2 �3 ◦ ◦
D4–brane × × × × × φ
NS5–brane × × × × × ×



Examples: Omega-
deformed N=1 SYM
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Omega-deformed N=1 SYM

LΩ =
1

4g2
FijF

ij + V R
i F ije8j + V I

i F
ije9j

N=1 SYM in 4d requires a brane placement different from 
the previous examples.

NS5-branes not parallel, only 3 deformation parameters 
possible, D4 extended in dual Melvin directions. 
N=1 has no scalar fields, preserves 2 real supercharges.

unit vectors

x 0 1 2 3 4 5 6 7 8 9

fluxtrap �1 �2 �3 ◦ ◦
D4–brane × × × × ×
NS5–brane 1 × × × × × ×
NS5–brane 2 × × × × × ×



Examples: Omega-
deformed SW action



Omega-deformed SW action
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Omega-deformed SW
Application: derive Omega-deformed Seiberg-Witten 
Lagrangian (eff. low energy action)
Use M-theory lift of fluxtrap BG.
Classical computation yields quantum result.
Embed M5-brane into fluxtrap BG.

Take vector and scalar equations of motion in 6d (not 
from an action!).
Integrate equations over Riemann surface.
4d equations of motion are Euler-Lagrange equations of an 
action.
This action reduces to the Seiberg-Witten action in the 
undeformed case.

Self-dual three-form on the brane.
Still wrapped on a Riemann surface at linear order.

Captures all orders of the 4D gauge theory.



1 Introduction

[inline]Seiberg–Witten (sw)
The sw action from M-theory
Nekrasov’s Ω–deformation, Alday–Gaiotto-Tachikawa (agt) and this stuff
Since the classical result of Seiberg and Witten, N = 2 gauge theories have occupied

a prominent place in theoretical physics. M–theory has been the tool of choice for the
study of four-dimensional supersymmetric gauge theories for many years. The complete
quantum sw effective action for N = 2 supersymmetric SU(N) Yang–Mills theory has
been obtained in [4], whereas the equations of motion for both the scalar and vector
fields of an M5–brane in the presence of three-brane solitons have been derived in [7].
The resulting equations of motion are precisely those obtained from the sw low energy
effective action for N = 2 Yang–Mills, including all quantum corrections.

Ever since Nekrasov’s seminal paper [10], the Ω–background has received a lot of
interest, most recently in the context of the agt–correspondence [1] and work related to
it. In this note, the vector and scalar equations of motion and from them, the effective
action of the Ω–deformed sw theory (including all quantum corrections) will be derived
starting from an M–theory set-up.

The so-called fluxtrap background [2, 11] provides a string-theoretical construction of
the Ω–background which can be lifted to M–theory [3]. This background enables us to
derive the vector and scalar equations of motion of an M5–brane in the Ω–background
leading to the Ω–deformed sw low energy effective action for N = 2 Yang–Mills. We treat
the case of SU(2), briefly remarking on the generalization to SU(N) in the conclusions.
While the M5–embedding is known to quadratic order in �, the equations of motion will
be derived to linear order in �.

We will in the following study a type IIA fluxtrap background with a D4–brane
suspended between two parallel NS5–branes, see Table 1. The effective theory on the
world-volume of the D4–brane is the Euclidean ω–deformed N = 2 sym. The lift to
M–theory at order � was derived in [3] and is given by (M,N = 0, 1, 2, ..., 10)

gMN = δMN +O(�2) , (1.1a)
G4 = −4 (ds+ ds̄) ∧ (dv + dv̄) ∧ ω , (1.1b)

0 1 2 3 4 5 6 7 8 9

fluxtrap �1 �2 �3 × × ◦ ×

NS� × × × × × ×

D� × × × × ×

Table 1: D�–branes suspended between NS�s with two independent �. The crosses ×

indicate directions in which the branes are extended. The circle ◦ is the direction of the
T–duality. The effective gauge theory describing the D�–brane is the ω̂–deformed four-
dimensional gauge system of Nekrasov. Note that all directions have the same Euclidean
signature.

1

Start with type IIA set-up of D4- and NS5-branes:

x0, . . . , x3

x6, x8, x9, x10

Lifts to single M5 extended in              and wrapping a 2-
cycle in                  .

Non-abelian generalization of bosonic world-volume 
action for D4-branes suspended between NS5-branes 
in fluxtrap BG:

LD� =
1

g24
Tr

�1
4
FµνFµν +

1

2
(Dµ ϕ+

1

2
FµλÛ

λ)(Dµ ϕ̄+
1

2
FµρÛ

ρ)

− 1

4
[ϕ, ϕ̄]2 +

1

8
(ÛµDµ(ϕ− ϕ̄))2

�

Choose embedding preserving same susy as in type IIA.

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a 
Riemann surface over    .R4

- for each point in     we have the same Riemann 
surface as above, but with a different value of the 
modulus u.

R4

The modulus u of the Riemann surface is a function of the 
worldvolume coordinates and the embedding is still 
formally defined by the same equation:

s = s(z|u(xµ)) ∂µs(z|u(xµ)) = ∂µu
∂s

∂u

Omega-deformed SW

z = x8 + ix9 s = x6 + ix10



Φ =
κ

2
Fµν dx

µ ∧ dxν ∧ dz +
κ̄

2
�Fµν dx

µ ∧ dxν ∧ dz̄

+
1

1 + | ∂s|2
1

3!
�µνρσ

�
∂τs ∂̄s̄κFστ − ∂τ s̄ ∂s κ̄ �Fστ

�
dxµ ∧ dxν ∧ dxρ .

∗4F = −F , ∗4 �F = �F

Ansatz:

κ =
ds

da
=

�
da

du

�−1

λz λ = λz dz
da

du
=

�

A
λ

Want to relate     to 4d gauge field: only components Φ

(µ, ν, z), (µ, ν, z̄)

antiselfdual 2-form

holomorphic fn holomorphic 1-form on Riemann surface

scalar field
a =

�

A
λSW , aD =

�

B
λSW , τ =

daD
da

, λ =
∂λSW

∂u

Omega-deformed SW
dΦ = i d∗6Ĉ3

pull-back of bulk 3-form,
source for fluctuations

selfdual 3-form, encodes 
fluctuations of 4d gauge field



Integration over the Riemann surface of the 6d e.o.m. 
results in the 4d e.o.m. for the Omega-deformed SW 
theory: 

(τ − τ̄) ∂µ∂µa+ ∂µa ∂µτ + 2
dτ̄

dā
(FµνFµν + Fµν F∗ µν)

+ 4
dτ̄

dā
(a− ā) ω̂+

µνFµν − 4 (τ − τ̄) ω̂−
µνFµν = 0 ,

(τ − τ̄) ∂µ∂µā− ∂µā ∂µτ̄ − 2
dτ

da
(FµνFµν − Fµν F∗ µν)

+ 4
dτ

da
(a− ā) ω̂−

µνFµν − 4 (τ − τ̄) ω̂+
µνFµν = 0 .

(τ − τ̄)
�
∂µFµν + 1

2 ∂µ(a+ ā)ω̂µν + 1
2 ∂µ(a− ā)∗ω̂µν

�

+ ∂µ(τ − τ̄)
�
Fµν + 1

2 (a− ā) ∗ω̂µν

�
− ∂µ(τ + τ̄)

�∗Fµν + 1
2 (a− ā) ω̂µν

�
= 0

Vector equation:

Scalar equations:

Consistent result justifies earlier assumptions about foliation 
structure, form of fluctuations and integration measure.

Omega-deformed SW

The 3-form on the brane is the (generalized) 
pullback of the 3-form in the bulk.

The M5 brane is a (generalized) minimal surface.



iL = − (τij − τ̄ij)
�
1
2

�
∂µa

i + 2
�

τ̄
τ−τ̄

�

ik
F∗ k

µν Û∗ ν

��
∂µā

j − 2
�

τ
τ−τ̄

�

jl
F∗ l

µν Û∗ ν

�

+
�
F i
µν + 1

2

�
ai − āi

�
ω̂∗ µν

� �
F j
µν + 1

2

�
aj − āj

�
ω̂∗ µν

� �

+ (τij + τ̄ij)
�
F i
µν + 1

2

�
ai − āi

�
ω̂∗ µν

� �
F∗ j

µν + 1
2

�
aj − āj

�
ω̂µν

�

generalized covariant derivative for the scalar a, 
non minimal coupling to the gauge field.

shift in the gauge field strength

Omega-deformed SW
The vector and scalar e.o.m. are the Euler-Lagrange 
equations of the following Lagrangian:

For        , this reproduces the Seiberg-Witten Lagrangian.� = 0

Independent of compactification radius to IIA, which is 
related to gauge coupling in 4d → quantum result (all 
orders). True for any Riemann surface.

ω = dU



Summary
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Constructed the fluxtrap background in string theory.
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The fluxtrap construction has a variety of uses/applications.

It captures the gauge theories with twisted masses of the 
2d gauge/Bethe correspondence. arXiv:1106.0279
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It captures the Omega-deformed gauge theories of the 4d 
gauge/Bethe correspondence. arXiv:1204.4192
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Derive Omega-deformed Seiberg-Witten Lagrangian and 
its S-dual arXiv:1304.3488



Use M-theory lift of fluxtrap BG, embed M5-brane, reduce 
6d e.o.m. on Riemann surface.

Classical M-theory calculation yields quantum result, 
captures all orders of 4d gauge theory.

The resulting 4d e.o.m. for the scalar and vector fields are 
Euler-Lagrange equations for a 4d action: Omega-deformed 
Seiberg-Witten Lagrangian!

Summary
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Starting point for understanding string theory formulation 
of AGT correspondence. arXiv:1210.7805 

http://arXiv.org/abs/arXiv:1210.7805
http://arXiv.org/abs/arXiv:1210.7805
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The fluxtrap construction allows us to study different 
gauge theories of interest via string theoretic methods.

The construction gives a geometrical interpretation for 
the Omega BG and its properties, such as localization etc.

Understanding of relation between deformation 
parameters and quantization of spectral curve.

Omega deformation and (twisted) mass deformations 
have same origin in string theory.

Summary



Outlook
The area of N = 2 supersymmetric gauge theories and 
their connections to integrable models is a powerful 
laboratory to understand more realistic theories and holds 
great potential.
Use string theoretic fluxtrap construction of deformed 
supersymmetric gauge theory as a unifying paradigm. 

Open questions:
- string-theoretical realization of the AGT correspondence
- identify BPS states in the AGT correspondence and in 
the Nekrasov/Shatashvili limit
- Topological string theory from the fluxtrap BG
- Geometric representation theory and gauge theories
- construct gravity duals to deformed gauge theories



Thank you for your 
attention!


