Lattice QCD with light sea quarks?

Martin Lüscher

CERN — Theory Division

- ★ Chiral symmetry on the lattice, and why QCD simulations are so difficult
- ★ Domain decomposition: a new technology in lattice QCD
- ★ Making contact with chiral perturbation theory
- ★ Conclusions & perspectives

Inaugural Conference, Galileo Galilei Institute, Firenze 19–21 September 2005

Chiral symmetry on the lattice

The Wilson–Dirac operator

$$D_{\mathrm{w}} = \frac{1}{2} \left\{ \gamma_{\mu} \left(\nabla_{\mu}^{*} + \nabla_{\mu} \right) - a \nabla_{\mu}^{*} \nabla_{\mu} \right\} + m_{0}$$

violates the isovector chiral symmetry

$$\left\langle \left\{ \partial_{\mu} A^{k}_{\mu}(x) - 2mP^{k}(x) \right\} \Phi_{1}(y_{1}) \dots \right\rangle = \text{contact terms} + \mathcal{O}(a)$$

Wilson '74 Bochicchio, Maiani, Martinelli & Testa '85

In QCD this is not a fundamental problem, but the effects are large at the accessible lattice spacings Can do better by including O(a) counterterms

$$D_{\rm w} \to D_{\rm w} + a c_{\rm sw} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu}$$

$$A^k_\mu \to A^k_\mu + ac_{\rm A}\partial_\mu P^k$$

With properly tuned $c_{
m sw}$ and $c_{
m A}$

$$\left\langle \left\{ \partial_{\mu} A^{k}_{\mu}(x) - 2mP^{k}(x) \right\} \Phi_{1}(y_{1}) \dots \right\rangle = \text{contact terms} + \mathcal{O}(a^{2})$$

Symanzik '80 Sheikholeslami & Wohlert '85; ML, Sint, Sommer & Weisz '96; ...

The residual symmetry violations are small at $a \leq 0.1 \, \mathrm{fm}$

... can actually do much better

Ginsparg & Wilson '82; Kaplan '92; Shamir '93

Hasenfratz '98; Hasenfratz, Niedermayer & Laliena '98; Neuberger '98; ML '98; ...

However, this adds an extra dimension \Rightarrow "expensive"

Why are QCD simulations so difficult?

MC methods require $\mathbb C\text{-number}$ fields & non-negative measures

Light-quark determinant

$$(\det D_{\mathbf{w}})^{2} = \int \mathbf{D}[\phi] e^{-S_{\mathrm{pf}}[\phi]} \quad (\text{if } m_{u} = m_{d} = m)$$
$$S_{\mathrm{pf}}[\phi] = a^{4} \sum_{x} \phi(x)^{\dagger} (D_{\mathbf{w}}^{\dagger} D_{\mathbf{w}})^{-1} \phi(x)$$

There are pseudo-fermion representations for the heavier quarks too, and also for $m_u \neq m_d$

The total action is now real and bounded from below but non-local

Current strategies in lattice QCD

Modify the lattice theory

so as to avoid $a \ll 0.1 \mathrm{fm}$

Block spin RG, perfect action approach Wilson '79 Hasenfratz & Niedermayer '94

May be too complicated

Staggered quarks + fat links + 4^{th} -root HPQCD, MILC, UKQCD & Fermilab collaborations '04

Violates basic principles

Build your own computer

The latest machines

• apeNEXT INFN '05

- QCDOC Columbia '05
- PACS-CS Tsukuba '06

deliver $\sim 10 \,\mathrm{Tflops}$

Increasingly hard to beat the computer industry

Develop better methods

but keep theory simple

Preconditioning, error reduction techniques

Hasenbusch '01; ...

Finite-size scaling

ALPHA collaboration '92

Try to teach physics to the algorithms

Looking for better techniques ...

© Alinghi team

Water flow and wave calculation

- Solve Reynolds-Averaged
 Navier-Stokes equations
- * Mesh discretization
- Domain decomposition and multigrid methods

EPFL, J. Wynne '03

Using domain decomposition methods in lattice QCD

- Computation of $D_{\rm w}^{-1}\phi$
- Simulation algorithm $(m_u = m_d)$
 - * Effort grows like $\sim m^{-1}$ only
 - * High parallel efficiency

ML CPC 156 (2004) 209; CPC 165 (2005) 199 del Debbio, Giusti, ML, Petronzio & Tantalo '05

<u> </u>									-							-	1						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•
•	•	•	•	•	•		•	•	•	•				•	•	•	•	•	•	•	•	•	
-	•	•	•	•	•			-		-	-	-	•	•	•	•	•		-		-	-	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠
•	٠	•	٠	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•		•	•	•	•			•		•			•		•	•	•	•	•		•	
										-										-	-		
	Ţ		Ţ			l.			Ţ					Ţ	Ţ								Ţ
•	•		•		•		•	•	•		•		_	•					•			•	•
			-			-						•	•	•	-	•	- T	-				-	
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • •	•	•	•	•
•	•	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	• • • • • • •	• • • • •	• • • • •	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	• • • • • • •	•	•	•	•	•
•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	• • • • • • • • •	• • • • •	• • • • • •	• • • • • •	•	•	•	•	•	•	•	•	• • • • • • • • • • •	•	•	•	•	•

Let's go into some details ...

The quark determinant factorizes

$$\det D_{\mathrm{w}} = \prod_{\mathrm{blocks } \Lambda} \det D_{\Lambda} \times \det R$$

$$\uparrow$$

$$D_{\mathrm{w}} \text{ with Dirichlet b.c.}$$

where the block interaction is given by

$$R = 1 - \sum_{\text{pairs } \Lambda, \Lambda^*} D_{\Lambda}^{-1} D_{\partial \Lambda} D_{\Lambda^*}^{-1} D_{\partial \Lambda^*}$$

On the blocks an infrared cutoff

 $q \ge \pi/l > 1 \,\mathrm{GeV}$

is implied by the boundary conditions

- \Rightarrow theory is weakly coupled
- \Rightarrow easy to simulate at all quark masses

In other words

-		<i>l</i> <	< 0).5 :	fm		-
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

The block-interactions are actually weak

$$\frac{\delta^2 \left(\ln \det D_{\rm w} \right)}{\delta A^a_\mu(x) \delta A^b_\nu(y)} =$$

$$\operatorname{tr}\{T^a \gamma_\mu S(x, y) T^b \gamma_\nu S(y, x)\} \sim |x - y|^{-6}$$

 $\Rightarrow \det R$ is a small correction

- •
- •
- •

 \Rightarrow exact simulation algorithm that exploits these facts

First studies using the new algorithm

Del Debbio, Giusti, M.L., Petronzio, Tantalo [CERN-Tor Vergata]

Two-flavour QCD, $m_u = m_d$, without O(a) counterterms

lattice	a [fm]	$\sim m/m_{ m s}$	m_{π} [MeV]	N_{cnfg}
$32 \cdot 24^3$	0.080	0.93	676	64
		0.48	484	95
		0.30	381	94
		0.17	294	100
$64 \cdot 32^3$	0.064	0.75	606	100
		0.38	429	101
		0.25	350	running

Simulations performed on 8 nodes of a PC cluster at the ITP Bern and on 64 nodes at the Fermi Institute

Chiral behaviour of m_π and F_π

SU(2) ChPT predicts

$$m_\pi^2 = M^2 R_\pi, \quad M^2 = 2Bm$$

$$R_{\pi} = 1 + \frac{M^2}{32\pi^2 F^2} \ln(M^2 / \Lambda_{\pi}^2) + \dots$$

where, in real-world QCD,

$$\ln(\Lambda_{\pi}^2/M^2)\Big|_{M=140\,\mathrm{MeV}} \simeq 2.9 \pm 2.4$$

Gasser & Leutwyler '84

 $\Rightarrow R_{\pi} \simeq \text{constant} = 0.956(8) \text{ in}$ the range $M = 200 - 500 \,\text{MeV}$

Up to $m_{\pi} \sim 500 \,\text{MeV}$, the data are compatible with 1-loop ChPT Needs to be confirmed at smaller masses and several lattice spacings

Conclusions & perspectives

Numerical simulations of lattice QCD with light sea quarks are much less "expensive" than previously estimated!

 \Rightarrow it is now possible to reach the chiral regime on large lattices

Example

 $96 \cdot 48^3$ lattice, $a = 0.06 \, \text{fm}$, $m_\pi = 200 - 300 \, \text{MeV}$

To simulate this lattice, a (current) PC cluster with 288 nodes should be sufficient

What next?

A wide range of physics questions may now be addressed

- $\pi\pi$ scattering & the ρ resonance
- Properties of the nucleons
- Charm physics

More technical directions to explore are

- Including O(a) counterterms
- Adding the strange sea quark
- Ginsparg–Wilson valence fermions $(B_K, K \rightarrow \pi \pi, \ldots)$