LATTICE QCD AND FLAVOR PHYSICS

Vittorio Lubicz

ARTIMENTODI

UNIVERSITÀ DEGLI STUDI ROMA TRE

OUTLINE

- **1**. Motivations for flavor physics
- **2.**Lattice QCD and quark masses

3.CKM matrix a) The Cabibbo angle and the first row unitarity test b) The Unitarity Triangle Analysis and CP violation

MOTIVATIONS FOR FLAVOR PHYSICS

Flavor physics is (well) described but not explained in the Standard Model:

A large number of free parameters in the flavor sector (10 parameters in the quark sector only, $6 m_q + 4 CKM$)

- Why 3 families?

- Why the spectrum of quarks and leptons covers 5 orders of magnitude? ($m_q \sim G_F^{-1/2}$...)

- What give rise to the pattern of quark mixing and the magnitude of CP violation?

Flavor physics is an open window on New Physics: FCNC, CP asymmetries,...

New Physics can be conveniently described in terms of a low energy effective theory:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}}{\Lambda_{NP}} O_{i}^{(5)} + \sum_{i} \frac{c_{i}}{\Lambda_{NP}^{2}} O_{i}^{(6)} + \dots \qquad \begin{array}{l} \text{E.g.:} \\ \Lambda_{K} O_{-K} O \sim 100 \text{ TeV} \end{array}$$
The flavor problem:
New Physics must be very special !!

DETERMINATION OF THE SM FLAVOR PARAMETERS THE PRECISION ERA OF FLAVOR PHYSICS

EXPERIMENTS

 $\epsilon_{\rm K}$ = 2.280 10⁻³ ± 0.6% $\Delta m_{\rm d}$ = 0.502 ps⁻¹ ± 1% sin(2 β) = 0.687 ± 5%

THEORY

We need to control the theoretical input parameters at a comparable level of accuracy !!

Challenge for LATTICE QCD

LATTICE QCD AND QUARK MASSES

• QUARK MASSES CANNOT BE DIRECTLY MEASURED IN THE EXPERIMENTS, BECAUSE QUARKS ARE CONFINED INSIDE HADRONS

• BEING FUNDAMENTAL PARAMETERS OF THE STANDARD MODEL, QUARK MASSES CANNOT BE DETERMINED BY THEORETICAL CONSIDERATIONS ONLY.

LATTICE DETERMINATION OF QUARK MASSES

TWO IMPORTANT THEORETICAL TOOLS

THE STRANGE QUARK MASS

 \overline{m}_{s} (2 GeV) = (105 ± 15 ± 20) MeV

[PDG 2002: $\overline{m}_s = (120 \pm 40) \text{ MeV}$]

THE AVERAGE UP/DOWN QUARK MASS

Good agreement with the ChPT prediction

CKM MATRIX a) THE CABIBBO ANGLE AND THE "FIRST ROW" UNITARITY TEST

BUT: the PDG average for $|V_{us}|$ is superseded by NEW experimental and theoretical results

f_4 : the ChPT calculation...

$$f_4 = \Delta_{\text{loops}}(\mu) - \frac{8}{F_{\pi}^4} \left[C_{12}(\mu) + C_{34}(\mu) \right] \left(M_K^2 - M_{\pi}^2 \right)^2$$
Post and Schilcher,
Bijnens and Talavera

 $C_{12}(\mu)$ and $C_{34}(\mu)$ can be determined from the slope and the curvature of the scalar form factor. But experimental data are not accurate enough

and model estimates		(µ = ???)
Leutwyler and Roos,	$f_4^{LOC} = -0.016 \pm 0.008$	[Quark model]
Jamin et al.,	f_4^{LOC} = -0.018 ± 0.009	[Dispersive analysis]
Cirigliano et al.,	$f_4^{LOC} = -0.002 \pm 0.008$	[1/Nc+Low resonance]

A PRECISION OF O(1%) MUST BE REACHED ON THE LATTICE!

The first Lattice QCD calculation

D.Becirevic, G.Isidori, V.L., G.Martinelli, F.Mescia, S.Simula, C.Tarantino, G.Villadoro. [NPB 705,339,2005]

1) Evaluation of
$$f_0(q_{MAX}^2)$$

The basic ingredient is a double ratio of correlation functions:

$$R = \frac{\langle \pi | \bar{s} \gamma_0 u | K \rangle \langle K | \bar{u} \gamma_0 s | \pi \rangle}{\langle \pi | \bar{u} \gamma_0 u | \pi \rangle \langle K | \bar{s} \gamma_0 s | K \rangle}$$

$$=\frac{(M_K+M_\pi)^2}{4M_K M_\pi} f_0(q_{max}^2)^2$$

2) Extrapolation of $f_0(q_{MAX}^2)$ to $f_0(0)$

3) Extrapolation to the physical masses

FIRST ROW UNITARITY

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0007 \pm 0.0014$

CKM MATRIX: b) THE UNITARITY TRIANGLE ANALYSIS AND CP VIOLATION

V_{ub} and V_{cb} from semileptonic decays

V_{ub} and V_{cb} from semileptonic decays

$K-\overline{K}$ mixing: ε_{K} and B_{K}

$K-\overline{K}$ mixing: ε_{K} and B_{K}

$K-\overline{K}$ mixing: ε_{K} and B_{K}

B_{d} and B_{s} mixing: $f_{B}\sqrt{B_{B}}$

B_{d} and B_{s} mixing: $f_{B}\sqrt{B_{B}}$

INDIRECT EVIDENCE OF *CP* A CRUCIAL TEST OF THE SM

 $Sin2\beta_{\text{UT Sides}} = 0.793 \pm 0.033$

Sin2
$$β_{J/\psi Ks}$$
 = 0.687 ± 0.032

INDIRECT EVIDENCE OF *CP* A CRUCIAL TEST OF THE SM

 $Sin2\beta_{\text{UT Sides}} = 0.793 \pm 0.033$

Sin2
$$β_{J/\psi KS}$$
 = 0.687 ± 0.032

Prediction (Ciuchini et al., 2000): $Sin 2\beta_{UTA} = 0.698 \pm 0.066$

PREDICTION FOR Δm_s

DIRECT MEASUREMENT: $\Delta m_s > 14.5 \text{ ps}^{-1} @ 95\% \text{ C.L.}$

LATTICE QCD vs UT FITS

15 YEARS OF $(\overline{\rho} - \overline{\eta})$ DETERMINATIONS

Such a progress would have not been possible without LATTICE QCD calculations !!