Measuring MNS, RNS, MNS/RNS or R~

Sebastien Guillot

Advisor: Robert Rutledge

Galileo Galilei Institute, Firenze March 2014

Government of Canada

Vanier Canada

Graduate Scholarships

Gouvernement du Canada

Bourses d'études supérieures du Canada Vanier

Some Reviews Lattimer and Prakash, 2007 Miller C., 2013 Heinke et al., 2013

Reminder Labels

Measuring MNS

Double neutron stars binary systems lead to precise M_{NS} measurements

Double NS system PSR B1913+16

Double-NS system PSR B1913+16 Best M_{NS} measurement $M_{PSR} = 1.4414 \pm 0.0002 M_{\odot}$ (Weisberg et al. 2005) Double-Pulsar system PSRJ0737-3039 $M_{PSRA} = 1.3381 \pm 0.0007 M_{\odot}$ $M_{PSRB} = 1.2489 \pm 0.0007 M_{\odot}$ (Kramer et al. 2006)

Double neutron stars binary systems lead to precise M_{NS} measurements

Not constraining enough!!

Neutron stars in binary systems need additional input to get M_{NS}

Additional post-Keplerian parameters, e.g. Shapiro delay, to break the degeneracies between mass ratio and inclination

> $M_{PSR} = 1.97 \pm 0.04 M_{\odot}$ (Demorest et al. 2010)

Neutron stars in binary systems need additional input to get $M_{\mbox{\scriptsize NS}}$

Independent measure of M_{comp} e.g., for WD companion to PSR J0348+0432 $M_{PSR} = 2.01 \pm 0.04 M_{\odot}$ (Antoniadis et al. 2013) Radio

Optical

Only new M_{NS} measurements larger than previous ones improve constraints on the dense matter EoS

Enough with M_{NS}, Let's measure M_{NS} and R_{NS}

X-ray

 $4\pi GcM_{\rm NS}$ $L_{\rm Edd}$

Two observables are necessary to measure both M_{NS} and R_{NS} from Type-I X-ray bursts

X-ray

M_{Ns} and R_{Ns} measurements with "known distances" are very constraining... Or are they?

Terzan 5 (Özel et al. 2009)

NGC 6440 (Güver & Özel, 2013)

NGC 6624 (Güver et al. 2010a)

M_{NS} and R_{NS} measurements with "<u>known distances</u>" are very constraining... Or are they?

M_{NS} (M_{Sun})

KS 1731–260 Distance estimated from distribution of surrounding stars (Özel et al. 2012)

4U 1608–53 Using surrounding red clump stars (Güver et al. 2010a)

R_{NS} (km)

PALI

GS

15

20

UU

SQM1

 (uns_{M}) su_{M} su_{M}

X-ray

Rapid Buster Assuming a wide range of distances (Sala et al. 2013)

When the distance is unknown, an additional observable is necessary!

$$\begin{split} M &= \frac{c^5}{4G\!(\!\kappa\!)} \left(\frac{R_\infty}{d}\right)^2 \frac{1}{F_{\rm Edd,\infty}} \frac{1}{(1+z)^3} \left[1 - (1+z)^{-2}\right]^2 \\ R &= \frac{c^3}{2\!(\!\kappa\!)} \left(\frac{R_\infty}{d}\right)^2 \frac{1}{F_{\rm Edd,\infty}} \frac{1}{(1+z)^3} \left[1 - (1+z)^{-2}\right]^2 \\ d &= \frac{c^3}{2G\!(\!\kappa\!)} \left(\frac{R_\infty}{d}\right) \frac{1}{F_{\rm Edd,\infty}} \frac{1}{(1+z)^2} \left[1 - (1+z)^{-2}\right] \end{split}$$

Gravitational redshift measured from spectral lines in EXO 0748–676 z = 0.35 (Cottam et al. 2002)

used to measure M_{NS}-R_{NS} (Ozel et al. 2006) <u>However, those lines were not confirmed</u> <u>later on (Cottam et al. 2008)</u> opacities K still depends on unknown composition

Type-I X-ray bursts are controversial for M_{NS} and R_{NS} measurements!

- Composition of the atmosphere
- Color correction factor f_c (constant or not)?
- Distance measurement used (and uncertainties)
- Analysis not self-consistent (Steiner et al. 2010)
- Short bursts do not match passive cooling theory (Suleimanov et al. 2011)

$M_{NS}-R_{NS}$ contours are fixed by relaxing $R_{touchdown} = R_{NS}$

Different constraints are obtained when using long X-ray bursts instead of short X-ray bursts, and by fitting the entire cooling tail

Sub-Eddington bursts can also be used to provide distance independent measurements

X-ray burster GS 1826-24

Now, measuring M_{NS}/R_{NS}

Analyzing the pulse profiles caused by hot spots on a rotating a neutron star can be used to measure the compactness.

X-ray

Analyzing the pulse profiles caused by hot spots on a rotating a neutron star can be used to measure the compactness.

X-ray

Or placing limits on M_{NS} and R_{NS}

Extremely fast rotating neutron star can place limits on $M_{\rm NS}$ and $R_{\rm NS}$

kHz quasi periodic oscillations could also constrain $M_{\mbox{NS}}$ and $R_{\mbox{NS}}$

Measuring Ins directly

Spin-orbit coupling measurements can be used to determine the moment of inertia

Combining I_{NS} to known M_{NS} can be very constraining!

But, the acceleration of the centre of mass of the binary system in the gravitational potential of the Galaxy is unknown!

Hypothetical I_{NS} measurement with 10% precision for double pulsar system (Lattimer & Schutz, 2005)

Measuring R_∞

$$R_{\infty} = R_{\rm NS} \left(1 + z \right) = R_{\rm NS} \left(1 - \frac{2GM_{\rm NS}}{R_{\rm NS} \ c^2} \right)^{-1/2}$$

Quiescent low-mass X-ray binaries are ideal systems for R_{∞} measurements.

Quiescent low-mass X-ray binaries are ideal systems for R_{∞} measurements.

- In <u>quiescence</u>, LMXBs have low mass accretion rate
- Thermal emission powered by <u>deep crustal heating</u>
- Surface thermal emission comes from a pure hydrogen atmosphere with L_X=10³²⁻³³ erg/sec
- Neutron star has a weak magnetic field

Non-Equilibrium Processes in the Outer Crust Beginning with 56Fe (Haensel &Zdunik 1990, 2003)

ρ (g cm⁻³)	Reaction	Δρ⁄ρ	Q (Mev/np)
1.5·10 ⁹	${}^{56}\text{Fe} \Rightarrow {}^{56}\text{Cr} - 2\text{e} + 2v_{e}$	0.08	0.01
1.1·10 ¹⁰	⁵⁶ Cr⇒ ⁵⁶ Ti - 2e- + 2v _e	0.09	0.01
7.8·10 ¹⁰	⁵⁸ Ti⇒ ⁵⁸ Ca - 2e- + 2ν _e	0.10	0.01
2.5·10 ¹⁰	⁵⁸ Ca⇒ ⁵⁸ Ar - 2e- + 2v _e	0.11	0.01
6.1·10 ¹⁰	⁵⁶ Ar⇒ ⁵² S +4n - 2e- + 2v _e	0.12	0.01

Non-Equilibrium Processes in the Inner Crust

Q

0

Reaction	X _n	(Mev/np)
⁵² S⇒ ⁴⁸ Si +6n - 2e- + 2v _e	0.07	0.09
⁴⁸ Si⇒ ⁴⁰ Mg + 6n - 2e- + 2v _e	0.07	0.09
$^{40}Mg \Rightarrow {}^{34}Ne + 6n - 2e - + 2v_{e}$		
³⁴ Ne+ ³⁴ Ne ⇒ ⁶⁸ Ca	0.29	0.47
⁶⁸ Ca⇒ ⁶² Ar +6n - 2e- + 2ν _e	0.39	0.05
⁶² Ar⇒ ⁵⁶ S + 6n - 2e- + 2v _e	0.45	0.05
⁵⁸ S⇒ ⁵⁰ Si + 6n - 2e- + 2v _e	0.50	0.06
⁵⁰ Si⇒ ⁴⁴ Mg + 6n - 2e- + 2v _e	0.55	0.07
⁴⁴ Mg⇒ ³⁸ Ne + 6n - 2e- + 2ν _e		
$^{36}Ne + ^{36}Ne \Rightarrow ^{72}Ca$		
⁶⁸ Ca⇒ ⁶² Ar + 6n - 2e- + 2v _e	0.61	0.28
$^{62}Ar \Rightarrow ^{60}S + 6n - 2e + 2v_{e}$	0.70	0.02
⁶⁰ S⇒ ⁵⁴ Si + 6n - 2e- + 2v _e	0.73	0.02
⁵⁴ Si⇒ ⁴⁸ Mg + 6n - 2e- + 2v _e	0.76	0.03
⁴⁸ Mg+ ⁴⁸ Mg ⇒ ⁹⁸ Cr	0.79	0.11
⁹⁸ Cr⇒ ⁸⁸ Ti + 8n - 2e- + 2v _e	0.80	0.01
	Peaction 5^2 S⇒ 4^6 Si +6n - 2e- + 2v _e 4^6 Si⇒ 4^0 Mg + 6n - 2e- + 2v _e 4^0 Mg⇒ 3^4 Ne + 6n - 2e- + 2v _e 3^4 Ne+ 3^4 Ne ⇒ 6^8 Ca 6^8 Ca⇒ 6^2 Ar +6n - 2e- + 2v _e 6^2 Ar⇒ 5^6 S + 6n - 2e- + 2v _e 5^6 S⇒ 5^0 Si + 6n - 2e- + 2v _e 5^6 S⇒ 5^0 Si + 6n - 2e- + 2v _e 5^0 Si⇒ 4^4 Mg + 6n - 2e- + 2v _e 4^4 Mg⇒ 3^6 Ne + 6n - 2e- + 2v _e 3^6 Ne+ 3^6 Ne ⇒ 7^2 Ca 6^8 Ca⇒ 6^2 Ar + 6n - 2e- + 2v _e 6^2 Ar⇒ 6^0 S + 6n - 2e- + 2v _e 6^2 Ar⇒ 6^0 S + 6n - 2e- + 2v _e 6^0 S⇒ 5^4 Si + 6n - 2e- + 2v _e 6^0 S⇒ 5^4 Si + 6n - 2e- + 2v _e 4^8 Mg + 4^8 Mg ⇒ 9^6 Cr 9^6 Cr⇒ 8^8 Ti + 8n - 2e- + 2v _e	$\begin{array}{cccc} & & X_n \\ & & 5^2 S \Rightarrow {}^{40} Si + 6n - 2e - + 2v_{\theta} & 0.07 \\ & {}^{40} Si \Rightarrow {}^{40} Mg + 6n - 2e - + 2v_{\theta} & 0.07 \\ & {}^{40} Mg \Rightarrow {}^{34} Ne + 6n - 2e - + 2v_{\theta} & 0.29 \\ & {}^{34} Ne + {}^{34} Ne \Rightarrow {}^{68} Ca & 0.29 \\ & {}^{68} Ca \Rightarrow {}^{62} Ar + 6n - 2e - + 2v_{\theta} & 0.39 \\ & {}^{62} Ar \Rightarrow {}^{50} Si + 6n - 2e - + 2v_{\theta} & 0.45 \\ & {}^{50} S \Rightarrow {}^{50} Si + 6n - 2e - + 2v_{\theta} & 0.50 \\ & {}^{50} Si \Rightarrow {}^{50} Si + 6n - 2e - + 2v_{\theta} & 0.55 \\ & {}^{44} Mg \Rightarrow {}^{36} Ne + 6n - 2e - + 2v_{\theta} & 0.55 \\ & {}^{44} Mg \Rightarrow {}^{36} Ne + 6n - 2e - + 2v_{\theta} & 0.61 \\ & {}^{62} Ar \Rightarrow {}^{60} S + 6n - 2e - + 2v_{\theta} & 0.61 \\ & {}^{62} Ar \Rightarrow {}^{60} S + 6n - 2e - + 2v_{\theta} & 0.70 \\ & {}^{60} S \Rightarrow {}^{54} Si + 6n - 2e - + 2v_{\theta} & 0.73 \\ & {}^{54} Si \Rightarrow {}^{48} Mg + 6n - 2e - + 2v_{\theta} & 0.76 \\ & {}^{48} Mg + 6n - 2e - + 2v_{\theta} & 0.76 \\ & {}^{48} Mg + 6n - 2e - + 2v_{\theta} & 0.76 \\ & {}^{48} Mg + 4^{8} Mg \Rightarrow {}^{96} Cr & 0.79 \\ & {}^{96} Cr \Rightarrow {}^{88} Ti + 8n - 2e - + 2v_{\theta} & 0.80 \\ \end{array}$

The thermal X-ray emission from qLMXB is powered by Deep Crustal Heating. Brown et al. 1998

The atmosphere of the neutron star in a qLMXB is composed of pure hydrogen.

A H-atmosphere thermal spectrum seen by observer

Photosphere ~ 10 cm

The thermal emission from a NS surface is modelled with atmosphere models.

Models by Zavlin et al. (1996), Heinke et al. (2006), Haakonsen et al. (2012)

NSA, NSAGRAV models Zavlin et al 1996, A&A 315 Spectral fitting of the thermal emission gives us T_{eff} and $(R_{\infty}/D)^2$

$$R_{\infty} = R_{\rm NS} \left(1 - \frac{2GM_{\rm NS}}{R_{\rm NS} \ c^2}, \right)^{-1/2}$$

NS H-atmosphere model parameters are:

- Effective temperature kT_{eff}
- Mass M_{NS} (M_{\odot})
- Radius R_{NS} (km)
- Distance D (kpc)

Neutron stars properties are extracted from the spectra.

Globular clusters host an overabundance of LMXB systems...

Optical Image

> ...and they have wellmeasured distances.

29 quiescent LMXBs are known within globular clusters of the Milky Way.

Host Globular Cluster	Distance (kpc)	Proxy for Absorption N _H (10 ²² cm ⁻²)	Number of qLMXBs	"Useful"	Observational Difficulties	Need Chandra
ωCen	5.3	0.09			her dischielten (Sector an	NO
MI3	7.7	0.01			ent finite and the state	NO
M28	5.5	0.26	s "Nes		Moderate pile-up	YES
NGC 6304	6.0	0.27				YES
NGC 6397	2.5	0.14				YES
NGC 6553	6.0	0.35			NEEDS TO BE CONFIRMED	YES
47 Tuc	4.5	0.03	2 (+3?)		Important pile-up	YES
M30	9.0	0.03	I		Large distance	YES
M80	10.3	0.09	2		Large distance	YES
NGC 362	8.6	0.03	1		Large distance	YES
NGC 2808	9.6	0.82	I		Large distance and $N_{\rm H}$	YES
NGC 3201	5.0	1.17	I		Very Large N _H	NO
NGC 6440	8.5	0.70	8		Large distance and $N_{\rm H}$	YES
Terzan 5	8.7	I.20	4		Large distance and N_H	YES

Unconstrained R_∞ measurements

qLMXBs inside globular clusters are observed with Chandra, and sometimes with XMM-Newton.

Chandra X-Ray Observatory

I" angular resolution

6" angular resolution 4x effective area of Chandra

XMM-Newton

X-ray

In spectral imaging mode, photons are time-tagged with ~0.1-3sec resolution, and energy resolution of about 150eV at 1keV

Quiescent LMXBs are routinely used for M_{NS} - R_{NS} measurements, but only place weak constraints on the dense matter EoS.

In Guillot et al (2013), we follow a simplified parametrization for the EoS.

Equations of state consistent with ~ 2M_{sun} are those described by a constant radius for a wide range of masses.

<u>We assume that</u>

all neutron stars have the same radius

We simultaneously fit the spectra of 5 qLMXBs with H-atmosphere model

One radius to fit them all!

Five parameters per target:

 T_{eff} , M_{NS} , N_{H} , distance, power-law component

Guillot et al. 2013

Targeted Globular Clusters

Our most conservative radius measurement relies on the least number of assumptions.

Our most conservative R_{NS} measurement includes most sources of uncertainty

We included the uncertainties linked to:

- Galactic absorption
- Distances of the host clusters
- Possible power-law component
- Calibration of X-ray detectors

There are analysis assumptions

NS surface emits isotropically

Negligible magnetic field

Guillot et al. 2013

Our most conservative radius measurement places important constraints on the dense matter equation of state.

X-ray

R_{NS} in the 7-11 km range at the 99%-confidence level Guillot et al. 2013

What about thermally-cooling isolated neutron stars?

Only RX J 185635-3754 is remotely useful for this

Problems:

• What is the distance? d = 51-177 pc

What is the composition?
What are the effects of the magnetic field?

Combining previous results...

M_{NS} - R_{NS} contours can be combined to parametrize the EoS.

+ M-R contour of X-ray burst KS1731-260 Özel et al. 2012 + M-R contour of qLMXB in NGC6397 from Guillot et al. 2011

X-ray

M_{NS}-R_{NS} contours can be combined to parametrize the EoS.

R_{NS} is roughly constrained between 10 and 13 km for a wide range of masses,

R_{NS} mostly insensitive to the exclusion of extremum contours (like MI3, or 47Tuc), or to the exclusion of type-I X-ray burst sources

Steiner et al 2012

X-ray

Summary of methods

Measurement	Type of neutron star	Limitations	
M _{NS}	Radio timing of pulsars	Only "higher than before" M _{NS} are useful	
M_{NS} and R_{NS}	Type-I X-ray bursts	Modelling issues	
Limits on M _{NS} and R _{NS}	Millisecond radio pulsars	Only "higher than before" f _{spin} are useful	
	kHz QPOs (X-ray)	Model assumptions	
I _{NS}	Radio timing of double NS systems	Difficult measurement	
R _{NS} and M _{NS} /R _{NS}	Pulse-profile analysis (X-ray)	Need high S/N pulse profiles and several assumptions	
R∞	Quiescent low-mass X-ray binaries	Need high S/N spectra Not useful individually	
	Isolated neutron stars (X-ray)	Distance? Magnetic fields?	

See talks during conference March 24-28, by:

- C. Heinke: "Probing the neutron star equation of state through X-ray spectroscopy"
- D. Chakrabarty: "Probing the neutron star equation of state through X-ray timing"
- Z.Arzoumanian: "The Neutron Star Interior Composition Explorer: An X-ray Astrophysics Facility Dedicated to Neutron Star Science"
- M. Chakraborty: "X-ray Bursts from Accreting Neutron star LMXBs"
- H. Stiele: "Millihertz Quasi-periodic Oscillations in 4U 1636-536: Pulse Profile and Energy Spectrum"