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Mean field approximation has served us for over 100 years
(Curie 1895, Weiss 1907) giving hints about the behavior of

/!

systems with short range interactions in high dimensions

\ systems with long range interactions in any dimension

Developed originally for equilibrium systems (ordered and disordered),
it has been applied more recently to nonequilibrium dynamics

Here, I shall employ the Macroscopic Fluctuation Theory of the
Rome group (Bertini-De Sole-Gabrielli-Jona-Lasinio-Landim)
to describe fluctuations around mean field approximation




Informally, the Roman theory may be viewed as a version of Freidlin-

Wentzell large deviations theory applied to stochastic lattice gases
(zero range, SSEP, WASEP, ABC, ...)

We shall keep a similar point of view in application to general
non-equilibrium d-dimensional diffusions with mean-field coupling:

dx,,
dt

= X(t,z,) + % Y Y (#Zn,Tm) + > Xa(t, n) 0 Npa(t)

m=1 a e
independent

white noises

with Y (z,y) = —Y(y,z) and o for the Stratonovich convention

Based on joint work with F. Bouchet and C. Nardini



e Prototype model:

N planar rotators with angles 6,, and mean
field coupling, undergoing Langevin dynamics

do J &
Tn P —Hsing, — = Y sin(0n — 0, 2kp T N (t
gy sin Nm:1sm( ) + B/ﬂ (t)

independent
white noises

Shinomoto-Kuramoto, Prog. Theor. Phys. 75 (1986),

Giacomin-Pakdaman-Pellegrin-Poquet, SIAM J. Math. Anal. 44 (2012)

e Close cousin of the celebrated Kuramoto (1975) model for

synchronization (with F — F),, random and 7 = 0 ) whose

versions were recently studied by the long-range community
(papers by Gupta-Campa-(Dauxois)-Ruffo)

e Originally thought as a model of cooperative behavior of coupled

nerve cells

e Close to models of depinning transition in disordered elastic media




e¢ The Shinomoto-Kuramoto system

do,

. J o
E = F — H sinf,, — N Z sm(@n —Qm) + 2chrnn(t)

m=1

may also be re-interpreted as a classical ferromagnetic XY model
with a mean-field coupling of planar spins S,

e FF=10 case (equilibrium):

in constant external magnetic field H = (H, O)

—

S, = S(cos 0,,,sin Hn)

e F# 0 case (non-equilibrium):

in rotating external magnetic field H = H( cos(F't), — Sin(Ft))
gn _ S(COS(@n o Ft), sin(@n o Ft)) i.e. spins are viewed in

the co—moving frame




Macroscopic quantities of interest in the general case

dx,,

1 N

empirical density

pn(t ) =

% ; §(x — (1))

empirical current

dx, (1)
dt

1 N
I ) = — r — xTny(t)) o
vt @) = < > 8z — 2a(®))

They are related to each other by the continuity equation:

Macroscopic Fluctuation Theory applies to their large
deviations at N > O(1l) around N = oo mean field




e Effective diffusion in the density space

e Substitution of the equation of motion for dmgt<t> and the passage

to the It6 convention give:

In(t, )= Z(S(:U—xn(t))odxn(t)

where

— ij(tax) + CPN(taaj)

jp — p()? + Y *p) — DV,O <— quadratic in p

V- -X.)X., D=%}>X

Y(,z,y)p(t,y)dy




e Conditioned w.r.t. p,, the noise CPN (t,z) has the same law

as the white noise \/2N—1D(t, x)py\(t,x) £(t,x) where

(6'(t,2) €7 (s,y)) = 67 6(t — 5) (a — v)

Follows from the fact that for functionals ®[p] of (distributional)

densities, the standard stochastic differential calculus gives

c;lt [pNt]> - <(£’th))[pNt]>

(exi®ll = - / O Vet a) da

VVy (D(t, x) p(t,x) o(x — y)) dx dy

/ 5/)(:6) 5p(y)

is the generator of the (formal) diffusion in the space of densities

evolving according to the It6 SDE

Otp + V- (jp + V2N-1Dp¢) =0




e /N = oo closure

e When N — oo, the evolution equation for the empirical density
reduces to Nonlinear Fokker-Planck Equation (NFPE)

Otp = =V -j, = —V-(p(f(—i—Y>kp) —DVp)

—> a nonlinear dynamical system in the space of densities
(autonomous or not)

If ¥ =0 then the N = oo empirical density coincides with
instantaneous PDF of identically distributed processes z, (t) and
NFPE reduces to the linear Fokker-Planck equation for the latter

The N = oo phase diagram of an autonomous system with
mean-field coupling is obtained by looking for stable stationary
and periodic solutions of NFPE and their bifurcations

e In principle, more complicated dynamical behaviors may also arise




e /N = oo phases of the rotator model

e Stationary solutions of NFPE satisfy 0pj,(0) =0, i.e.

) <p(9) (F _ Hsin(8) — J?fwsin(e —9) p(9) cw) - kBTﬁgp(9)>
0 N

= s51n 6 cos 93 —cos 0 sin 9

= Op (p(@)(F— (H 4+ x1)sin 0 + x4 cos@) — kBTﬁgp(9)> =0

27 27
with  z1 = J | cos? p(9) dv, ro = J [ sin® p(9)
0 0

and the solution

FO+(H+xq1)cos 0+x9 sin 6 6)/4_27T FY+(H+xq1) cos 9+x9 sin ¥
6

p(0) = - © kBT S kT dy

e The coupled equations for 2 variables x1,x2 may be easily analyzed




¢ N = oo phase diagram for the rotator model for F # 0
(Shinomoto-Kuuramoto 1984, Sakaguchi-Shin.-Kur. 1986,

Bo danov'

H akens ,/2“<;’

periodic
disordered

0 . ks T

e For H = 0 the periodic phase coincides with the ordered low-temp.

equilibrium phase viewed in the co-rotating phase

¢ When F' 0 the periodic phase reduces to the equilibrium
disordered phase at H = +0

e Global properties of the NFPE dynamics for the rotator model
have been recently studied by (Giacomin and collaborators




Fluctuations for /N large but finite

e Formally, domain of applications of the small-noise Freidlin-Wentzell

large deviations theory

e In Martin-Rose-Siggia formalism, the joint PDF of empirical

density and current profiles is

(81p— w1805 —in]) = (8[Bep+ V51805 — o — Co] )

= (8[0p+ V- 4] /eiNfa’(j_jp_Cp)Da>
o 9os] [ I XS0,

6[0¢p + V- 5] e~ 1IN JU=ip) (D) (i —ip)

Y

where the rate function(al)

1 . . —1, . . . .
: )0 —73p)(pD j—j,)dtder if Op+V-5=0
I[p,]] — { 4f( P)( ) ( p) t

o0 otherwise



e Large-deviations rate function(al)s for empirical densities or empirical

currents only

<5[Q—PN]> N e~ NI <5[j—jN]> N

— OO

—NZI[j]

are obtained by the contraction principle

= min Zlp,5] = 1 [(B1p+V3,)(=V - pDV) ™ (00p+V-j,) dtd

min Z[p, ]] with appropriate boundary limiting conditions for p

e That empirical densities have dynamical large deviations with rate

function given above was proven by Dawson-Gartner in 1987

e To our knowledge, the large deviations of currents for mean field

models were not studied in math literature

e The formulae above have similar form as for the macroscopic density
and current rate functions in stochastic lattice gases studied by

the Rome group and B. Derrida with collaborators




e Elements of the (Roman) Macroscopic Fluctuation Theory

e Instantaneous fluctuations of empirical densities

e Time t distribution of the empirical density

—NF eadin
Pt[@] — <5[Q—PNt]> ~ € Sle N WIKBdtegrm

satisfies the functional equation 0;P; = ELtPt which reduces
for the large-deviations rate function F;:[p] to the functional
Hamilton-Jacobi Equation (HJE)

atft[g]+/jp-v5];tg[g] +/<v 5];@[@) .pD<v5];tQ[Q]> _ g

e In a stationary state the latter becomes the time-independent
HJE for the rate function F|g]




e Relation between instantaneous and dynamical rate fcts

e By contraction principle

Filo] = min (Feglor] + Tig 110))

pt=e0
e In the stationary state this reduces to

Flo| = min

p—oo:pst
POZQ

where p.: is the stable stationary solution of NFPE

minimizing F|[o]

e The minimum on the right is attained on the most probable

(Onsager-Machlup) trajectory P creating fluctuation p

(14 29
from the “vacuum” pg¢




e Time reversal

e One defines the time-reversed current j’p(t,:c) by

; , OF
Y
where p*(t,x) = p(—t,x) and j*(t,x) = —j(—t,x) and

the time-reversed process in the density space by Ito eqn.

8p” + V- (i + V2N-1D'p' ¢) =0

with D’ (t,z) = D(—t, x)

e (Gallavotti-Cohen-type) Fluctuation Relation

I[t0>t1][p’j] + Figlotg] — Feqlpey] = I[/—tl,—to][p*aj*]

follows from the comparison of the direct and reversed rate
functions and the HJE for F;




¢ Generalized Onsager-Machlup Relation

¢ Upon minimizing over currents in a stationary state, Fluctuation
Relation reduces to

Tty .t1110) + Flotg] — Floty] = Zi_sy,—eqlP”]

e For to = —00, pty =pst and t1 =0, py; = ¢ the minimum

of the LHS is attained on trajectory P and is zero

e It must be equal to the minimum of the RHS that is realized
on trajectory ,0/\ that describes the decay of fluctuation o to

vacuum ps; and satisfies time-reversed NFPE 8tp'\+v-j;, =0
N\

Hence the generalized Onsager-Machlup relation:

p/(t,ﬂi) — p/\k (—t,x)




e Solutions for F; in special cases

e For decoupled systems with Y = 0 and independent z, (0)
all distributed with initial PDEF pg

o(x) —1 ;
o _ ] d = k S relative
t[@] / Q(x) n pt(x) L B [QH'Ot] — entropy

where p; solves the linear FFP equation with initial condition pg

(Sanov Theorem)

For stationary equilibrium evolutions with X (z) = —M (2)VU (z),
Y(x,y) = —M(x)(VV)(xz —vy) and diffusivity and mobility
matrices related by the Einstein relation D(x) = kT M (x)

F o] :/0(33) (k;T (U(x)—k%/V(x, y) p(y) dy) +In Q(ﬂ:)) dx + const.

i.e. kpT F =FE — TS is the equilibrium mean-field free energy

(:> a well known large deviations interpretation of the latter)




e Perturbative calculation of the non-equilibrium
free energy o]

e F[o] may be expanded around its minimum ps; that is a stable
stationary solution of NFPE

k
Fle) = > F"lol
k=1
where o = o0 — ps+ and

1

Frlel = (k+1)! /(bk(xo""7$n)5(ﬂ30)"'§(9€k)d9€0"'dﬂik

with qbk symmetric in the arguments and fixed by demanding
that [ ¢"(z0,%1,...,2k)dxg =0

k
Kernels ¢ of ]—“k[@ may be represented in terms of a sum over
tree diagrams that solves the recursion obtain by substituting the

expansion into the stationary HJE




e The recursion has for k£ > 1 the form:

/ﬁchcb—léFk[Zﬂ :/
60

where R is the linearization of the nonlinear Fokker-Planck
operator around ps; and

(@3) (z) = / b (z,9) B(y) dy

solves the operator equation
R® '+ & 'R' =2V .pDV

(coming from the stochastic Lyapunov eqn.) and determines F'[g]




e Large deviations for currents

e Following the Romans, one defines for time-independent current J(x)

1
lim — min Lio ~11p, g
T—oo T p(t,x),j(t,z) [0 ][,0 ]]

J(z)=1 f(;_j(t,x)dt
This is the rate function of large deviations for the temporal means

J of current fluctuations

In the stationary phase, for J close to js¢+ = j,.,, the minimum

is attained on time independent (p,j) so that

min 1 [(J —j,)(pD)""(J —j,)dz if V-J=0
I [J] = p(x)

0
o0 otherwise

This does not necessarily hold for all J




e In the periodic phase, it is more natural to fix the periodic means:

1
lim — min Lio +11p, 9
T—00 T p(t,z), j(t,x) [0, ][p ]]

J(m):% fgsin(wt—l—cp) j(t,x) dt

where w is a multiple of the basic frequency

e¢ New phenomenon that does not occur in equilibrium:

At the 279 order non-equilibrium phase transitions the

covariance of temporal averages of current fluctuations

around js; on the scale NLT diverges in special directions

— amplification of current fluctuations around such transitions




e In other words, at such transition, the variance of the random variable

N T
S [A(t, 2, (1)) 0 doy () — <>
il (0

VNt

(note the central-limit-like rescaling) diverges when N,7T — oo for
some time-independent or periodic functions A(t, x)

e A somewhat related enhancement of fluctuations at the saddle-node
transition of the rotator model was observed numerically and
analyzed in Ohta-Sasa, Phys. Rev. E 78, 065101(R) (2008),
see also Iwata-Sasa, Phys. Rev. E. 82, 011127 (2010)

e 'The simplest way to access the above variance is via the calculation

of its inverse by expanding Io(J) or I, ,(J) to the 29

order
around their minima




e To the 2™¢ order around (jst, pst) the rate functional
Zlp, 3l = 5 S (G = 3o)(pD) " (4 — jp) is

. . 1 . — .
T(pas + 8p.des + 87) = 5 [(353 = S8p)(prD) ™ (35 — S5p)

for 0t6p+V -6j = 0 where S(z.y) = 5;5((;6)) ‘p:p ¢

The linearized Fokker- Planck operatoris R = -V -85

e At critical points corresponding to a saddle-node or a pitchfork
bifurcations, R has a zero mode dpg(z) and then for

(6p,05) = (6po, Sépo)

0top+V -85 = V- -80pg = —Ropg =0
05 — Sdép = 0

so that Z[ps: + 6p, jst + 6j], and consequently I [js¢ + &4],

vanish to the 2°¢ order on such a perturbation




e At critical points corresponding to a Hopf bifurcation, R has

complex conjugate modes dpp(x), dpo(x) with eigenvalues +iw
and then for (dp,d5) = Re (eiw(t+t0)5,00, ew(tHO)S(Spo) again

0top+V-9057 =0 and 03 — Sop = 0

and again Z[pst+ + 6p, jst + 0j], and consequently I, ,[Re ewSépo]
for any phase 1) vanish to the 29 order

2I1d

e Vanishing of Iy or I, ,, to the order around js; means that

the variance of current fluctuations in the corresponding direction
1

diverges on the central-limit scale ——

e The reason is that such fluctuations are realized in N = oo dynamics

e In equilibrium, £ cannot have non-zero imaginary eigenvalues and
for its zero modes dpg, one also has Sdpp = 0, unlike in nonequili-

brium where 07 = Sdpg represents a non-trivial current fluctuation




Example of the rotator model for J =1, F = 0.5

stationary

F=101.13

—] el
! T=026 SADDLE NODE

g€ BIFURCATION

periodic

kg T

Right figure: the variance 1/I/'[js+] of current fluctuations as a function

of magnetic field h in log-lin plot for kg1 = 0.2

o 1/I[jst] diverges at the saddle-node bifurcation for h = h.,. ~ 0.56
(the points for h < h., correspond to an unstable stationary branch

within the periodic phase)




stationary

nod®

periodic

kg T

Right figure: the variance 1/I['[js:] of the current fluctuations as a

function of temperature kg7 in lin-lin plot for h = 0.2

e 1/I/'[jst] is regular near the Hopf bifurcation at 7' = 1., ~ 0.5
(again, the T < T, curve corresponds to an unstable stationary

branch within the periodic phase)




e Comparison to finite /N simulations

e Divergence of the variance of current fluctuations around the saddle-
node bifurcation is difficult to see in DNS as it occurs in a narrow

window of h

e Its theoretical behavior around the Hopf bifurcation is easier to repro-
duce for finite N

”lheor‘y—currcnlrl'luml}lA—F.S.ixl' nl
"N100-H.4-F 5-J1-T1.3820-dt0.01-Nint1000-Nsave 1000-noh 10000-adHO-ad T-0.000 1/e-prova-tau 100-Cfluct” u 3:
"N100-H.4-F 5-J1-T.6820-dt0.01-Nint 1000-Nsave 1000-n0h10000-ad HO-ad T-0.00003/c-prova-tau100-Cfluct” u 3:
"N100-H 4-F 5-J1-T.6820-dt0.01-Nint 1000-Nsave 1000-n0h 10000-adHO-ad T-0.00003/c-prova-tau1000-Cfluct” u 3:

|

J! | sI\,l ‘| | g
,. a:h?ﬂ!@,%%.w*m%%jw "y
.‘ ; | A”

1fH :I,‘»j_ ;“):I\I\I IA
/ ™

Variance of current fluctuations over times = = 100 and 7 = 1000
for 10* histories of N = 100 rotators compared to the theoretical
N = oo, T = o0 curve




Conclusions and open problems

Diffusions with mean-field coupling are a good laboratory for non-
equilibrium statistical mechanics

At N = oo they are described by the non-linear Fokker-Planck
equation and may exhibit interesting phase diagrams with dynamical
phase transitions.

For large but finite N the large deviations of their empirical densities
and currents are described by rate functionals similar to those for
stochastic lattice gases, governed by Macroscopic Fluctuation Theory

In particular, the non-equilibrium free energy solves a functional Hamilton
-Jacobi equation and may be studied in perturbation theory

Unlike in equilibrium, the covariance of current fluctuations diverges in
specific directions at the 274 grder transition points of such systems

Similar methods should apply to underdamped diffusions with mean-field
coupling leading at N = co to Vlasov- Fokker- Planck equation.

We hope also to apply them to randomly forced 2D Navier- Stokes eqns.




