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• Mean field approximation has served us for over 100 years

(Curie 1895, Weiss 1907) giving hints about the behavior of

systems with short range interactions in high dimensions
ր
ց

systems with long range interactions in any dimension

• Developed originally for equilibrium systems (ordered and disordered),

it has been applied more recently to nonequilibrium dynamics

• Here, I shall employ the Macroscopic Fluctuation Theory of the

Rome group (Bertini-De Sole-Gabrielli-Jona-Lasinio-Landim)

to describe fluctuations around mean field approximation



• Informally, the Roman theory may be viewed as a version of Freidlin-

Wentzell large deviations theory applied to stochastic lattice gases

(zero range, SSEP, WASEP, ABC, ...)

• We shall keep a similar point of view in application to general

non-equilibrium d-dimensional diffusions with mean-field coupling:

dxn

dt
= X(t, xn) +

1

N

N∑

m=1

Y (t, xn, xm) +
∑

a

Xa(t, xn) ◦ ηna(t)
ր

independent

white noises

with Y (x, y) = −Y (y, x) and ◦ for the Stratonovich convention

• Based on joint work with F. Bouchet and C. Nardini



• Prototype model : N planar rotators with angles θn and mean
field coupling, undergoing Langevin dynamics

dθn

dt
= F −H sin θn −

J

N

N∑

m=1

sin(θn − θm) +
√

2kBT ηn(t)
ր

independent

white noises

Shinomoto-Kuramoto, Prog. Theor. Phys.75 (1986),

· · · · · · ,
Giacomin-Pakdaman-Pellegrin-Poquet, SIAMJ.Math.Anal.44 (2012)

• Close cousin of the celebrated Kuramoto (1975) model for
synchronization (with F → Fn random and T = 0 ) whose
versions were recently studied by the long-range community
(papers by Gupta-Campa-(Dauxois)-Ruffo)

• Originally thought as a model of cooperative behavior of coupled
nerve cells

• Close to models of depinning transition in disordered elastic media



• The Shinomoto-Kuramoto system

dθn

dt
= F −H sin θn −

J

N

N∑

m=1

sin(θn − θm) +
√

2kBT ηn(t)

may also be re-interpreted as a classical ferromagnetic XY model

with a mean-field coupling of planar spins ~Sn

• F = 0 case (equilibrium) :

in constant external magnetic field ~H =
(
H, 0

)

~Sn = S
(
cos θn, sin θn

)

• F 6= 0 case (non-equilibrium) :

in rotating external magnetic field ~H = H
(
cos(Ft),− sin(Ft)

)

~Sn = S
(
cos(θn − Ft), sin(θn − Ft)

)
( i.e. spins are viewed in
the co−moving frame )

S

θn

n

H

S

θ
n

−FtnH

F = 0 F 6= 0



• Macroscopic quantities of interest in the general case

dxn

dt
= X(t, xn) +

1

N

N∑

m=1

Y (t, xn, xm) +
∑

a

Xa(t, xn) ◦ ηna(t)

• empirical density

ρ
N
(t, x) =

1

N

N∑

n=1

δ(x− xn(t))

• empirical current

j
N
(t, x) =

1

N

N∑

n=1

δ(x− xn(t)) ◦
dxn(t)

dt

• They are related to each other by the continuity equation:

∂tρN + ∇ · j
N

= 0

• Macroscopic Fluctuation Theory applies to their large

deviations at N ≫ O(1) around N =∞ mean field



• Effective diffusion in the density space

• Substitution of the equation of motion for dxn(t)
dt

and the passage

to the Itô convention give:

j
N
(t, x)=

1

N

N∑

n=1

δ(x− xn(t)) ◦
dxn(t)

dt
= jρ

N
(t, x) + ζρ

N
(t, x)

where

jρ = ρ
(
X̂ + Y ∗ ρ

)
− D∇ρ ←− quadratic in ρ

with

X̂ = X − 1
2

∑
a

(
∇ ·Xa

)
Xa , D = 1

2

∑
a

Xa ⊗Xa

(Y ∗ ρ)(t, x) ≡
∫
Y (t, x, y) ρ(t, y) dy

and

ζρ
N
(t, x) =

1

N

N∑

n=1

∑

a

Xa(t, x) δ
(
x− xn(t)) ηna(t)



• Conditioned w.r.t. ρ
N
, the noise ζρ

N
(t, x) has the same law

as the white noise
√

2N−1D(t, x)ρ
N
(t, x) ξ(t, x) where

〈
ξ
i
(t, x) ξ

j
(s, y)

〉
= δ

ij
δ(t− s) δ(x− y)

• Follows from the fact that for functionals Φ[ρ] of (distributional)

densities, the standard stochastic differential calculus gives

d

dt

〈
Φ[ρ

Nt
]
〉

=
〈 (
L
Nt

Φ
)
[ρ
Nt

]
〉

where
(
L
Nt

Φ
)
[ρ] = −

∫
δΦ[ρ]

δρ(x)
∇·jρ(t, x) dx

+
1

N

∫
δ2Φ[ρ]

δρ(x) δρ(y)
∇x∇y

(
D(t, x) ρ(t, x) δ(x− y)

)
dx dy

is the generator of the (formal) diffusion in the space of densities

evolving according to the Itô SDE

∂tρ + ∇ ·
(
jρ +

√
2N−1Dρ ξ

)
= 0



• N = ∞ closure

• When N →∞, the evolution equation for the empirical density

reduces to Nonlinear Fokker-Planck Equation (NFPE)

∂tρ = −∇ · jρ = −∇ ·
(
ρ
(
X̂ + Y ∗ ρ

)
− D∇ρ

)

→ a nonlinear dynamical system in the space of densities

(autonomous or not)

• If Y = 0 then the N =∞ empirical density coincides with

instantaneous PDF of identically distributed processes xn(t) and

NFPE reduces to the linear Fokker-Planck equation for the latter

• The N =∞ phase diagram of an autonomous system with

mean-field coupling is obtained by looking for stable stationary

and periodic solutions of NFPE and their bifurcations

• In principle, more complicated dynamical behaviors may also arise



• N = ∞ phases of the rotator model

• Stationary solutions of NFPE satisfy ∂θjρ(θ) = 0 , i.e.

∂θ

(
ρ(θ)

(
F −H sin(θ)−J

2π∫
0

sin(θ − ϑ) ρ(ϑ) dϑ
)
−kBT ∂θρ(θ)

)

տ
= sinθ cosϑ−cos θ sinϑ

= ∂θ

(
ρ(θ)

(
F − (H + x1) sin θ + x2 cos θ

)
− kBT ∂θρ(θ)

)
= 0

with x1 = J
2π∫
0

cosϑ ρ(ϑ) dϑ , x2 = J
2π∫
0

sinϑ ρ(ϑ)

and the solution

ρ(θ) =
1

Z
e
Fθ+(H+x1) cos θ+x2 sin θ

kBT

θ+2π∫

θ

e
−
Fϑ+(H+x1) cosϑ+x2 sinϑ

kBT dϑ

• The coupled equations for 2 variables x1, x2 may be easily analyzed



• N =∞ phase diagram for the rotator model for F 6= 0

(Shinomoto-Kuuramoto 1984, Sakaguchi-Shin.-Kur. 1986, ... )
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• For H = 0 the periodic phase coincides with the ordered low-temp.

equilibrium phase viewed in the co-rotating phase

• When F ց 0 the periodic phase reduces to the equilibrium

disordered phase at H = +0

• Global properties of the NFPE dynamics for the rotator model

have been recently studied by Giacomin and collaborators



• Fluctuations for N large but finite

• Formally, domain of applications of the small-noise Freidlin-Wentzell

large deviations theory

• In Martin-Rose-Siggia formalism, the joint PDF of empirical

density and current profiles is
〈
δ
[
ρ− ρN

]
δ
[
j − jN

]〉
=

〈
δ
[
∂tρ+∇ · j

]
δ
[
j − jρ − ζρ

]〉

=
〈
δ
[
∂tρ+∇ · j

] ∫
e
iN

∫
a·(j−jρ−ζρ)Da

〉

= δ
[
∂tρ+∇ · j

] ∫
e
iN

∫
a·(j−jρ)−N

∫
a·ρD a Da

∼ δ
[
∂tρ+∇ · j

]
e
− 1

4
N

∫
(j−jρ)(ρD)−1(j−jρ) ∼ e

−NI[ρ,j]

where the rate function(al)

I[ρ, j] =

{
1
4

∫
(j − jρ)(ρD)−1(j − jρ) dtdx if ∂tρ+∇ · j = 0

∞ otherwise



• Large-deviations rate function(al)s for empirical densities or empirical

currents only

〈
δ[̺− ρN ]

〉
∼

N→∞
e−NI[ρ]

〈
δ[j − jN ]

〉
∼

N→∞
e−NI[j]

are obtained by the contraction principle

I[ρ] = min
j
I[ρ, j] = 1

4

∫ (
∂tρ+∇·jρ

)
(−∇ · ρD∇)

−1(
∂tρ+∇·jρ

)
dtdx

I[j] = min
ρ
I[ρ, j] with appropriate boundary limiting conditions for ρ

• That empirical densities have dynamical large deviations with rate

function given above was proven by Dawson-Gartner in 1987

• To our knowledge, the large deviations of currents for mean field

models were not studied in math literature

• The formulae above have similar form as for the macroscopic density

and current rate functions in stochastic lattice gases studied by

the Rome group and B. Derrida with collaborators



• Elements of the (Roman) Macroscopic Fluctuation Theory

• Instantaneous fluctuations of empirical densities

• Time t distribution of the empirical density

Pt[̺] =
〈
δ[̺− ρ

Nt
]
〉
∼ e−NFt[̺] ← leading

WKB term

satisfies the functional equation ∂tPt = L†

Nt
Pt which reduces

for the large-deviations rate function Ft[̺] to the functional

Hamilton-Jacobi Equation (HJE)

∂tFt[̺] +
∫
jρ · ∇

δFt[̺]
δ̺

+

∫ (
∇ δFt[̺]

δ̺

)
· ρD

(
∇ δFt[̺]

δ̺

)
= 0

• In a stationary state the latter becomes the time-independent

HJE for the rate function F [̺]



• Relation between instantaneous and dynamical rate fcts

• By contraction principle

Ft[̺] = min
ρt=̺

(
Ft0 [ρt0 ] + I[t0,t][ρ]

)

• In the stationary state this reduces to

F [̺] = min
ρ
−∞

=ρst
ρ0=̺

I[−∞,0][ρ]

t8 0

ρ

ρ
st

ρ

−

where ρst is the stable stationary solution of NFPE

minimizing F [̺]

• The minimum on the right is attained on the most probable

(Onsager-Machlup) trajectory ρ
ր

creating fluctuation ̺

from the “vacuum” ρst



• Time reversal

• One defines the time-reversed current j′ρ(t, x) by

j
′∗
ρ∗ = jρ + 2ρD∇ δFt[ρt]

δ̺

where ρ∗(t, x) = ρ(−t, x) and j∗(t, x) = −j(−t, x) and

the time-reversed process in the density space by Itô eqn.

∂tρ
′

+ ∇ ·
(
j
′
ρ′ +

√
2N−1D′ρ′ ξ

)
= 0

with D′(t, x) = D(−t, x)

• (Gallavotti-Cohen-type) Fluctuation Relation

I[t0,t1][ρ, j] + Ft0 [ρt0 ]−Ft1 [ρt1 ] = I′[−t1,−t0][ρ
∗, j∗]

follows from the comparison of the direct and reversed rate

functions and the HJE for Ft



• Generalized Onsager-Machlup Relation

• Upon minimizing over currents in a stationary state, Fluctuation

Relation reduces to

I[t0,t1][ρ] + F [ρt0 ] − F [ρt1 ] = I′[−t1,−t0][ρ
∗
]

• For t0 = −∞, ρt0 = ρst and t1 = 0, ρt1 = ̺ the minimum

of the LHS is attained on trajectory ρ
ր

and is zero

• It must be equal to the minimum of the RHS that is realized

on trajectory ρ′
ց

that describes the decay of fluctuation ̺ to

vacuum ρst and satisfies time-reversed NFPE ∂tρ
′

ց
+∇·j′

ρ′
ց

= 0

• Hence the generalized Onsager-Machlup relation:

ρ
ր

(t, x) = ρ
′

ց
(−t, x)

t8 0

ρ

ρ
st

ρ

−

8t0

ρ
st

ρ’ρ



• Solutions for Ft in special cases

• For decoupled systems with Y = 0 and independent xn(0)

all distributed with initial PDF ρ0

Ft[̺] =

∫
̺(x) ln

̺(x)

ρt(x)
dx ≡ k

−1
B S[̺‖ρt] ← relative

entropy

where ρt solves the linear FP equation with initial condition ρ0

(Sanov Theorem)

• For stationary equilibrium evolutions with X̂(x) = −M(x)∇U(x),

Y (x, y) = −M(x)(∇V )(x− y) and diffusivity and mobility

matrices related by the Einstein relation D(x) = kBTM(x)

F [̺] =

∫
̺(x)

(
1

kBT

(
U(x)+

1

2

∫
V (x, y) ρ(y) dy

)
+ln (̺x)

)
dx+ const.

i.e. kBT F = E − TS is the equilibrium mean-field free energy

(⇒ a well known large deviations interpretation of the latter)



• Perturbative calculation of the non-equilibrium

free energy F [̺]

• F [̺] may be expanded around its minimum ρst that is a stable

stationary solution of NFPE

F [̺] =

∞∑

k=1

Fk[˜̺]

where ˜̺= ̺− ρst and

Fk[˜̺] =
1

(k+1)!

∫
φk(x0, . . . , xn) ˜̺(x0) · · · ˜̺(xk) dx0 · · · dxk

with φk symmetric in the arguments and fixed by demanding

that
∫
φk(x0, x1, . . . , xk) dx0 = 0

• Kernels φ
k

of Fk[˜̺] may be represented in terms of a sum over

tree diagrams that solves the recursion obtain by substituting the

expansion into the stationary HJE



• The recursion has for k > 1 the form:

∫
˜̺ΦRΦ

−1 δFk[˜̺]
δ ˜̺

=

∫
˜̺
[(
Y ∗ ˜̺) · ∇ δF

k−1[˜̺]
δ ˜̺

+

k−1∑

l=1

(
∇ δF

l[̺]

δ̺

)
·D

(
∇ δF

k−l[̺]

δ̺

)]

+

k−1∑

l=2

∫ (
∇ δF

l[˜̺]
δ ˜̺

)
· ρstD

(
∇ δF

k+1−l[˜̺]
δ ˜̺

)

where R is the linearization of the nonlinear Fokker-Planck

operator around ρst and

(
Φ˜̺

)
(x) =

∫
φ
1
(x, y) ˜̺(y) dy

solves the operator equation

RΦ−1 + Φ−1R† = 2∇ · ρD∇

(coming from the stochastic Lyapunov eqn.) and determines F1[˜̺]



• Large deviations for currents

• Following the Romans, one defines for time-independent current J(x)

I
0
[J] = lim

τ→∞

1

τ
min

ρ(t,x), j(t,x)

J(x)= 1
τ

∫ τ
0
j(t,x) dt

I[0,τ][ρ, j]

• This is the rate function of large deviations for the temporal means

J of current fluctuations

• In the stationary phase, for J close to jst = jρst the minimum

is attained on time independent (ρ, j) so that

I
0
[J] =





min
ρ(x)

1
4

∫
(J − jρ)(ρD)−1(J − jρ) dx if ∇ · J = 0

∞ otherwise

• This does not necessarily hold for all J



• In the periodic phase, it is more natural to fix the periodic means:

Iω,ϕ[J] = lim
τ→∞

1

τ
min

ρ(t,x), j(t,x)

J(x)= 1
τ

∫ τ
0
sin(ωt+ϕ) j(t,x) dt

I[0,τ][ρ, j]

where ω is a multiple of the basic frequency

• New phenomenon that does not occur in equilibrium:

At the 2nd order non-equilibrium phase transitions the

covariance of temporal averages of current fluctuations

around jst on the scale 1
Nτ

diverges in special directions

⇒ amplification of current fluctuations around such transitions



• In other words, at such transition, the variance of the random variable

N∑
n=1

τ∫
0

A(t, xn(t)) ◦ dxn(t) −
〈
· · ·

〉

√
Nτ

(note the central-limit-like rescaling) diverges when N, τ →∞ for

some time-independent or periodic functions A(t, x)

• A somewhat related enhancement of fluctuations at the saddle-node

transition of the rotator model was observed numerically and

analyzed in Ohta-Sasa, Phys. Rev. E 78, 065101(R) (2008),

see also Iwata-Sasa, Phys. Rev. E. 82, 011127 (2010)

• The simplest way to access the above variance is via the calculation

of its inverse by expanding I0(J) or Iω,ϕ(J) to the 2nd order

around their minima



• To the 2nd order around (jst, ρst) the rate functional

I[ρ, j] = 1
4

∫
(j − jρ)(ρD)−1(j − jρ) is

I[ρst + δρ, jst + δj] =
1

4

∫
(δj − Sδρ)(ρstD)−1(δj − Sδρ)

for ∂tδρ +∇ · δj = 0 where S(x.y) =
δjρ(x)

δρ(y)

∣∣
ρ=ρst

• The linearized Fokker- Planck operator is R = −∇ · S

• At critical points corresponding to a saddle-node or a pitchfork

bifurcations, R has a zero mode δρ0(x) and then for(
δρ, δj

)
=

(
δρ0, Sδρ0

)

∂tδρ +∇ · δj = ∇ · S δρ0 = −Rδρ0 = 0 and

δj − Sδρ = 0

so that I[ρst + δρ, jst + δj], and consequently I
0
[jst + δj],

vanish to the 2nd order on such a perturbation



• At critical points corresponding to a Hopf bifurcation, R has

complex conjugate modes δρ0(x), δρ0(x) with eigenvalues ±iω
and then for

(
δρ, δj

)
= Re

(
eiω(t+t0)δρ0, e

iω(t+t0)Sδρ0
)

again

∂tδρ+∇ · δj = 0 and δj − Sδρ = 0

and again I[ρst + δρ, jst + δj], and consequently Iω,ϕ[Re eiψSδρ0]

for any phase ψ vanish to the 2nd order

• Vanishing of I0 or Iω,ϕ to the 2nd order around jst means that

the variance of current fluctuations in the corresponding direction

diverges on the central-limit scale 1
Nτ

• The reason is that such fluctuations are realized in N =∞ dynamics

• In equilibrium, R cannot have non-zero imaginary eigenvalues and

for its zero modes δρ0, one also has Sδρ0 = 0, unlike in nonequili-

brium where δj = Sδρ0 represents a non-trivial current fluctuation



Example of the rotator model for J = 1, F = 0.5
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Right figure: the variance 1/I′′0 [jst] of current fluctuations as a function

of magnetic field h in log-lin plot for kBT = 0.2

• 1/I′′0 [jst] diverges at the saddle-node bifurcation for h = hcr ≈ 0.56

(the points for h < hcr correspond to an unstable stationary branch

within the periodic phase)
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Right figure: the variance 1/I′′0 [jst] of the current fluctuations as a

function of temperature kBT in lin-lin plot for h = 0.2

• 1/I′′0 [jst] is regular near the Hopf bifurcation at T = Tcr ≈ 0.5

(again, the T < Tc curve corresponds to an unstable stationary

branch within the periodic phase)



• Comparison to finite N simulations

• Divergence of the variance of current fluctuations around the saddle-

node bifurcation is difficult to see in DNS as it occurs in a narrow

window of h

• Its theoretical behavior around the Hopf bifurcation is easier to repro-

duce for finite N

Variance of current fluctuations over times τ = 100 and τ = 1000

for 104 histories of N = 100 rotators compared to the theoretical

N =∞, τ =∞ curve



Conclusions and open problems

• Diffusions with mean-field coupling are a good laboratory for non-

equilibrium statistical mechanics

• At N =∞ they are described by the non-linear Fokker-Planck

equation and may exhibit interesting phase diagrams with dynamical

phase transitions.

• For large but finite N the large deviations of their empirical densities

and currents are described by rate functionals similar to those for

stochastic lattice gases, governed by Macroscopic Fluctuation Theory

• In particular, the non-equilibrium free energy solves a functional Hamilton

-Jacobi equation and may be studied in perturbation theory

• Unlike in equilibrium, the covariance of current fluctuations diverges in

specific directions at the 2nd order transition points of such systems

• Similar methods should apply to underdamped diffusions with mean-field

coupling leading at N =∞ to Vlasov-Fokker-Planck equation.

We hope also to apply them to randomly forced 2D Navier-Stokes eqns.


