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General Setting.

I have N particle in a box. They may interact with several
different things to make the dynamics more interesting. Among
others, we have considered:

1 Binary elastic collisions.
2 Elastic ollisions with scatterers.
3 Interaction with an external electric field E plus some

mechanism to keep the energy finite. Normally this is given
by a Gausssian thermostat.

4 Thermal reservoir at the boundary of the system. This can
be modeled in different ways.
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The questions.

The system is described by the collection of the positions qi
and velocity vi of the particle. We set

V = (v1, . . . , vN) Q = (q1, . . . ,qN)

The state of the system is a probability distribution FN(Q,V ; t)
and the evolution is in general given by a linear operator LN ,
that is

ḞN(t) = LFN(t)
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Calling
F̄N = lim

t→∞
FN(t)

the Steady State of the system, the typical question one can
ask are:

Existence of the limit for N →∞ of F̄N and its behavior
with respect to the parameters of the system.
Rate of convergence to the steady state of a generic initial
state.
Call f (v ; t) the 1-particle marginal of FN(V ; t) for N very
large. Can we write a closed evolution equation for f (v ; t)
in the style of the Boltzmann equation.
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A rigorous answer to the above question in the original
deterministic models is way too difficult for me. The
deterministic collisionS make the problem extremely difficult.

One way out is to simplify the model by replacing the
deterministic collisison with random collision. This idea was
introduced first by Mark Kac in 1956.
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The Kac model.

The particle are in 1 dimension and they are initially unifrmly
distributed in space so that one can forget their positions.

The collision are described by a Poisson process whose
intensity will be chosen later.

Every time a collision take place we select at random and
uniformly two particles i and j with incoming velocities vi and vj .

The outgoing velocoties v∗i and v∗j of the two particle are

chosen uniformly on the circle of radius
√

v2
i + v2

j .

This rule is very similar to that used in the KMP model.
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If the state of the system if FN(V ) we can describe the effect of
a collision by the operator Ri,j given by

R1,2FN(V ) =
1

2π

∫
FN(v1 cos(θ)−v2 sin(θ), v1 sin(θ)+v2 cos(θ),V (2))

where V (k) = (vk+1, . . . , vN).
The evolution is thus given by

ḞN = LNFN

with
LN = λ

N(N
2

)∑
i<j

(Ri,j − I)

The scaling factor in front of the sum assures that the average
number of collision a particle suffers in a given time is
independent of N.
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This evolution preserve the total kinetic energy.

It is thus natural to look at F (V ) as defined of the sphere
SN−1(

√
N) of radius

√
N in RN . In this way the evarage kinetic

energy per particle is 1/2.

Let dσ(V ) the normalized volume measure on SN−1(
√

N). It is
easy to see that there is a unique steady state given by
FN(V ) = 1.
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Known facts.

The spectral gap of LN can be computed exactly
(Carlen-Carvalho-Loss (2000)):

Λ
(1)
N = −1

2
N + 1
N − 2

It is clearly unifrom in N.

This is only useful very close to the stedy state. Indeed if the
initial state is of the form

F (V ) =
N∏

i=1

f (vi) restriced on the sphere

then
‖F − 1‖2 ' CN

So that if we start far from the steady state, it takes a time of
order N to get close.
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We can define the entropy with respect to the steady state as

S(F |F̄ ) =

∫
F (V ) log

(
F (V )

F̄ (V )

)
dσ(V )

where in this case F̄ ≡ 1.

It is easy to show that

S(F |F̄ ) ≥ 0 Ṡ(F (t)|F̄ ) ≤ e−cN tS(F (0)|F̄ )

The constant cN is not uniform in N. Indeed for every δ there
exists Cδ such that:

1
N
≤ cN ≤

Cδ

N1−δ

(Villani (2003), Einav (2011))
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Boltzmann Property

Given a symmetric disfribution FN(V ) we define the k particle
marginal as

f k
N(v1, . . . vk ) =

∫
FN(V ) dV (k)

A sequence of distributions FN(V ) has the Boltzamnn Property
if

lim
N→∞

f k
N(v1, . . . , vk ) =

k∏
i=1

f (vi)

where
f (v) = lim

N→∞
f 1
N(v)
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Propagation of Chaos

Let FN(t) be the state of the system at tine t with initial
condition FN(0).

Kac (1956) (see also McKean (1966)) proved that if FN(0) has
the Boltzman property that FN(t) also has the Boltzmann
Property. His result is not uniform in t .

Form the above if follows, rather easily, that the limiting
1-particle marginal satisfy

ḟ (v ; t) = 2
∫

dw−
∫

dθ (f (v∗)f (w∗)− f (v)f (w))

where

v∗ = v cos(θ)− w sin(θ) w∗ = v sin(θ) + w cos(θ)

F. Bonetto, School of Mathematics, GeorgiaTech The Kac model with a thermostat.



Electric Conduction.

E
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In B., Chernov, Korepanov, Lebowitz we studied a system of
point like particles colliding with “virtual” obstacles under the
influence of an electric field and a Gaussian thermostat.

In B., Carlen, Esposito, Lebowitz, Marra (2013) we proved
validity of a self-consistent Boltzmann Equation with a
technique completely different from that used by Kac or
McKean.

This result is being extended to colliding particle by Carlen,
Mustafa, Wennberg (2014).

We could also analize in detail the steady state for small
electric field (B. Loss(2013)).
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Thermostated Kac System.

We add to the system a second collision process. Again at
Poisson distributed times a particle collides with a termostated
wall. We can represent this wall in two ways.

A strong thermostat described by the operator:

T s
1 F (V ) = γβ(v1)

∫
F (v1,V (1))dv1

where

γβ(v) =

√
β

2π
e−β

v2
2 ,

or a weak thermostat

T w
1 F (V ) =

∫
γβ(w∗)F (v∗1 ,V

(1))dθdw
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The generator of the evolution becomes

LN = µ
∑

i

(Ti − I) +
2λ

N − 1

∑
i<j

(Ri,j − I)

The evolution now take place on the full RN since the energy is
not conserved.

It is easy to see that there is a unique steady state given by the
Maxwellian at inverse temperature β

Γβ(V ) =
∏

i

γβ(vi).

We can ask the same question we asked for the original Kac
model.
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Spectral gaps.

Since LN is not self adjoint in L2(RN) it is convenient to write

F (V ) = Γ(V )H(V )

where now H satisfy the new evolution

Ḣ = −LNH

with
LN = µ

∑
i

(T̃i − I) +
2λ

N − 1

∑
i<j

(Ri,j − I)

with
T̃1F (V ) =

∫
γβ(w)F (v∗1 ,V

(1))dθdw .

It is now easy to see that LN is self adjoint on L2(RN , Γ(V )).
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The convergence to the steady state is dominated by the
thermostat.

The spectral gap of LN is given by

Λ
(1)
N = −µ

2
with eigenfunction

H(1)(V ) =
∑

i

v2
i −

1
β

=
∑

i

h2(vi)

where h2 is the Hermite polynomial of degree 2.
To see the effect of the particle-particle collision we compute
the second eigenvalue of LN and find, when N →∞,

Λ(2)
∞ = −λ

2
− 5

8
µ

with eigenfunction

H(2)(V ) =
∑

i

h4(vi).
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Convergence in entropy

One can also study the convergence in entropy.

In this case one finds, thanks to the thermostat, that

S(F (t)|Γ) ≤ e
µ
2 S(F (0)|Γ)

To obtain this one can reduce the problem to a one particle
system using a Loomis-Whitney style inequality and then map
the evolution of the one particle system into a
Ornstein-Uhlembeck process.
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Propagation of Chaos.

It is quite straight forward to extend Kac prove of validity of
Propagation of Chaos to this system.

We get the validity of a Boltzmann-type equation with a
thermostat added:

ḟ (v ; t) =2
∫
−
∫

dθ (f (v∗)f (w∗)− f (v)f (w)) dw+

+

∫
−
∫

dθ (γ(v∗)f (w∗)− γ(v)f (w)) dw

Our result is not uniform in time. We think we can get a unifrom
Propagation of Chaos by using the thermostat.
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Origin of the thermostat.

We want to understand a little better the nature of the
thermostat.

We take a system of N particles evolving with the original Kac
evolution with no thermostat (mu = 0). We look at the evolution
in L2(RN , Γ(V )).

We assume that the initial state is of the form

F (V ) = Γβ(V )h(v1)

that is all particle but one are in equilibrium at temperature β.

We expect that for N large the out of equilibrium particle will
converge to equilibrium at temperature β with the same
evolution as if it was in contact with a thermostat.

If we keep t fixed and let N →∞ the result would betrivial.
Thus we want this to be unifrom in time.
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We can show that for every t ,

‖et(LN−I)h − et(T̃1−I)h‖2 ≤
C‖h‖2√

N

Moreover if we have M particle initialy out of equilibrium we get
a similar estimates with M√

N−M
instead of 1√

N
.

You cannot do better since we can compute that

lim
t→∞
‖et(LN−I)h − et(T̃1−I)h‖2 = O

(
1√
N

)
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Newton Law of Cooling.

We now go back to our Kac model with a thermostat of strenght
µ.

We can define the average kinetic energy as

E(V ) =
1
2

∑
i

v2
i
2

and call
τ(t) =

1
2

∫
E(V )FN(V )dV

A straighforward computation show that

τ̇(t) = −µ
2

(
τ(t)− 1

β

)
that looks very much like Newton Law of Cooling.
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But it is not!

It is easy to see that even starting the system in a initial state at
inverse temperature β′ 6= β, that is

FN(V ,0) = Γβ′(V )

we have
F (V , t) 6= Γβ(t)(V )

where β(t) = 1/τ(t).

To obtain Newton Law of Cooling we need a Thermodynamic
Trasformation, that is an infinitely slow trasformation so that the
system is always infinitesimaly close to equilibrium.
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To do this we can take µ very small and look at it on a time
scale of the form t = s/µ.

More precesely we can define

GN(V , s) = lim
µ→0

FN

(
V ,

s
µ

)
Again we get

GN(V , s) 6= Γβ(t)(V )

but we expect that

lim
N→∞

g(1)
N (v , t) = γβ(t)(v)

Moreover, GN(V , s) has the Boltzmann Property.

In this situation, we can call τ(t) = T (t) and speak of Newton
Law of Cooling.
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We have some initial result for the case in which only some of
the particle are thermostated. They are still unclear to me so I’ll
close here.

Thank You
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