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Collaborators and Ongoing Projects

Large deviations, instantons non-equilibrium phase transition
for quasi-geostrophic turbulence: J. Laurie (Post-doc ANR
Statocean), O. Zaboronski (Warwick Univ.)
Large deviations in two time scale problems: jet formation in
Geostrophic Turbulence: C. Nardini, T. Tangarife (ENS-Lyon),
and E. Van den Eijnden (NYU)
Rare events, large deviations, and extreme heat waves in the
atmosphere: J. Wouters (ENS-Lyon)

Numerical computation of large deviation for transition
trajectories in the Ginzburg Landau equation: J. Rolland and
E. Simonnet (INLN-Nice)
Large deviations, non-equilibrium free energies, and current
fluctuation for particles with long range interactions:
K. Gawedzki, and C. Nardini (ENS-Lyon).
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Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such a velocity profile?
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Has One of Jupiter’s Jets Been Lost ?
We look for a theoretical description of zonal jets

Jupiter’s white ovals (see
Youssef and Markus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of the zonal jet ?
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Abrupt Climate Changes
Long times matter

Temperature versus time: Dansgaard–Oeschger events (S. Rahmstorf)

What is the dynamics and probability of abrupt climate
changes?
Predict attractors, transition pathways and probabilities.
Study a hierarchy of models of ocean circulation and of
turbulent atmospheres.
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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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The Main Issues

How to characterize and predict the attractors in extended
systems with long range interactions?
In case of multiple attractors, can we compute their relative
probability?
Can we compute the transition pathways and the transition
probabilities?
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Large Deviations and Free Energies for Macroscopic
Variables

We all know the importance of the concepts of entropy and
free energy in equilibrium statistical mechanics.
Free energy of a macrostate (for instance the velocity field, the
density ρ , the one particle distribution function, etc.)

PN [ρ] ∼
N→∞

1
Z
e−N F [ρ]

kBT ,

with Z =
∫

D [ρ] e−N F [ρ]
kBT .

The free energy is

F (T ) =−kBT log(Z (T )) = min
{ρ|∫ ρ=1 }

F [ρ] .

How to generalize these concepts to non-equilibrium problems?
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The Driven and Overdamped Mean Field Model

Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBTηn.

F is a constant force driving the system out of equilibrium
(F = 0 : equilibrium problem).

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

Outline

1 The Driven Overdamped Model with Mean Field Interactions
The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse
decomposition for the non-equilibrium free energies

2 Two easy solutions for the free energy computation
Sanov’s theorem and large deviations
The equilibrium case (F=0)
The independent particle case (ε = 0 and F 6= 0)

3 Perturbative expansion of the free energies
Leading order correction to the free energy
Series expansion and solvability conditions
Numerical computation of large deviations
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The Driven and Overdamped Mean Field Model

Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBTηn.

xn ∈ T = [0,2π[ the one dimensional circle (generalization to
diffusions over the torus T d in dimension d is straightforward).
N particles.
〈ηnηm〉= δ nmδ (t− t ′).

The onsite potential U and the interaction potential V are
periodic functions.
F is a constant force driving the system out of equilibrium
(F = 0 : equilibrium problem).
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The Non-Linear Fokker–Planck Eq. (Vlasov Mac–Kean Eq.)

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBT
dβn

dt
.

The empirical density ρN (x) = 1
N ∑

N
n=1 δ (x−xn) .

For large N, a mean field approximation gives the Non-Linear
Fokker Planck equation:

∂ρ

∂ t
=− ∂

∂x
[J [ρ]] with J [ρ] =

(
F − dU

dx
− ε

d
dx

V ∗ρ

)
ρ−kBT

∂ρ

∂x
,

with (V ∗ρ)(x)≡
∫
dx1 ρ(x1)V (x−x1) .

We assume that a stationary solution of the non-linear
Fokker–Planck equation exists:

∂

∂x

[(
−F +

dU
dx

+ ε
d
dx

V ∗ρε,F

)
ρε,F +kBT

∂ρε,F

∂x

]
= 0.

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse decomposition

Outline

1 The Driven Overdamped Model with Mean Field Interactions
The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse
decomposition for the non-equilibrium free energies

2 Two easy solutions for the free energy computation
Sanov’s theorem and large deviations
The equilibrium case (F=0)
The independent particle case (ε = 0 and F 6= 0)

3 Perturbative expansion of the free energies
Leading order correction to the free energy
Series expansion and solvability conditions
Numerical computation of large deviations

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse decomposition

The PDF of the Empirical Density

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBT
dηn

dt
.

Empirical density:

ρN (t,x) =
1
N

N

∑
n=1

δ (x−xn) .

“Probability Density Function” of the empirical density:

PN [ρ]≡ 〈δ (ρ−ρN)〉N ,

(the probability density to observe ρN to be equal to ρ , where
ρ is a function of x).
Formally defined through the average of any observable A :

〈A [ρ]〉N =
∫

D [ρ] A [ρ]PN [ρ] .
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Large Deviations of the Empirical Density

Empirical density

ρN (t,x) =
1
N

N

∑
n=1

δ (x−xn) .

If the empirical density PDF verifies
1
N

logPN [ρN = ρ] ∼
N→∞

−F [ρ]

kBT
,

we call this a large deviation result with rate N and large
deviation functional −F/kBT .
Loosely speaking, we have

PN [ρN = ρ] ∼
N→∞

Ce
−N F [ρ]

kBT .

Then F [ρ] is the free energy of the macrostate ρ .
What is the large deviation rate function of the overdamped
mean field model?
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An Exact Evolution Equation for the Empirical Density

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBT
dηn

dt
.

The empirical density ρN (x) = 1
N ∑

N
n=1 δ (x−xn) .

With Ito formula, we get the formal equation

∂ρN

∂ t
=− ∂

∂x
(J [ρN ])+

∂

∂x

(√
2kBT

N
ρNη

)
,

with 〈η(t,x)η(t ′,x ′)〉= δ (t− t ′)δ (x− x ′).
This is a stochastic partial differential equation with weak noise
Path integral formulation (Onsager–Machlup) or Freidlin–Wentzell
theory.
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Action for the Large Deviations of the Empirical Density

∂ρN

∂ t
=− ∂

∂x
(J [ρN ])+

∂

∂x

(√
2kBT

N
ρNξ

)
.

Then the stationary PDF for the empirical distribution verifies a
large deviation principle with

F [ρ] = min
{r(t,x)|r(−∞,x)=ρε,F and r(0,x)=ρ)}

A [r ]

where ρε,F is the stationary distribution of the non-linear
Fokker-Planck equation, with

A [r ] =
1
4

∫ 0

−∞

dt
〈

∂ r
∂ t

+
∂

∂x
J [r ] ,

∂ r
∂ t

+
∂

∂x
J [r ]

〉
r

The stationary large deviations functional can be obtained
solving an difficult variational problem (D.A. Dawson and Gärtner,
1987).
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Action and Scalar Product

A [r ] =
1
4

∫ 0

−∞

dt
∫
dx
〈

∂ r
∂ t

+
∂

∂x
J [r ] ,

∂ r
∂ t

+
∂

∂x
J [r ]

〉
r
,

with

〈r1, r2〉r =
∫
dx1dx2 C−1

η (x1−x2) r1(x1)r2(x2)=
∫
dx r1(x)

(
∂

∂x

[
r

∂

∂x

])−1
(r2)(x).

In the following we will consider the gradient of a functional V
with respect to this scalar product, defined by
δV = 〈gradrV ,δρ〉r
We get

gradrV =− ∂

∂x

[
r

∂

∂x
δV

δρ(x)

]
.

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse decomposition

Hamilton-Jacobi Equation

The solution of the variational problem

F [ρ] = min
{r(t,x)|r(−∞,x)=ρε,F and r(0,x)=ρ)}

A [r ]

with
A [r ] =

1
4

∫ 0

−∞

dt
∫
dx
〈

∂ r
∂ t

+
∂

∂x
J [r ] ,

∂ r
∂ t

+
∂

∂x
J [r ]

〉
r
,

is a solution of the Hamilton-Jacobi equation

〈gradrF ,gradrF 〉r +
〈

gradrF ,− ∂

∂x
J [r ]

〉
r
= 0.
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Non-Equilibrium Free Energy and Transverse Decomposition

With some natural hypothesis insuring unicity, we have equivalence
between the three properties:

1 F is a local minima of the action variational problem
2 F solves the Hamilton Jacobi equation

〈gradrF ,gradrF 〉r +
〈

gradrF ,− ∂

∂x
J [r ]

〉
r
= 0.

3 There exists a transverse decomposition

− ∂

∂x
J [r ] =−gradrF +G with 〈gradrF ,G 〉r = 0.

Bertini, DeSole, Gabrielli, Jona-Lasinio and Landim
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Sanov’s Theorem

Let us consider N independent and identically distributed
variables {xn} with PDF P(x).
What is the large deviation of the empirical density
ρN (x) = 1

N ∑
N
n=1 δ (x− xn)?

Sanov’s theorem:
1
N

logPN [ρ] ∼
N→∞

−
∫

ρ log
(

ρ

P

)
dx ≡SKB [ρ ‖P ] .

Or equivalently

〈δ (ρ−ρN)〉N ≡
∫ N

∏
n=1

dxnP (xn) δ (ρ−ρN) ∼
N→∞

Ce−N
∫

ρ log( ρ

P )dx .

The large deviation rate functional is the Kullback–Leibler
entropy. If P = 1/2π, SKB [ρ ‖P ] = S [ρ] =−∫ ρ log (ρ) dx .
The most probable PDF is P.
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Equilibrium (F = 0): the Gibbs Distribution

dxn

dt
=−dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBTηn.

It is a Langevin dynamics with Hamiltonian

HN(x1, ...,xN) =
N

∑
n=1

U(xn)+
1
2N

N

∑
n,m=1

V (xn−xm) .

We know that the N-particle stationary measure is the Gibbs
measure with PDF

PS
N(x1, ...,xN) =

1
ZN

e
− HN

kBT .

We want to compute

PS
N [ρ] = 〈δ (ρ−ρN)〉N =

1
ZN

∫ N

∏
n=1

dxn δ (ρ−ρN)e
−HN (x1,...,xN )

kBT .
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Large Deviations of the Empirical Density at Equilibrium

PN [ρ] =
1

ZN

∫ N

∏
n=1

dxn δ (ρ−ρN)e
−HN (x1,...,xN )

kBT .

We use the mean field “approximation” for the Hamiltonian

HN ∼
N→∞

NH [ρ]≡ N
[∫

ρU +
1
2

∫
ρ (V ∗ρ)

]
.

Then

PS
N [ρ] ∼

N→∞

1
ZN

e
−N H [ρ]

kBT

∫ N

∏
n=1

dxn δ (ρ−ρN) ∼
N→∞

1
Z
e
−N Feq [ρ]

kBT ,

with
Feq [ρ] = H [ρ]+kBT

∫
ρ log (ρ) dx .

E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math.
Phys.,1992.
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Sanov’s theorem and large deviations
The equilibrium case (F=0)
The independent particle case (ε = 0 and F 6= 0)

Equilibrium Solution and Gradient Flow

What is the relation between the equilibrium solution

Feq [ρ] = H [ρ]+kBT
∫

ρ log (ρ) dx .

and the transverse decomposition?
We can check directly that

− ∂

∂x
JF=0 [ρ] =−gradρFeq

F. Otto - C. Villani
In the equilibrium case, the non-linear Fokker-Planck equation
is a gradient flow with respect to the “noise scalar product”.
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ε = 0: A Trivial Non-Equilibrium Case

dxn

dt
= F − dU

dx
(xn)+

√
2kBT

dηn

dt
.

Empirical density

ρN (t,x) =
1
N

N

∑
n=1

δ (x− xn) .

We assume that the initial N-particle PDF is

PN(x1, ...,xN , t = 0) =
N

∏
n=1

ρ0(xn).

The N particles are statistically independent. We can apply
Sanov’s theorem.
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ε = 0: A Trivial Non-Equilibrium Case

dxn

dt
= F − dU

dx
(xn)+

√
2kBT

dηn

dt
.

The N-particle PDF is PN(x1, ...,xN , t = 0) = ∏
N
n=1 ρ0(x , t), where

ρ0 is the solution to the one particle Fokker-Planck equation
∂ρ0

∂ t
=

∂

∂x

[(
−F +

dU
dx

)
ρ0+kBT

∂ρ0

∂x

]
= FP [ρ0] .

Using Sanov’s theorem we conclude
1
N

logPN [ρN = ρ, t] ∼
N→∞

−F [ρ, t]
kBT

=−
∫

ρ(x) log
(

ρ(x)
ρ0(t,x)

)
dx .

If ρ0,F is the stationary distribution of the one particle
Fokker-Planck equation, we have

Fε=0 [ρ] = kBT
∫

ρ(x) log
(

ρ(x)
ρ0,F (x)

)
dx .
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Equilibrium Solution and Transverse Decomposition

We can directly check that

− ∂

∂x
Jε=0 [ρ] =−gradρFε=0+Gε=0 [ρ]

with 〈
gradρFε=0,Gε=0

〉
ρ
= 0
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The Non-Equilibrium Interacting Case

dxn

dt
= F − dU

dx
(xn)−

ε

N

N

∑
m=1

dV
dx

(xn−xm)+
√

2kBT
dηn

dt
.

The N-particle PDF is not known a-priori.
No detailed balance, currents in the stationary state.
What to do then ?

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

Leading order correction to the free energy
Series expansion and solvability conditions
Numerical computation of large deviations

Outline

1 The Driven Overdamped Model with Mean Field Interactions
The model and the Non linear Fokker-Planck equation
Large deviation of the empirical density
Action minimisation, Hamilton Jacobi, and transverse
decomposition for the non-equilibrium free energies

2 Two easy solutions for the free energy computation
Sanov’s theorem and large deviations
The equilibrium case (F=0)
The independent particle case (ε = 0 and F 6= 0)

3 Perturbative expansion of the free energies
Leading order correction to the free energy
Series expansion and solvability conditions
Numerical computation of large deviations

F. Bouchet CNRS–ENSL Non equilibrium free energies in mean field systems.



The driven overdamped mean field model
Two easy solutions

Perturbative Non-eq. free energies.

Leading order correction to the free energy
Series expansion and solvability conditions
Numerical computation of large deviations

Perturbative expansion of the free energy

We suppose

− ∂

∂x
J [ρ] =−gradρF0+G0 [ρ]+ εP [ρ]

with 〈
gradρF0,G0

〉
ρ
= 0

We look for the solution Fε of either, the action minimization,
the Hamilton-Jacobi equation or the transverse decomposition.
Can we find F1 such that

Fε = F0+ εF1+O
(
ε

2)?
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Zero Order Fluctuation Path
Zero order minimizer of the action.

The minimizer of the action corresponding to the zero order
free energy problem

− ∂

∂x
J0 [ρ] =−gradρF0+G0 [ρ]

is a fluctuation path R0 [ρ, t]: a time reversed solution to the
relaxation equation for the dual dynamics.
It solves

∂R0

∂ t
= gradR0F0+G0 [R0]

with R0 [ρ,−∞] = ρ0 (an attractor of the zero order dynamics)
and R0 [ρ,0] = ρ .

Freidlin-Wentzell book.
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First Order Non-Equilibrium Free Energy

When we have a variational problem, inserting the zero order
minimizer in the action, we immediately obtain the first order
minima.
Using this remark, we obtain

F1 [ρ] =−ε

∫ 0

−∞

〈
gradR0[ρ]F0 [R0 [ρ]] ,P [R0 [ρ]]

〉
R0[ρ]

.

The first order non-equilibrium free energies can be expressed
as an integral over the relaxation paths.
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Solution at Order 1 for the Mean Field Models

F≤2 [ρ] =
∫ [

ρ

(
ε

2
V ∗ρ

)
+kBTρ ln

ρ

ρ0,F

]
+

ε

2

∫ ∫
dx1dx2 ρ(x1)ρ(x2)f1(x1,x2).

with f1 the unique solution to

1
ρ0,F (x1)

FP0,x1

[
ρi ,0(x1)f

′
1(x1,x2)

]
+

1
ρ0,F (x2)

FP0,x2

[
ρ0,F (x2)f

′
1(x1,x2)

]
= ...

...j0V ′ (x1−x2)
[

1
ρ0,F (x1)

− 1
ρ0,F (x2)

]
.

A non local free energy: conjugated effects of the
non-equilibrium driving and of the two-body interactions.
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Series Expansion and Solvability Conditions

The first order solution can be generalized to all order to get
the expansion

Fε [ρ] =
∞

∑
n=0

ε
nFn [ρ] ,

We have natural recurrence relation to express all Fn [ρ] as
integrals over the relaxation paths corresponding to the
previous order fluctuation paths.
The convergence of these integrals at each order, is equivalent
to solvability conditions that appear the Hamilton-Jacobi
equation when expanding in power of ε .
We have proven that these solvability conditions are verified at
all order (existence of the series expansion).
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Non-Equilibrium Free-Energy of the Mean Field Models

We got some explicit results for the computation of the
non-equilibrium free energy of the driven overdamped HMF
model.
The free energy can be easily computed for two cases: the
equilibrium case and the independent particle case.
We have developed a theory of perturbative expansions of
action minimisation and Hamilton-Jacobi equation, valid in a
broad context.
This theory, applied to the mean field models, show that at
order one (and above) the non-equilibrium free energy is a non
local functional of the field due either to non-equilibrium
effects or to two body interactions.
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Numerical Computation of Rare Events and Large Deviations
Computation of least action paths (instantons) and/or multilevel splitting

Multilevel-splitting: Ginzburg-Landau
transitions (with E. Simonnet and J.

Rolland)

0
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,1
)|

|ω̂(1,0)|

2D Navier-Stokes
instantons (with J. Laurie)

Rare events and their probability can now be computed
numerically in complex dynamical systems.
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Summary and Perspectives

Explicit computations of non-equilibrium free energies (large
deviations for the empirical density) for the dynamics of
particles with mean field interactions (two limit cases, and
perturbative expansions)
A general theory for series expansion of free energies within
each basin of attractions of the unperturbed dynamics.
Non-equilibrium statistical mechanics and large deviation
theory will be useful to understand turbulence in Geophysical
Fluid Dynamics.
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