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STOCHASTIC PROCESSES OF INTEREST

Semi-Markovian property
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1.1 Example of processes of interest : a bacterial ratchet
motor Di Leonardo & al. PNAS, 107 9541 (2010)
• Experiment : asymmetric gear (diameter : 48 µm, thickness 10 µm)

in active bath of self-propelling bacteriae.
αt : angle of black spot position

at time t

〈αt
t 〉 = 1 revolution per minute

• Physical mechanism

white "head" : self-propulsion direction

• perpendicular wall reaction
reorients bacteria motion
• either bacteria slides to corner

−→ gets stuck −→ torque
or bacteria slides away from corner
−→ no torque
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1.2 Modelization by a finite state semi-Markovian process
• Finite number of configurations Cm :

discretized values of angle α of black spot position : Cm ≡ αm = m2π/M

• Semi-Markovian process (or generalized renewal sequence) :

History :
(
(C0, τ 0), (C, τ 0 + τ), (C′, τ0+ τ + τ ′), . . .

)
After a waiting time τ distributed with probability PC(τ),
system jumps from C to C′ with probability (C′|P|C)
(P stochastic matrix with quantum mechanics convention for sense of evolution)

• Graph representation :

vertex • :
{
configuration C
weight for waiting time at C :
- P0
C(τ) if C initial configuration of history

- PC(τ) otherwise

bond —– : probability (C′|P|C) to jump from C to C′
when a jump is known to occur
and probability (C|P|C′) of reverse jump
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1.3 Questions

1) Probability that the cycle be performed at least once in positive (negative)
sense in a infinite time interval ?

2) Fluctuation relation for first passage time at winding number +1 or -1 ?
winding number = number of revolutions in the positive sense minus number of
revolutions in the opposite sense

Answers use affinity concept
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AFFINITY and ENTROPY PRODUCTION RATE

Known results for Markovian processes
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2.1 Specific case : Markovian processes
• Markov property : specific form for probability of waiting time τ in

configuration C : exponential

PC(τ) = r(C)e−r(C)τ

r(C) escape rate from C = inverse mean waiting time at C

• From a Markov chain to a Markov process :

(C′|P|C) probability to jump from C to C′ knowing that system jumps out of C
−→(C′|W|C)dt probability to jump from C to C′ during dt

• Master equation for evolution of probability P(C; t) of configuration C at t

dP(C; t)
dt =

∑
C′ 6=C

[(C|W|C′)P(C′; t)− (C′|W|C)P(C; t)]

• Microreversibility hypothesis : (C′|W|C) 6= 0 ⇔ (C|W|C′) 6= 0
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2.2 Shannon-Gibbs entropy evolution and irreversibility
• Dimensionless Shannon-Gibbs entropy (kB = 1)

SSG [P(t)] ≡ −
∑
C

P(C; t) lnP(C; t)

dSSG

dt =
∑
C,C′

(C′|W|C)P(C; t) ln P(C; t)
P(C′; t)

• Analogy with phenomenological thermodynamics of irreversible processes
[Schnakenberg 1976]

dSSG

dt =
dexchSSG

dt +
dirrSSG

dt

dexchSSG

dt ≡ −
∑
C,C′

(C′|W|C)P(C; t)ln (C′|W|C)
(C|W|C′)

with no definite sign

dirrSSG

dt ≡ 1
2
∑
C,C′

[(C′|W|C)P(C; t)− (C|W|C′)P(C′; t)] ln (C′|W|C)P(C; t)
(C|W|C′)P(C′; t) ≥ 0

dirrSSG

dt : irreversible entropy production rate
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2.3 Comparison with kinetic theory : affinity of a chemical
reaction (a)
• In a vessel with walls at inverse temperature β and exerting pressure P,
one introduces species A and B prepared separately at (β,P)

reversible reaction : A 
 B

• Phenomenological thermodynamics of irreversible processes

dirrSph

dt︸ ︷︷ ︸
entropy production rate

= β(µA − µB)︸ ︷︷ ︸
affinityAA
B

×
dnA
B

B
dt︸ ︷︷ ︸

reaction extent rate JA
B

µi chemical potential (i = A,B, ni : molecule concentration for species i)

• Kinetic theory : dnA
B
B
dt = kB←AnA − kA←BnB with kj←i : kinetic constants

• Thermodynamics of ideal solutions : ni ∝ eβµi and µeqA = µeqB →

β(µA − µB) = ln kB←AnA
kA←BnB
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2.3 Comparison with kinetic theory : affinity of a chemical
reaction (b)

• Correspondance:
concentration ni(t) −→ P(C; t) configuration probability

kinetic constant kj←i −→ (C′|W|C) transition rate

−→ Rewriting dirrSSG

dt =
1
2
∑
C,C′

JC
C′AC
C′

bond current JC
C′ ≡ (C′|W|C)P(C; t)− (C|W|C′)P(C′; t)

bond affinity AC
C′ ≡ ln (C′|W|C)P(C; t)
(C|W|C′)P(C′; t)
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2.4 Affinity for a master equation corresponding to a graph
made of a single cycle
• Representation of a master equation by a graph
Graph G : vertex • : configuration C

bond —– : transtion rates (C′|W|C) and (C|W|C′)

• Case where graph G is a cycle C of M vertices.
Fixed orientation along C with CM+1 ≡ C1

cycle affinity AC ≡
M∑

m=1
ACm
Cm+1 with ACm
Cm+1 ≡ ln (Cm+1|W|Cm)P(Cm;t)

(Cm|W|Cm+1)P(Cm+1;t)

AC = ln
M∏

m=1

(Cm+1|W|Cm)

(Cm|W|Cm+1)
independent from P(C, t)

• Property of stationary state Pst(C)
Cycle current : JC[Pst] ≡ JC1
C2 [Pst] = JC2
C3 [Pst] = · · ·

Entropy production rate: dirrSSG

dt

∣∣∣∣
Pst

= JC[Pst]AC
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2.5 Affinity class in graph theory
• Exchange processes in configuration jumps ↔ antisymmetric matrices
- S for the exchange entropy variation
- A for the affinity variation

(C′|S|C) ≡ ln (C′|W|C)
(C|W|C′)

and (C′|A[P]|C) ≡ ln (C′|W|C)P(C; t)
(C|W|C′)P(C′; t) ≡ AC
C′

• For any P(C; t) (C′|A[P]|C)− (C′|S|C) = − lnP(C′) + lnP(C)

−→ For any P(C; t), A[P] in cohomology class of S :
set of antisymmetric Q such that "integration" along any cycle subgraph C

gives the same result as for S

∀C
M∑

m=1
(Cm+1|Q|Cm) =

M∑
m=1

(Cm+1|S|Cm) =
M∑

m=1
ln (Cm+1|W|Cm)

(Cm|W|Cm+1)
≡ AC

−→ cohomology class of S called "affinity class"
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AFFINITY CLASS INVARIANCE

under probabilistic constructions
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3.1 From a Markov process to a Markov chain
• Hypothesis : G connected :
→ no absorption configuration : r(C) =

∑
C′ 6=C(C′|W|C) 6= 0 for all C

(C′|W|C)dt probability to jump from C to C′ during dt
−→ (C′|P|C) probability to jump from C to C′ knowing that system jumps out of C

for C′ 6= C (C′|P|C) = (C′|W|C)
r(C)

• Comparison of cycle affinities

cycle affinity for process W AC[W] ≡ ln
M∏

m=1

(Cm+1|W|Cm)

(Cm|W|Cm+1)

cycle affinity for chain P AC[P] ≡ ln
M∏

m=1

(Cm+1|P|Cm)

(Cm|P|Cm+1)

AC[W] = AC[P]

Invariance under description change from Markov process to Markov chain
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3.2 From a Markov process to processes defined on a
subgraph (a)

• Generic connected graph G. Consider red subgraph H (a cycle here)

• Initial process with
{
transition rate (C′|W|C)
waiting time probability PC(τ)

Markov property PC(τ) = r(C)e−r(C)τ

• Derived process only between configurations of H

with
{
transition rate (C′|W̃|C)
waiting time probability P̃C(τ)

• Examples of derived processes such that, if H is a cycle C, then AC[W̃] = AC[W]
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3.2 From a Markov process to processes defined on a
subgraph (b)

• 1) restriction to a subgraph H :
Markov process for different histories where
system jumps only along red bonds with same transition rates

- (C′|Wrest|C) = (C′|W|C) −→ different escape rate r rest(C) =
∑
C′∈H(C′|W|C)

- If H is a cycle C AC[Wrest] = AC[W]

• 2) Conditionning
Only histories where system jumps along red bonds are retained

- −→ Markov process with (C′|Wcond|C) = g(C′)(C′|W|C) [g(C)]−1

- If H is a cycle C AC[Wcond] = AC[W]
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3.2 Processes defined on a subgraph (c)

• 3) Drag and drop
A box is bound to move on the subgraph.
All histories are considered but only the following events are retained :

a walker meets the box on a red site
and then jumps through a red bond while carrying the box along

The box moves according to a semi-Markovian process with

- probability to jump from C to C′ : (C′|Pdd|C) = (C′|Prest|C)

- waiting time probability P̃C(τ) not exponential

- If H is a cycle C AC[Pdd] = AC[P]

- Example :
? graph G : positions of a complex inside a cell
? subgraph H : heteropolymer
? box : a ligand bound to move along the heteropolymer when carried by the

complex
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Drag and Drop
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Drag and Drop

!
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AFFINITY AND FLUCTUATION RELATIONS at fixed time

Exchange Markovian processes

Known results
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4.1 Exchange processes : cumulative currents

• Exchange observable Q : (antisymmetric) (C′|Q|C) = −(C|Q|C′)

• Process Ct −→ Exchange cumulative process

XQ
t ≡

∑
s∈]0,t]

(Cs |Q|Cs−)

• Example : ( microreversibility hyp.: (C′|W|C) 6= 0 ⇔ (C|W|C′) 6= 0)
Stochastic exchange entropy variation along a history :

Lebowitz-Spohn action functional (1999) : X S
t =

∑
s∈]0,t]

(Cs |S|Cs−)

For a history from C0 to CN in time interval [0, t]

X S
t = ln (CN |W|CN−1)(CN−1|W|CN−2) · · · (C1|W|C0)

(C0|W|C1) · · · (CN−2|W|CN−1) · · · (CN−1|W|CN)
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4.2 Fluctuation relation for X S at fixed time

• Extra hypothesis : graph G connected ⇒ unique stationary Pst(C)

• Large deviation function fXS(J ) for cumulative current Jt ≡ X S
t /t

lim
t→+∞

1
t lnP

(
X S

t
t ∈ [J ,J + dJ ]

)
= fXS(J )

• Fluctuation relation obeyed by fXS(J ) [Lebowitz and Spohn (1999)]

fXS(J )− fXS(−J ) = J

Other “sloppy” formulation

P
(
X S

t = tJ
)

P
(
X S

t = −tJ
) �

t→+∞
etJ
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4.3 Case of a graph made of a single cycle : fluctuation
relation for the cycle current at fixed time

• XNM
t :number of passages through the bond (CM , C1) of cycle C during [0, t] in

the positive sense minus the number of passages in the negative sense
with NM defined by

- (CM |NM |C1) = +1
- (C1|NM |CM) = −1
- (C′|NM |C) = 0 if {C, C′} 6= {1,M}

• Fluctuation relation for the cycle current at fixed time
special case of more general results in Gaspard & Andrieux (2007)

P
(

XNM
t = tV

)
P
(

XNM
t = −tV

) �
t→+∞

e t VAC
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FLUCTUATION RELATIONS FOR FIRST PASSAGE TIMES

AT INTEGER WINDING NUMBERS

Semi-Markovian processes
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5.1 Cycle graph and winding number

• Only jumps between successive configurations
on the cycle
with probability knowing that a jump occurs :

(Cm±1|P|Cm)

• Probability for waiting time τ at site m :
Pm(τ)

• Wt : winding number around the cycle C during [0, t] : number of
clockwise jumps minus number of anticlockwise jumps divided by M

Wt = XNw
t with ∀m = 1 = · · · = M

(Cm+1|Nw |Cm) = +
1
M and (Cm|Nw |Cm+1) = −

1
M
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5.2 Probability for winding number ±1 to be reached

• Cycle affinity in the clockwise sense

AC ≡ ln
M∏

m=1

(Cm+1|P|Cm)

(Cm−1|P|Cm)

• Method : generating function. Probabilistic arguments and strong Markov
property → recursive relations

P (∃t ∈ [0,+∞[ such that Wt = −1)
P (∃t ∈ [0,+∞[ such that Wt = +1) = e−AC

More precisely, if AC > 0

- winding number +1 is reached with probability 1
- winding number −1 is never reached with finite probability 1− e−AC
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5.3 Fluctuation relation for first passage time at winding
number 1
• T± : first passage time at winding number ±1
Method : Laplace transform 〈e−λT+〉 ≡

∫
t∈[0,∞[

e−λtP (T+ ∈ [t, t + dt[)

Result : 〈e−λT+〉
〈e−λT−〉

= eAC

→ Radon-Nikodym derivative
P (T+ ∈ [t, t + dt[)
P (T− ∈ [t, t + dt[) = eAC

The ratio is independent from the various distributions of waiting times PCm(τ)
along the cycle

• Comparison with dual relation for a history corresponding to winding number
+1 (without restriction of first passage)

P
(
historywith W=+1

)
P
(
time-reversed historywith W=−1

) = eXS[historywith W=+1] = eAC
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→ Radon-Nikodym derivative
P (T+ ∈ [t, t + dt[)
P (T− ∈ [t, t + dt[) = eAC

The ratio is independent from the various distributions of waiting times PCm(τ)
along the cycle
• Comparison with dual relation for a history corresponding to winding number
+1 (without restriction of first passage)

P
(
historywith W=+1

)
P
(
time-reversed historywith W=−1

) = eXS[historywith W=+1] = eAC
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5.4 Fluctuation relation for large winding numbers (a)

T±w first passage time at winding number ±w with w integer
• If the first waiting time plays no role,
semi-Markov (or renewal) property → 〈e−λT−w 〉 = 〈e−λT−〉w

〈e−λTw 〉
〈e−λT−w 〉

= ew AC

Remarks :
1) valid for any finite winding number w

2) valid for any cycle in a more general graph of transitions as long as
the procedure to define the process of the cycle preserves the affinity class
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5.4 Fluctuation relation for large winding numbers (b)
• If the first passage time plays a special role (case of drag-and-drop construction)

law of large numbers → 〈e−λT−w 〉1/w ∼
|w |→+∞

〈e−λT−〉

lim
w→±∞

[
〈e−λT+w 〉

]1/w

[〈e−λT−w 〉]1/w = eAC

• Comparison with fluctuation relations at fixed time
Wt : winding number : number of clockwise jumps minus number of

anticlockwise jumps divided by M
∼

|Wt |→+∞

XNM
t : number of passages through the bond (CM , C1) of cycle C during [0, t] in

the positive sense minus the number of passages in the negative sense

P (Wt = tV)
P (Wt = −tV) �

t→+∞
e t VAC
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5.5 Mean first passage time at winding number 1

• T+w is a sum of w independent random variables with mean 〈T+〉
strong law of large numbers →

lim
w→+∞

T+w
w = 〈T+〉 with probability 1

lim
t→+∞

Wt
t =

1
〈T+〉

with probability 1

In the long time limit fluctuations are suppressed and cycle is performed at
velocity 1/〈T+〉

〈T+〉 =

∑M
m=1

∑M
k=1

(∏
1≤i<k p+

m+i

)
τm+k

(∏
k<j≤M p−m+j

)
(∏M

m=1 p+
m −

∏M
m=1 p−m

)
with p+

m ≡ (Cm+1|P|Cm), p−m ≡ (Cm−1|P|Cm), τm mean waiting time in Cm.
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Conclusion

• Robustness of cycle affinities when edges are discarded by conditioning or drag
and drop

→ properties for a single cycle are also valid for a cycle embedded in a more
generic pattern of transitions

• In out-of-equilibrium state a current associated to winding number flows
through cycle

Fluctuation relations for first-passage time at winding number ±w are ruled by
cycle affinity

Bauer & Cornu, J. Stat. Phys. (2014) 155 703
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