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Outline

Anomalous heat conduction in one dimensional momentum conserving systems – a short
introduction.

New results
1 Equilibrium space-time correlation functions of density, momentum and energy in the asymmetric

α − β FPU model.
[arXiv:1404.7081 (2014)]

2 Nonequilibrium simulations of the asymmetric α − β Fermi-Pasta-Ulam model.
[J. Stat. Phys (2013)]

Discussion
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Fourier’s law

Fourier’s law of heat conduction

J = −κ∇T (x)

κ – thermal conductivity of the material (expected to be an intrinsic property).

Using Fourier’s law and the energy conservation equation

∂ε

∂t
+∇J = 0

and, writing ∂ε/∂t = c∂T/∂t where c = ∂ε/∂T is the specific heat capacity,
gives the heat DIFFUSION equation:

∂T
∂t

=
κ

c
∇2T .

The problem of anomalous transport in low dimensional systems:
κ increases with system size and for large system sizes we have a divergence κ ∼ Nα.
Thus κ is not an intrinsic material property !
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Anomalous heat transport

How do we know whether or not Fourier’s law is valid in a given system with
specified Hamiltonian dynamics?

1 Attach heat baths and measure heat current directly in the nonequilibrium steady state.
Compute κ and study scaling with system size.
Fourier’s law implies J = κ∆T

N ( OR κ = JN
∆T ∼ N0 ).....otherwise anomalous.

2 Look at heat current auto-correlation function in thermal equilibrium and use Green-Kubo
formula to calculate thremal conductivity.

κGK = lim
τ→∞

lim
N→∞

1
kBT 2N

∫ τ

0
dt〈J(t)J(0)〉 .

Fourier’s law requires finite κGK , hence fast decay of 〈J(0)J(t)〉.
Anomalous transport implies slow decay of 〈J(0)J(t)〉, hence diverging conductivity.

3 Look at decay of energy fluctuations in a system in thermal equilibrium.
Fourier’s law implies diffusion equation and hence diffusive spreading of energy.
Anomalous transport leads to super-diffusive spreading of energy.

Lepri, Livi, Poloti, Phys. Rep. (2003).
A.D, Advances in Physics, vol. 57 (2008).
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Approach - I : Nonequilibrium linear response current

Nonequilibrium simulations of the Fermi-Pasta-Ulam chain.
Lepri, Livi, Politi (1997,1998)

Momentum conserving system with quartic anharmonic term —
the β-Fermi-Pasta-Ulam (FPU) model:

H =
N∑
`=1

p2
`

2m
+

N+1∑
`=1

[
k2

(q` − q`−1)2

2
+ β

(q` − q`−1)4

4

]
.

Nonequilibrium simulations of the FPU chain found that Fourier’s law was not valid and κ ∼ Nα
with α ≈ 0.5.

This seems to be general: for many different momentum conserving anharmonic
systems with/witouout disorder, κ diverges with system size N as:

κ ∼ Nα with 0 < α < 1 .
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Approach-II: Green-Kubo relation to equilibrium current
correlations

Linear response theory – relates nonequilibrium transport coefficients to equilibrium
time-dpendent correlation functions. For heat conduction:

κGK = lim
τ→∞

lim
L→∞

1
kBT 2N

∫ τ

0
dt〈J(t)J(0)〉 .

The computation of 〈J(t)J(0)〉 is usually quite difficult and requires further approximtions.

Mode-coupling theory for anharmonic chains
– Lepri,Livi,Politi (1998,2008).

Fluctuating hydrodynamics for a one-dimensional gas
– Narayan, Ramaswamy (2002), Beijeren (2012), Spohn, Mendl (2013).

Exact solution of energy-momentum conserving stochastic model
– Basile, Bernardin, Olla (2006).

These find 〈J(t)J(0)〉 ∼ t−δ with 0 < δ < 1.

This implies from Green-Kubo that κGK ∼ N1−δ .
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Approach – III: Energy spreading

Look at propagation of a heat pulse or equivalently at the decay of equilibrium fluctuations

Levy walk picture – Denisov, Klafter, Urbakh, Cipriani, Politi (2003,2005), Zhao
(2006), Denisov,Hanggi (2012), Liu,Li (2014), Lepri, Politi (2011), Dhar, Saito, Derrida (2013).

The energy profile follows
the Levy-stable distribution.
Gaussian peak, power-law
decay at large x .
Finite speed of
propagation.
〈x2〉 ∼ t1+α

(Super-diffusive).
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Some open questions

Establishing universality classes and computing the exponent α (κ ∼ Nα).

What is the correct hydrodynamic description of systems with anomalous transport ?

What replaces the heat diffusion equation ? Perhaps Levy walk description (≈ fractional
diffusion equation): But there has been no microscopic derivation of the Levy-walk picture so
far.

No rigorous proof that the thermal conductivity does diverge !
Recent simulations of some models indicate finite conductivity at low temperatures (e.g
asymmetric FPU).

H =
N∑
`=1

p2
`

2m
+

N+1∑
`=1

[
k2

(q` − q`−1)2

2
+ k3

(q` − q`−1)3

3
+ k4

(q` − q`−1)4

4

]
.
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Recent results on systems with asymmetric potentials

V (x) =
1
2

(x + r)2 + e−rx .

T = 2.5
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Recent results on systems with asymmetric potentials

α− β-FPU model at T ≈ 0.1.
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New results in this talk

1 A recent theory of fluctuating hydrodynamics of momentum conserving anharmonic chains
makes detailed predictions for the form of equilibrium correlation functions of conserved
quantities in these systems [Spohn, Mendl (2013,2014)].

We perform equilibrium molecular dynamics simulations to test these predictions for the
asymmetric FPU chain. Main results:
(i) Most of the predictions of the theory seem to hold quite accurately, though some
discrepancies are found.
(ii) Transport IS anomalous.
(iii) We do not see signatures of normal transport in any parameter regime.

2 Nonequilibrium simulations of the asymmetric FPU chain.

Main result: The claims of finite thermal conductivity is a result of strong finite size effects that
appear in nonequilibrium simulations in some parameter regimes.
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Predictions of fluctuating hydrodynamics

Spohn (JSP,2014)

Identify the conserved quantities. For the FPU chain they are
the extension (or particle density) ri = qi+1 − qi , momentum: vi and energy: ei .
They satisfy the exact conservation laws:

∂r
∂t

=
∂v
∂x
,

∂v
∂t

= −
∂p
∂x
,

∂e
∂t

= −
∂vp
∂x

,

where p is the pressure.

Consider fluctuations about the equilibrium values:
ri = `+ u1(i), vi = u2(i) and ei = e + u3(i).
Expand the curents about their equilibrium value (to second order in nonlinearity) and write
hydrodynamic equations for these fluctuations.

Let u = (u1, u2, u3). Equations have the form:
∂u
∂t

= −
∂

∂x

[
Au + uGu −

∂

∂x
Cu + Bξ

]
. 1D noisy Navier− Stokes equation

A,G known explicitly in terms of microscopic model.

Consider normal modes of linear equations and the normal mode variables φ = Ru. One
finds that there are two propagating sound modes ( φ±) and one diffusive heat mode ( φ0).
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Predictions of fluctuating hydrodynamics

To leading order, the oppositely moving sound modes are decoupled from the heat mode and
satisfy noisy Burgers equations. For the heat mode, the leading nonlinear correction is from
the sound modes.

Solving the nonlinear hydrodynamic equations within mode-coupling approximation, one can
make predictions for the equilibrium space-time correlation functions
C(x , t) = 〈φα(x , t)φβ(0, 0)〉.

Sound− mode : Cs(x , t) = 〈φ±(x , t)φ±(0, 0)〉 =
1

(λs t)2/3
fKPZ

[
(x ± ct)
(λs t)2/3

]

Heat− mode : Ce(x , t) = 〈φ0(x , t)φ0(0, 0)〉 =
1

(λet)3/5
fLW

[
x

(λet)3/5

]
c, the sound speed and λ are given by the theory.
fKPZ - universal scaling function that appears in the solution of the Kardar-Parisi-Zhang
equation.
fLW – Levy-stable distribution with a cut-off at x = ct .

Also find 〈J(0)J(t)〉 ∼ 1/t2/3.

We check these detailed predictions from direct simulations of FPU chains.
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Equilibrium space-time correlation functions — Finite pressure
case

Numerically compute heat mode and sound mode correlations in the asymmetric-FPU chain with
periodic boundary conditions.

Average over ∼ 107 thermal initial conditions. Dynamics is Hamiltonian.

Parameters — k2 = 1, k3 = 2, k4 = 1, T = 0.5, p = 1.0, N = 8192.

Speed of sound c = 1.455.
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Scaling of sound modes - asymmetric FPU

(a)

(a) Very good scaling obtained. The
scaling function is not yet symmetric
and deviates from the expected KPZ
form.
λtheory = 0.675, λsim = 2.05.

0
(x+ct)/t1/2

0

0.04

0.08

0.12

t1/
2 C

s(x
,t)

t=500
t=800
t=1300
t=2700

(b)

(b) This corresponds to diffusive scaling and
is clearly not good.
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Scaling of heat mode - asymmetric FPU

(a)

(a) Good fit to Levy distribution
f̃LW = exp(−|k |5/3)
with cut-off at x = ct .
λtheory = 1.97, λsim = 13.8.

This scaling corresponds to the thermal
conductivity exponent α = 1/3.

(b)

(b) This corresponds to diffusive scaling and
is not good.

(ICTS-TIFR) May 26, 2014 16 / 23



Equilibrium simulations of FPU

Thus we see that:

(i) Very good scaling of data is obtained, in accordance to the theoretical predictions.
The expected fit to the KPZ scaling function is not too good.
Fit to Levy distribution is good.

(ii) The scaling parameters seem to be far from the theoretically predicted values.

(iii) It is possible that the approach to the expected behaviour is slow. We might expect a faster
convergence if the separation of heat and sound modes is stronger.

We now check this.
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Equilibrium simulations of FPU - second parameter set

We try a different parameter set for which the
separation of heat and sound modes is stronger
(T = 5.0). System size N = 16384.
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λtheory = 5.89, λsim = 5.86.
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Conclusions

Equilibrium space-time correlations of conserved variables —
Very detailed theoretical predictions (Spohn, 2013) which allow direct comparision with
microscopic simulations.

Our simulations for FPU chain verify the scaling predictions quite well.

— Levy form for heat mode is verified.

— KPZ scaling for sound-mode is also verified.

The fit to the KPZ scaling function and agreement with the scaling parameters requires study
of large system sizes and longer times. Presumably this is required for the effective
decoupling of the heat and sound modes which happens at long times.

Other results:

— Results are universal [Hard point gas: Mendl, Spohn (2014)]

— Special case: Zero pressure, even potential: different universality class.

— At low temperatures we do not see any signatures of diffusive transport (in contrast to
findings of Zhao et al).
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Nonequilibrium simulations of asymmetric FPU

Zhao et al find normal transport at low temperatures and anomalous transport at high
temperatures. Is there a nonequilibrium phase-transition in this system as a function of
temperature ?

Are these finite size effects ? These are stronger at low temperatures, and perhaps the true
asymptotic (anomalous) behavior is seen at much larger system sizes?

In this study —

We change the temperature of the system and see if we can differentiate between the above
two possibilities.

(i) Size-dependence of κ.

(ii) Temperature profiles (especially check if boundary-jumps remain)
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Length-dependence of conductivity

Nonequilibrium simulations with heat baths at temperatures T + ∆T/2 and T −∆T/2.

The system Hamiltonian is the asymmetric FPU chain (k2 = k4 = 1, k3 = −1).

Heat bath dynamics — Langevin equations for boundary particles, Newton’s equations for
bulk particles.

Measure steady state current J = 〈vl fl,l−1〉, temperature Tl = 〈v2
l 〉.
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Temperature profiles

T = 0.1 T = 1.0.

Insets show expansion (〈x`+1 − x`〉) profiles. Can be obtained from temperature profile by
assuming local equilibrium.

Note that convergence of temperature profiles better at high temperature.
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Summary and questions

Nonequilibrium studies of asymmetric FPU

Heat transport is anomalous with α = 1/3.
— However it seems that at low temperatures, finite size effects are strong. At small system
sizes conductivity appears to converge.
— one has to go to very large system sizes to again see a divergence. Why? Not clear !
Two other papers:
Savin, Kosevich (2014) — FPU is anomalous, Lennard-Jones is diffusive!!
Wang, Hu Li (2014) — FPU is anomalous.

Equilibrium results on FPU correlation functions
— very good agreement with predictions from fluctuating hydrodynamics.

— Anomalous scaling is always observed.

— Strong finite-size effects as seen in the nonequilibrium studies not observed here.

Some open questions:
— What is the origin of the strong finite size effects seen (leading to apparent diffusive
transport) in nonequilibrium studies?
— Current fluctuations computed in open and closed geometries have different behaviour ?
[Deutsch, Narayan (2003), Brunet, Derrida, Gerschenfeld (2010), Dhar, Saito, Derrida (2013)].
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